
Commutativity Race Detection

Dimitar Dimitrov
ETH Zürich

dimitar.dimitrov@inf.ethz.ch

Veselin Raychev
ETH Zürich

veselin.raychev@inf.ethz.ch

Martin Vechev
ETH Zürich

martin.vechev@inf.ethz.ch

Eric Koskinen
New York University
ejk@cims.nyu.edu

Abstract
This paper introduces the concept of a commutativity race. A
commutativity race occurs in a given execution when two library
method invocations can happen concurrently yet they do not com-
mute. Commutativity races are an elegant concept enabling reason-
ing about concurrent interaction at the library interface.

We present a dynamic commutativity race detector. Our tech-
nique is based on a novel combination of vector clocks and a struc-
tural representation automatically obtained from a commutativity
specification. Conceptually, our work can be seen as generalizing
classical read-write race detection.

We also present a new logical fragment for specifying commu-
tativity conditions. This fragment is expressive, yet guarantees a
constant number of comparisons per method invocation rather than
linear with unrestricted specifications.

We implemented our analyzer and evaluated it on real-world ap-
plications. Experimental results indicate that our analysis is practi-
cal: it discovered harmful commutativity races with overhead com-
parable to state-of-the-art, low-level race detectors.

1. Introduction
In response to the growing complexity of software, common pat-
terns are increasingly being encapsulated into thread-safe libraries
(e.g. Java collections). At the same time, virtually all modern appli-
cations use some form of concurrency and heavily rely on various
libraries to accomplish their objective. This raises a key challenge:
even though a library is implemented correctly, concurrent threads
can invoke its operations in a way which causes undesirable inter-
ference at the library interface level, leading to incorrect program
behaviors. We observe that such errors are fundamentally caused
when concurrent threads perform non-commutative library opera-
tions. We refer to this phenomenon as a commutativity race. To
illustrate the concept, consider the following simple program:

T1: T2:

1: fork T2; 3: int v=m.get(5);
2: m.put(5,7);

Initially, the concurrent hashmap m has all keys initialized to the
value 1. Here, we have a commutativity race between m.put(5,7)
and m.get(5): the two operations do not commute and they can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’14, June 09–11, 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594322

happen in any order. As a result of this commutativity race, the
values returned by get differ in each of the two possible execu-
tions, returning 7 if m.put(5,7) occurred before m.get(5) in
the execution or returning 1 otherwise. Such non-determinism can
sometimes lead to undesirable behaviors further in the execution. In
fact, in Java, if m was initially empty, and get(5) executes before
put(5,7), the program will throw a NullPointerException
when unboxing the result from get(5). Of course, not all commu-
tativity races are harmful, however the presence of a commutativity
race may indicate undesirable interference.

Commutativity race detection. In this paper, we introduce the
concept of a commutativity race and present a dynamic commu-
tativity race detector with the appropriate formal guarantees. Our
approach is parametric on a declarative commutativity specifica-
tion and can be used to analyze any library equipped with such a
specification. The analysis is based on a novel combination of com-
mutativity information with classic vector clocks [12, 14]. Concep-
tually, our work can be seen as a generalization of traditional data
race detection (e.g. [3]) to deal with much richer and abstract no-
tions of conflict, beyond the level of basic reads and writes.

We introduce an expressive logical fragment (ECL) for cap-
turing commutativity conditions as well as an automatic transla-
tion procedure from ECL to a structural representation used by the
commutativity race detector. ECL admits practical specifications
(e.g. maps, sets) yet is amenable to efficient analysis: any commu-
tativity condition expressed in ECL can be checked by the analysis
via a constant number of comparisons per method invocation as
opposed to linear with unrestricted specifications. We believe the
results in this paper are of interest beyond race detection: the struc-
tural representation, ECL and the translation procedure between
them can serve as a basis for other concurrency analyzers as well
as for optimistic concurrency schemes (e.g. transactional memory).

Contributions. The main contributions of this paper are:

• A dynamic commutativity race detector based on a novel com-
bination of classic vector clocks for tracking the happens-before
relation with a structural representation of a commutativity
specification (Section 5). Our approach generalizes traditional
race detection to richer, more abstract notions of conflict.
• A logical fragment, called ECL, which captures useful commu-

tativity conditions (e.g. maps), yet allows the analysis to per-
form a constant number of operations per method invocation,
as opposed to linear with arbitrary specifications (Section 6.1).
• A translation procedure from ECL to the structural representa-

tion used by the analysis (Section 6.2).
• An implementation and an evaluation of our approach on two

industrial Java applications (Section 7). Our results indicate that
the performance overhead is acceptable and further, our tool
discovered harmful commutativity races in these applications
when using ConcurrentHashMap.

1: var o = dictionary(); // Empty dictionary.
2: var hosts = ReadListOfHosts();
3: for host in hosts {
4: fork {
5: o.put(host, createConnection(host));
6: }
7: }
8: joinall;
9: print(o.size() + " connections established");

Figure 1. An example of concurrently establishing connections to
a list of hosts and storing them in a shared dictionary o.

2. Overview
Next, we informally introduce and motivate the concepts underly-
ing our approach. Full formal details are provided in later sections.

Consider the example program shown in Fig. 1. The program
obtains a list of hostnames, creates a connection to each host and
stores these connections in an initially empty associative map (a
dictionary for which every key is initially associated with nil) such
that every hostname is associated with a connection. In Java, the
dictionary can be represented by ConcurrentHashMap. Connec-
tions are established in parallel as the program forks a thread for
each connection. The command joinall waits for all previously
created threads to finish. Once all threads have completed, the pro-
gram prints the total number of established connections.

Example of a commutativity race. If hosts contains duplicates
(e.g. hosts = [’a.com’, ’a.com’]), more than one thread will
attempt to connect to the same host, leading to a commutativity race
between a successful o.put invocation in one thread and an unsuc-
cessful o.put operation in another. Such a commutativity race can
indicate a potential application error: the developer did not think of
the fact that the input list may contain duplicate hosts. Further, with
every attempt to create a duplicate connection, there will be an ad-
ditional short-lived connection object that is created and never used
later, overburdening the underlying memory management system.

We next discuss our approach to detecting commutativity races.
The approach consists of several ingredients. These ingredients as
well as the flow between them are illustrated in Fig. 2. We discuss
these ingredients in the context of our example. Later sections
provide the appropriate formal treatment.

Step 1: obtain a commutativity specification. We capture com-
mutativity between method invocations by using logical formulas:
a natural, declarative way to capture commutativity [8]. That is,
for every pair of methods of a given library, we provide a for-
mula which describes when the two methods commute. For in-
stance, the following formula describes when two put operations,
put(k1,v1)/p1 and put(k2,v2)/p2, commute:

k1 6= k2 ∨ (v1 = p1 ∧ v2 = p2)

Step 2: obtain an access point representation. Next, our transla-
tor (discussed in Section 6.2) automatically converts a commutativ-
ity specification into what we call an access point representation, a
form of an intermediate executable representation used by the anal-
ysis. Its main purpose is to reduce the number of checks that the
analysis needs to perform. An access point representation captures
the “micro actions” (called access points) that are relevant to com-
mutativity checking. For instance, a successful o.put(k,v)/nil
is translated into two access points o:w:k and o:resize denoting
that: i) the value associated with the particular key has changed,
and ii) the size of the dictionary o has changed. Conflict check-
ing can then be performed on individual access points as opposed
to on entire invocations (if the analysis had worked using the com-

commutativity
 specification

 logic-to-access
points translator

access point
specification

commutativity
 race detector

vector clocks

program program trace

report
 races

X

no races
 found



Figure 2. Our approach to commutativity race detection.

Thread τ2:
〈2, 1, 0〉 a2

Thread τ3:
〈3, 0, 1〉 a1

o.put(’a.com’,c1)/nilo.put(’a.com’,c2)/c1

Thread τm:

joinall
〈4, 1, 1〉 a3

o.size()/1

Commutativity race, due to:
incomparable vector clocks:
〈3, 0, 1〉 of a1 and
〈2, 1, 0〉 of a2

conflicting access points:
both a1 and a2 touch
o:w:’a.com’

Figure 3. Algorithm operation on an example execution.

mutativity specification directly). More generally, working with the
access point representation of certain commutativity specifications
(which we discuss in Section 6) leads to better asymptotic complex-
ity of the analysis algorithm (i.e. constant over linear).

Step 3: commutativity race detection. Finally, our online dy-
namic analyzer consumes a program trace and checks the trace for
commutativity races. Consider an execution of our running exam-
ple shown in Fig. 3. First, thread τ3 associates a connection c1 with
’a.com’in the dictionary. As the dictionary is initially empty, put
returns nil. Next, thread τ2 associates a new connection object c2
with ’a.com’, overwriting and returning the previous connection
c1. Finally, the main thread waits for both threads to complete and
obtains the size of the dictionary, which is 1.

In the figure, we show the information computed by our algo-
rithm when analyzing the trace, namely the vector clocks which
capture the temporal relationship between invocations (also called
actions) as well as the access points which capture the commu-
tativity relationship between invocations. Here, each invocation is
inside a shaded area (top right names the action) annotated with
a vector clock in the top-left corner. A commutativity race occurs
when there are two unordered actions (i.e. their vector clocks are
non-comparable), yet their access points conflict.

In our example, actions a1 and a2 participate in a commutativ-
ity race. The reason is that: i) both of these actions are unordered as
their vector clocks are non-comparable (we compare vector clocks
by comparing their respective entries), and ii) when translated to ac-
cess points, both actions share the same access point o:w:’a.com’
which conflicts with itself.

Actions a3 and a1 do not participate in a commutativity race
because they are ordered: the vector clock 〈3, 0, 1〉 of action a1 is
less than the vector clock 〈4, 1, 1〉 of action a3. Note that had there
not been a joinall statement in the code, then the two actions
would conflict because action a1 resizes the dictionary and touches
access point o:resizewhich conflicts with the access point o:size
touched by the action a3.

o.put(‘a.com’, c1)/nil

o.put(‘b.com’, c2)/nil

o.put(‘c.com’, c3)/nil

 o.size()/?

o:w:’a.com’

o:w:’b.com’

o:w:’c.com’

 o:size

o
:resize

conflict on invocations

conflict on access points

Figure 4. Conflict on invocations vs. conflict on access points

Finally, actions a3 and a2 do not participate in a commutativ-
ity race because they are ordered according to their vector clocks.
Interestingly, had there not been a joinall statement in the code
then these two actions would still not participate in a commuta-
tivity race because they touch access points which do not conflict:
intuitively, action a2 is not resizing the dictionary and hence cannot
affect the result of a3.

Motivation for access points. To give an intuition why we intro-
duce access points, consider the example in Fig. 4. Here, in the top
part, we have the main thread invoking size which conflicts with
all three successful put invocations of other threads. An analysis
which directly uses the logical specification would need to perform
three checks for size: one with each put operation. However, for
checking whether size and put commute, the only relevant infor-
mation is whether a put operation is resizing the map. The bottom
part of the figure shows the access points that our translation pro-
duces for each invocation. Here, each o.put(k,v)/nil invocation
is translated into two access points: o:w:k and o:resize.

Interestingly, we see that each of the three put operations share
the access point o:resize capturing the fact that the size of the dic-
tionary changed. On the other hand, the size() operation gener-
ates a single access point size. With access points, a commuta-
tivity analysis now only needs to check whether the size access
point conflicts with the resize access point o:resize. Importantly,
this is a single conflict check and not three conflict checks as would
be necessary without using access points.

Discussion. Before we proceed further, we discuss three key
points. First, the commutativity race detector is orthogonal to how
the access point representation is obtained. This representation can
be obtained manually or automatically by translating from a com-
mutativity specification. Second, the access point representation
can be used to generalize other concurrency analyzers to high-level
commutativity notions of conflict (e.g. atomicity [5]), or to enable
more general optimistic concurrency control schemes (e.g. [10]).
Similarly, the translator from commutativity specifications to ac-
cess point representations is useful in those (and potentially other)
settings as well. Third, as we will see later, the asymptotic time
complexity of the analysis presented in this work differs depending
on the different access point representations. To cleanly capture
this fact, in Section 6 we present a commutativity logical fragment
and a translation of any formula in that fragment to an access point
representation which enables the analysis to always lookup a con-
stant number of access points instead of linear as would be needed
with arbitrary access point representations.

Method Effect on the dictionary d

put(k,v)/p d −→ d′ iff d′ = d[k 7→ v] and p = d(k)

get(k)/v d −→ d′ iff d′ = d and v = d(k)

size()/r d −→ d′ iff d′ = d and r = |{k | d(k) 6= nil}|

Figure 5. Dictionary methods and their effects

3. Preliminaries
In this section we provide necessary definitions of several terms
used later in the paper.

3.1 Execution model
Actions. We consider concurrent programs consisting of threads
that communicate via shared objects. Each object o ∈ Obj can be
in a set of possible abstract states. That is, we are interested in the
abstract states of the object as described by its specification and not
in the actual implementation details of the object. For example, the
abstract state of a dictionary object is a key-value mapping of type
K → (V ∪ {nil}) where K is a set of possible keys, V is the set
of possible values and nil is a special no-value.

The shared state of a program consists of the abstract states of
all shared objects. The space of possible shared states is denoted by
H . For example, if a program references only one shared object, a
dictionary, then H = K → (V ∪ {nil}). We assume that object
methods are given by specifying their effects on the shared state,
e.g., Fig. 5 describes the method effects of the dictionary object.
We refer to method invocations as actions.

An action a ∈ Act is denoted by an expression of the form
o.m(~u)/~v where o ∈ Obj is an object, m is a method of o and ~u
and ~v are tuples of concrete arguments and return values that match
the signature of m. The effect on the shared state of every a ∈ Act
is given by a partial map LaM ∈ H ⇀ H . For example, for a
dictionary object o, the map Lo.size()/nM should be the identity
on all states in which the dictionary o has size n and undefined
otherwise.

We say that two actions commute when independent of applica-
tion order, their composed effects are the same:

Definition 3.1. Two actions a, b ∈ Act commute, denoted by a on b,
iff LaM ◦ LbM = LbM ◦ LaM.

For example, following Fig. 5, two put actions commute when
they operate on different keys as the two actions modify disjoint
parts of the object state. We assume that actions of different objects
always commute, that is method invocations of one object do not
interfere with the state of another object.

Executions and Events. We model programs as labeled transition
systems and their executions as traces in the associated system.

In this work we focus on whether an object is used correctly
and assume that it is implemented correctly (i.e. the object is lin-
earizable). This allows us to treat method invocations as atomic
transitions. We assume that every state transition performs a single
action on a shared object with possible effects on the thread-local
state. We write s τ :a−−→ s′ for a transition from program state s to
program state s′ accompanied by the execution of an action a ∈ Act
by thread τ ∈ Tid, where Tid denotes the set of thread identifiers.

A program execution is modeled by a sequence of state transi-
tions π = s0

τ1:a1−−−→ s1
τ2:a2−−−→ · · · τn:an−−−−→ sn that starts in an

initial state s0. Such sequences are called traces. An occurrence ei
of a transition label τi : ai in the trace is called an event and thus

the trace π has a multiset1 of events {ei = τi : ai}ni=1. Such a
multiset is ordered by event position, that is ei ≤π ej iff i ≤ j.
The fact that e is an event will be denoted by e ∈ Evt. If e occurs
in a trace π we will write e ∈ π.

3.2 Happens-before
Happens-before relations [12] are a standard way to encode causal-
ity between events. A happens-before relation for a trace π is a cer-
tain partial ordering� on π’s multiset of events. This order records
causal relationships between the events. When ei � ej then there
must be some cause that forces ei to appear before ej . If neither
ei � ej nor ej � ei we say that ei and ej may happen in parallel
and denote it by ei ‖ ej . The relation � satisfies:

• if ei�ej then ei ≤π ej
• if the program forces ei to occur before ej then ei�ej

For example, one thread awaiting for the termination of another
forces subsequent events from the waiting thread to occur after the
events from the other thread. Another example is the sequential
execution of actions by a single thread. In particular, if ei ≤π ej
have occurred in the same thread then ei � ej . In other words, if
ei ‖ ej then ei and ej must have occurred in different threads.

Vector clocks. Vector clocks [14] are a well-known technique for
computing the happens-before relation. A vector clock is a map
c ∈ Tid → N that records a timestamp c(τ) from the local clock
of every thread τ . The set of vector clocks Tid → N is denoted by
V C. The set of vector clocks V C is ordered pointwise becoming
a lattice with a smallest element. The additional operation incυ
performs one timestep increment of the υ component:

c1 v c2 iff c1(τ) ≤ c2(τ) for all τ ∈ Tid

c1 t c2 = τ 7→ max(c1(τ), c2(τ))

⊥V = τ 7→ 0

incυ(c) = τ 7→ c(τ) + 1 if τ = υ else c(τ)

A happens-before relation � is represented by associating a
vector vc(e) clock with every event e

vc : Evt→ V C

in a way such that ei � ej iff vc(ei) v vc(ei). Informally, the
vector clock vc(e) reflects the dependency of e on the progress of
every thread.

4. Commutativity Specifications and Their
Representation

We next discuss how we capture commutativity specifications as
well as how these commutativity specifications can be represented
in a form that is usable by a dynamic analysis system. This repre-
sentation is used later by our commutativity race detector in Sec-
tion 5 and can potentially be applied to generalize other concur-
rency analyzers. Hence, the discussion in this section is also of in-
terest beyond race detection.

4.1 Logical Specifications
The conditions under which two actions commute are often conve-
niently specified in the form of logical formulas. This allows formal
treatment of various types of conditions. Briefly, a (sound) logical
commutativity specification is a predicate ϕ over pairs of actions
a, b ∈ Act such that ϕ(a, b) implies that a and b commute. Com-
mutativity specification of a dictionary object is given on Fig. 6.

1 By a multiset we mean a set of labeled points rather than a set with element
multiplicities.

ϕ
put(k1,v1)/p1
put(k2,v2)/p2

:= k1 6= k2 ∨ (v1 = p1 ∧ v2 = p2)

ϕ
put(k1,v1)/p1
get(k2)/v2

:= k1 6= k2 ∨ (v1 = p1)

ϕ
put(k1,v1)/p1
size()/r := (v1 = nil ∧ p1 = nil) ∨ (v1 6= nil ∧ p1 6= nil)

ϕ
get(k1)/v1
get(k2)/v2

, ϕ
get(k1)/v1
size()/r , ϕ

size()/r1
size()/r2

:= true

Figure 6. Commutativity specification of a dictionary object

The kind of commutativity specifications we discuss in this
work are those that can be expressed without mentioning the object
state. A more relaxed notion of commutativity that can depend on
object state may be useful, however this may have significant im-
plications on its mechanized checking and we leave those as future
work. It is worth mentioning that in certain cases exposing hidden
state as shadow return values may allow obtaining more precise
specification. However, this cannot capture the general notion of
“two actions commute at a specific state”.

Next, we proceed to define logical commutativity specifications,
soundness of such specifications and commutativity races.

Definition 4.1. Given a suitable logic, a logical commutativity
specification for a pair of methods m1,m2 of the same object is
given by a logical formula ϕm1

m2
with its free variables collected

into the list (~x1; ~x2) so the variables ~xi match the arguments and
returns ofmi. A logical commutativity specification Φ for an object
with methodsM is a set of method specifications ϕm1

m2
(~x1; ~x2) 2 for

each {m1,m2} ⊆M .

For a method specification ϕm1
m2

(~x1; ~x2) and suitable terms
~t1,~t2 we will write ϕm1

m2
(~t1;~t2) for the substitution of ~ti for ~xi

into the formula ϕm1
m2

. Similarly, we can evaluate the formula for
concrete values ~u1, ~u2. We require specifications to represent sym-
metric predicates on actions, that is we require that ϕmm(~x1; ~x2) is
logically equivalent to ϕmm(~x2; ~x1).

Example. An example of a commutativity specification for our
dictionary object o for the method pair put(k1,v1)/p1 and
put(k2,v2)/p2 would be:

ϕput
put(k1, v1, r1; k2, v2, r2) := k1 6= k2 ∨ (v1 = p1 ∧ v2 = p2)

Note that when we swap parameters we get the equivalent formula:

ϕput
put(k2, v2, r2; k1, v1, r1) := k2 6= k1 ∨ (v2 = p2 ∧ v1 = p1)

For a specificationϕm1
m2

(~x1; ~x2) and two actions a = o.m1(~u1)/~v1
and b = o.m2(~u2)/~v2, we write ϕm1

m2
(a, b) for the evaluation

ϕm1
m2

(~u1~v1; ~u2~v2).
We would expect commutativity specifications to actually say

something about the commutativity properties of the object in ques-
tion. Sound specifications imply commutativity:

Definition 4.2. A logical commutativity specification Φ for some
object is sound iff for every method specification ϕm1

m2
(~x1; ~x2) ∈

Φ and two actions a, b of m1,m2 respectively, we have that
ϕm1
m2

(a, b) implies a on b.

Note that the above definition allows for imprecise commutativ-
ity specifications. Even though actions commute, the specification
is allowed to say that they do not. One could replace the implication
with an if-and-only-if condition but this is unnecessary for our al-
gorithm. We are now ready to define the concept of a commutativity
race, a central concept of our paper.

2 The notation ϕm1
m2 (~y1~r1; ~y2~r2) is an alternative to ϕm1(~y1)/~r1

m2(~y2)/~r2

Xo = {o:r:k}k∈K ∪ {o:w:k}k∈K ∪ {o:size, o:resize}

(a) Access points

Action Type Access Points (ηo) Condition

o.put(k,v)/p o:w:k, o:resize v 6= p and size changed

o:w:k v 6= p and size unchanged

o:r:k v = p

o.get(k)/v o:r:k

o.size() o:size

(b) Action access points

Co o:r:l o:w:l

o:w:k k = l k = l

o:r:k no k = l

Co o:size o:resize

o:resize yes no
o:size no yes

(c) Conflict relation Co

Figure 7. Access point representation for a dictionary.

Definition 4.3. For a trace π, a pair of events ei, ej ∈ π par-
ticipate in a commutativity race with respect to a partial order �
and a commutativity specification of their corresponding methods
ϕm1
m2

(~x1; ~x2) iff ei ‖ ej (the events may happen in parallel) and
their corresponding actions a, b are not specified to commute, that
is, ϕm1

m2
(a, b) does not hold.

Note that if the commutativity specification is imprecise, it is
possible to report a commutativity race even if actions do commute.
To avoid clutter, we use the term commutativity race regardless of
whether the specification is precise or not.

4.2 Access point representation
We next introduce a structure which is useful for capturing com-
mutativity specifications in a way that can be used by a dynamic
program analyzer. We refer to these structures as access point rep-
resentations (of the object’s commutativity properties).

Definition 4.4. An access point representation for an object o ∈
Obj is a tuple 〈Xo, ηo, Co〉, where:

1. Xo is a set of access points.
2. ηo ∈ Acto → P(Xo) indicates the finite set of access points

touched by each action of the object (Acto stands for the set of
all actions of object o).

3. Co ⊆ Xo ×Xo is a symmetric binary relation describing which
access points conflict.

Example: Dictionary Fig. 7 presents an access point representa-
tion for a dictionary object o. Fig. 7(a) shows two groups of access
points. The first group contains two access points for every possible
key: o:r:k indicates that the value for key k has been read; o:w:k
indicates that the value for key k has changed. The second group
has only two access points: o:size indicates that the dictionary size
has been observed; o:resize indicates that the dictionary has been
resized.

Fig. 7(b) shows the possible types of actions and the ac-
cess points which are touched upon the execution of that action.
For example, the action o.put(5,1)/nil changes the value for
key 5 and also changes the size of the dictionary. Therefore,
ηo(o.put(5,1)/nil) = {o:w:5, o:resize}. Whether the action

o.put(k,v)/p changes the size is determined by the parameters
alone: either v 6= nil and p = nil or v = nil and p 6= nil.

Fig. 7(c) shows the conflict relation for each of the two groups
of access points (for convenience split in two matrices). The entry
in the matrix denotes when the two access points conflict. For
example, o:r:5 and o:w:5 conflict (as k = l) while o:r:5 and o:w:6
do not conflict (as k 6= l). There are no conflicts between actions
from different groups.

We now define what it means for an access point representation
to precisely match a logical specification. In Section 6, we show
a translation from a logical formula to an equivalent access point
representation.

Definition 4.5. We say that 〈Xo, ηo, Co〉 represents a logical com-
mutativity specification Φ of o iff for all ϕm1

m2
∈ Φ and all actions

a of m1 and b of m2 we have:

(ηo(a)× ηo(b)) ∩ Co = ∅ iff ϕm1
m2

(a, b)

Therefore, instead of a given logical specification Φ, we can
now work with an access point representation 〈Xo, ηo, Co〉 equiv-
alent to Φ. We utilize access point representations when detecting
commutativity races.

5. Commutativity Race Detection
We next present our commutativity race detector, which is pa-
rameterized over an access point representation. We first motivate
our approach, then we present our algorithm and discuss how its
asymptotic complexity can be affected by choosing different com-
mutativity specifications, and finally provide the formal guarantees.

5.1 Challenges
Recall that in Section 2, we discussed the benefits of working with
an access point representation over working directly with a com-
mutativity specification. Let us again consider the direct approach
where we work with the commutativity specification directly. This
approach works as follows. It records every action occurring in
an execution and every time it encounters a new action, it checks
whether there is a previously observed action on the same object
that can happen concurrently with the current one and which does
not commute with it.

Checking whether two actions a and b commute is done by
simply checking whether the pair of actions provide a satisfying
assignment to the corresponding commutativity formula. That is,
whether ϕm1

m2
(a, b) evaluates to true where m1 is the method of

action a and m2 is the method of action b.
A key challenge with the direct approach is that it is oblivious to

the type of commutativity specification being checked and ignores
the fact that many actions share commonalities. For instance, as
illustrated earlier in Fig. 4, several put actions share the common
access point o:resize. As a result, the algorithm records each
action independently and requires Θ(|A|) commutativity checks
for each encountered action, where A is the set of all actions
occurring in the execution.

Our algorithm aims to remedy these deficiencies by exploit-
ing the structure present in commutativity specifications. Instead of
working directly with logical formulas, the algorithm leverages ac-
cess point representations (described in Section 4.2). Access point
representations allow us to expose some of the common structure
present in commutativity predicates (we already illustrated this ear-
lier in Fig. 4).

Further, in Section 6, we will introduce an expressive logical
fragment (called ECL) where formulas in that fragment are trans-
lated to access point representations that require only Θ(1) checks
for each encountered action as opposed to Θ(|A|).

Event Modifications of auxiliary state

Previous work

e = τ : fork(u) T (u)← incu(T (τ))

T (τ)← incτ (T (τ))

e = τ : join(u) T (τ)← T (τ) t T (u)

e = τ : acq(l) T (τ)← T (τ) t L(l)

e = τ : rel(l) L(l)← T (τ)

T (τ)← incτ (T (τ))

Our work

e = τ : o.m(~x)/~y vc(e)← T (τ)

Execute Algorithm 1

Table 1. Handling synchronization and action events.

5.2 Common Setting
Our approach is applicable to any parallel language. However, to
convey an end-to-end picture we describe how our algorithm fits
with the fork-join constructs. The first four rows in Table 1 describe
the standard way of updating vector clocks for the statements:

• τ : fork(u) – thread τ creates thread u ∈ Tid.
• τ : join(u) – thread τ waits until thread u terminates.
• τ : acq(l) – thread τ acquires a lock l ∈ Lock.
• τ : rel(l) – thread τ releases a lock l ∈ Lock.

To capture the happens-before relation, we maintain two auxil-
iary mappings T : Tid→ V C and L : Lock → V C. All vector
clocks are initialized with ⊥V and the auxiliary state is updated at
every synchronization event in the trace according to Table 1. Such
handling of vector clocks is standard (e.g. see [3]). The novel part
of our approach, shown in the last row, is in handling of actions,
specifically Algorithm 1 which we discuss next.

5.3 Our Approach
Next, we present our algorithm for detecting commutativity races
given an access point representation. The algorithm works on-the-
fly and reports races as the trace is being explored. The novel
part in our dynamic analysis is handling of action events e =
τ : o.m(~x)/~y and is described in Algorithm 1 (in the algorithm
we describe the handling of a single action event). We assume an
access point representation 〈Xo, ηo, Co〉 for each object o ∈ Obj
used by the program. Moreover, we assume that the sets Xo for
different objects are disjoint. Let X be their union. Also, let Co(pt)
denote all the access points that conflict with pt, that is, Co(pt) =
{pt′ | (pt, pt′) ∈ Co}. The algorithm maintains the following
additional auxiliary state:

• ptvc : X → V C. Here, we keep a vector clock for each access
point. For an access point pt, we use pt.vc as a shortcut for
ptvc(pt). The entries pt.vc are initialized by the algorithm on
demand.
• active : Obj → P(X). Here, for each object, we keep the set

of access points touched by all object actions performed so far,
so active(o) is a finite subset of Xo. Initially, active(o) is the
empty set for every object o.

In the first phase (Line 2 to Line 7), the algorithm checks for a
commutativity race. The algorithm iterates over each access point
pt touched by the action of the event e and seeks all active points

pt′ ∈ active(o) which conflict with pt. This is done by comput-
ing the intersection of active(o) and Co(pt). A commutativity race
is detected if a conflicting access point pt′ can be touched con-
currently to the current event e as determined by the vector clocks
vc(e) and pt′.vc.

In the second phase (Line 8 to Line 16), the vector clocks of the
access points associated with the action of the event e are updated.
The vector clock of every such access point pt accumulates the
vector clocks of all actions that have touched pt so far. If an access
point pt touched by the action e was not active, it is made active.

Algorithm 1: Commutativity Race Detector
Input: event e = τ : o.m(~x)/~y, vector clock vc(e),
access point representation 〈Xo, ηo, Co〉
Output: report a commutativity race or update auxiliary state

1 begin
2 // phase 1: check for commutativity races
3 for pt ∈ ηo(o.m(~x)/~y) do
4 for pt′ ∈ active(o) ∩ Co(pt) do
5 if pt′.vc 6v vc(e) then
6 report “commutativity race”;

7

8 // phase 2: update auxiliary state
9 for pt ∈ ηo(o.m(~x)/~y) do

10 if pt ∈ active(o) then
11 pt.vc← pt.vc t vc(e)
12 else
13 // initialize
14 pt.vc← vc(e);
15 active(o)← active(o) ∪ {pt};

16

In the algorithm, the set active(o) grows continuously. To re-
duce its size, several optimizations are possible. For example, if an
object o is reclaimed (i.e. collected, released, etc.), all of its ac-
cess points and their corresponding vector clocks can be reclaimed
too, as no new races can be reported on a dead object. In our tool,
we have implemented this optimization by attaching the auxiliary
state directly to the object to which it belongs and then removing
that state whenever the object dies. Another conceptually interest-
ing optimization that we leave for future work is to remove unnec-
essary active access points by exploiting properties of the access
point representation 〈Xo, ηo, Co〉.

Example. Consider again the example trace from Fig. 3 discussed
in Section 2 (repeated here for convenience):

event action identifier vector clock

τ3 : o.put(’a.com’,c1)/nil a1 〈3, 0, 1〉
τ2 : o.put(’a.com’,c2)/c1 a2 〈2, 1, 0〉
τm : join {τ2, τ3}
τm : o.size()/1 a3 〈4, 1, 1〉
Let us explain how Algorithm 1 detects the commutativity race

from Fig. 3. On execution of action a1, the algorithm checks that
access point pt = o:w:’a.com’ does not conflict with any previous
access point. This is true, as pt is the first encountered access
point. Then, at Line 14, the algorithm records that pt was touched
with vector clock 〈3, 0, 1〉. Next, action a2 executes and touches
the same access point pt. At Line 4, the algorithm encounters
pt again which according to Co conflicts with itself (the conflict
matrix Co for dictionary is shown in Fig. 7(c)). Further, the vector
clock of the previous access is 〈3, 0, 1〉 which is incomparable
with 〈2, 1, 0〉 – the vector clock of the current event. Therefore, a

commutativity race is reported. The race reveals that action a2 can
execute concurrently with some previous action and both actions
touch access points that conflict. Continuing, the algorithm updates
the vector clock of pt to the join 〈3, 1, 1〉. In the remainder of the
execution, no more commutativity races will be reported, because
the vector clock of a3 is 〈4, 1, 1〉, which is greater than or equal
than all previously recorded vector clocks.

5.4 Algorithm Complexity
The complexity of the algorithm is dominated by the number of
iterations at Line 4. In particular, for an unrestricted access point
representation, the set Co(pt) can be infinite. For example, a naive
access point representation for a dictionary object can be obtained
by associating an access point with each possible action. Then, the
access point for the size action would conflict with an infinite
number of put actions that change the dictionary size. In such
cases, enumerating the intersection active(o) ∩ Co(pt) at Line 4
must be accomplished by first enumerating the finite set active(o)
and then checking if every element belongs to Co(pt). That is, the
time needed to process each action is at least linear in |active(o)|
and the set active(o) grows as the program executes.

However, for certain specifications, we can obtain a Co(pt) that
is finite, e.g., the dictionary specification in Fig. 6 has Co(pt) of
size at most 2 (see Fig. 7(c)). In this case, the enumeration at
Line 4 may be done the other way around: for every element of
Co(pt), perform the constant time check3 whether it belongs to the
set active(o). Effectively, in this case, the number of iterations at
Line 4 is bounded by |Co(pt)|. Later, in Section 6 we present a class
of specifications which also includes the dictionary specification in
Fig. 6. For every specification in this class there is an upper bound
on |Co(pt)| for any pt ∈ Xo, thus enabling better complexity of the
commutativity race detection algorithm.

5.5 Guarantees
We next state two important guarantees which hold in our setting.
Proof of the first theorem can be found in the appendix, while
the second theorem is standard and we do not provide further
discussion. The theorems are valid under the assumption that the
only source of nondeterminism in the underlying system is due to
nondeterministic scheduling.

Theorem 5.1. Algorithm 1 reports a commutativity race if and only
if the observed trace π contains a commutativity race.

The above theorem states that our analysis is precise in the sense
that some commutativity race is reported if and only if some com-
mutativity race exists according to the commutativity specification.
In general, the first reported race is guaranteed to be a true race.
The next theorem is independent of the algorithm and extrapolates
commutativity race freedom to a class of traces.

Theorem 5.2. If a trace π with a happens-before relation� has no
commutativity races with respect to � and a sound commutativity
specification Φ, then all traces which admit� and start in the same
state as π:

1. end in the same state as π, and
2. have no commutativity races with respect to � and Φ

The theorem states that if an observed trace is free of races,
then each trace which admits the same happens-before relation as
the observed trace is free of races and computes the same end
result (guarantees determinism for the initial state of π). This is
practically useful as it means that there is no need to explicitly
enumerate and check those traces with our algorithm.

3 Assuming Θ(1) average hash-table lookup

6. Commutativity Logic and its Translation
In this section we introduce a logical fragment for describing com-
mutativity specifications, called ECL, as well as a translation pro-
cedure from that fragment to access point representations. The key
benefit of ECL over arbitrary commutativity specifications is that
we can translate ECL formulas to access point representations in
which an access point always conflicts with a bounded number of
other access points. This has complexity implications on the analy-
sis (see Section 5.4).

Why ECL? Our approach to defining ECL is inspired by the
work of Kulkarni et al. [10] which characterized the SIMPLE class
of formulas and proved that under certain restrictions only such
formulas can be checked with a mechanism called abstract locks.
Unfortunately, SIMPLE does not precisely capture many practi-
cally useful specifications such as sets or the dictionary example
in Fig. 6. We observe that in the setting of dynamic race detection
(and concurrency analysis in general), the restriction considered in
Kulkarni et al.’s work is unnecessary. Therefore, our objective is
to develop a logical fragment which improves the asymptotic com-
plexity of commutativity race detection yet is expressive enough to
capture practical commutativity specifications.

6.1 ECL: extended commutativity logic
We next describe our logical fragment. We need to distinguish
between arguments coming from the two actions referred in a
specification formula. For this reason let V1 and V2 be two disjoint
supplies of variables intended for arguments to the first method and
for arguments to the second method respectively. We assume that
the variables range over some domain U .

Because ECL extends SIMPLE, for convenience, we first repeat
the definition of SIMPLE from Kulkarni et al.:

Definition 6.1. LS
S ::= V1 6= V2 | S ∧ S | true | false

As mentioned, LS does not allow one to capture many prac-
tical specifications. Therefore, in order to allow more expressive
commutativity specifications, we combine LS with an additional
fragment LB of more complex structure. Mainly, LB allows one to
express constraints other than x 6= y.

Let PV stand for a set of atomic formulas interpreted in U with
their variables restricted to be in a set V . In addition to equality,
x = y, the set PV may also contain formulas such as x < y,
x · y = z, etc. The sets PV1 , PV2 are a parameter to the following:

Definition 6.2. LB
B ::= PV1 | PV2 | ¬B | B ∧B | B ∨B | true | false

The key restriction on atomic LB formulas is that their argu-
ments must come from only one of V1 or V2. Therefore, the main
characteristic property of LB is that the truth value of any atomic
LB subformula depends on the valuation of variables in either V1

or in V2, but not in both.

Example. Suppose that V1 = {x, y} and V2 = {z}. Then, LB
allows the atomic formulas x < y and 0 < z, but not the atomic
formula x < z, because this atomic formula contains variables
from both V1 and V2. LB also allows us to capture the formula
x < y ∧ 0 < z. Here, the truth value of the atomic sub-formula
x < y depends only on the variables in V1. Similarly, the truth
value of the atomic sub-formula 0 < z depends only on the
variables in V2.

The extended commutativity logic (ECL) combines the two
fragments LS and LB . ECL combines these by permitting con-
junctions of ECL formulas and disjunctions of ECL and LB for-
mulas.

Definition 6.3. ECL

X ::= S | B | X ∧X | X ∨B

For an ECL method specification ϕm1
m2

(~x; ~y) the variables ~x
must be drawn from the set V1, while the variables ~y must be drawn
from the set V2. A key property of ECL, easily proved by structural
induction, is the following:

Lemma 6.4. For any ECL formula, if a truth assignment to all the
LB atomic subformulas is given, then the whole formula simplifies
to a LS formula.

Example. Here is an example commutativity specification ex-
pressible in ECL, also shown earlier in Fig. 6:

ϕput
put(k1, v1, p1; k2, v2, p2) := k1 6= k2 ∨ v1 = p1 ∧ v2 = p2

Here k1, v1, p1 ∈ V1 and k2, v2, p2 ∈ V2. This formula is not
expressible in SIMPLE for two reasons: first, the formula contains
a disjunction and second, the formula compares for equality, i.e.
v1 = p1.

6.2 Translation from ECL to an access point representation
Recall that a logical commutativity specification Φ for an object
o ∈ Obj consists of a commutativity specification ϕm1

m2
for each

pair of methods m1, m2. Next, we describe how to obtain an
access point representation for such a specification Φ in ECL.
This conversion of the ECL fragment builds upon, formalizes and
extends the conversion of SIMPLE in [10].

Define Xo. Access points are touched by methods during invoca-
tion. Each access point witnesses specific information about the in-
vocation. The β component (to be defined below) collects the truth
value of certain predicates over the action arguments and the return
values. The translation defines two types of access points:

• o.m:β:ds simply witnesses that a method m of the object o has
been invoked
• o.m:β:i:wi witnesses the i-th argument or return value wi of

an invocation of m

The ds symbol is just a tag for the first type of access points.
Each β vector maps an atomic LB subformula from Φ to a truth
value. Let B(Φ) be the set of all atomic formulas from the LB
fragment that occur in the specification Φ. Further, let each formula
inB(Φ) be normalized by dropping the distinction between the two
types of variables V1 and V2.

Example. Consider the dictionary specification in Fig. 6. Its LB
atomic subformulas are v1 = p1, v2 = p2, v1 = nil, p1 = nil. To
normalize, we just erase the indices obtaining that B(Φ) is the set
{v = p, v = nil, p = nil}.

To define Xo, letM be the set of methods of the object o and let
U be the domain of possible arguments and return values for these
methods. The set of access points is the product:

Xo = {o} ×M × (B(Φ) ⇀ {true, false})× ({ds} ∪ N× U)

Define β. Next, we define the β component associated with each
action a = o.m(~u)/~v. Let B(Φ,m) be the subset of B(Φ) con-
sisting of those atomic formulas that are relevant to the method m,
that is, normalized atomic subformulas of some ϕm1

m2
∈ Φ with

m ∈ {m1,m2}. The vector β : B(Φ,m)→ {true, false} collects
the truth values of B(Φ,m) evaluated on a = o.m(~u)/~v, that is,
for q ∈ B(Φ,m):

β(q) = q(~u~v)

Example. Consider the action a = o.put(5,6)/nil. The rele-
vant specifications to put are ϕput

put, ϕput
get and ϕput

size from Fig. 6.
Thus, the relevant atomic formulas B(Φ,put) are:

v = p, v = nil, p = nil

and substituting the action parameters k = 5, v = 6 and p = nil
we obtain the vector:

β = {(v = p) 7→ false, (v = nil) 7→ false, (p = nil) 7→ true}

Define ηo. Now we define which access points are touched by
an action a = o.m(~u)/~v. Let us number the arguments and return
values of a, say by setting w1 . . . wn = ~u~v. Also, let us have the β
vector associated with a. The action touches the access points:

ηo(a) = {o.m:β:ds} ∪ {o.m:β:i:wi | i = 1..n}

Example.

ηo(put(5,6)/nil) = { o.put:β:ds, o.put:β:1:5,

o.put:β:2:6, o.put:β:3:nil }

Define ϕm1
m2

[β1;β2]. We need the ability to plug back the values
of two β vectors into a specification formula ϕm1

m2
. Let m1, m2

be two methods with specification ϕm1
m2
∈ Φ, and let β1, β2 be

two beta vectors corresponding to some actions of m1 and m2.
Denote the normalization of an atomic subformula q ∈ Φ by
q̂ ∈ B(Φ). Define ϕm1

m2
[β1;β2] to be the result of substituting the

atomic subformulas of ϕm1
m2

by:

q 7→

{
β1(q̂) if var(q) ⊆ V1

β2(q̂) if var(q) ⊆ V2

Each q gets replaced depending on whether it refers to parameters
of m1 or parameters of m2.

Note that due to Lemma 6.4 and the definition of LB , the
resulting formula ϕm1

m2
[β1;β2] is equivalent to one in LS .

Example. Let m1 = put, β1 map the atomic formula k = v to
false and m2 = get. As B(Φ,get) = ∅ we have that β2 = {}.
Then, by substitution, we obtain:

ϕget
put[β1;β2] ≡ k1 6= k2 ∨ false

Define Co. Finally, we obtain the conflict relation Co. Define Co
as the symmetric closure of the relationR described next. For every
ϕm1
m2
∈ Φ we set:

1. (o.m1:β1:ds, o.m2:β2:ds) ∈ R iff
ϕm1
m2

[β1;β2] ≡ false

2. (o.m1:β1:i:u, o.m2:β2:j:u) ∈ R iff
ϕm1
m2

[β1;β2] 6≡ false and contains a conjunct xi 6= yj

3. (pt1, pt2) 6∈ R for all other access points pt1, pt2

Example. For the methods put and get in Fig. 6 we obtain the
conflicts:

(o.put:β1:1:u, o.get:∅:1:v) ∈ Co iff u = v and ¬β1(k = v)

Optimizations. Several additional optimizations can be applied to
reduce the number of access points and obtain the representation
shown in Fig. 7. The steps are worked out as an example in
the appendix. It is important to note that the translation above
guarantees the mentioned Θ(1) bound while the optimization steps
further reduce the number of access points.

6.3 Equivalence and Complexity
The described translation from ECL specifications to access point
representations is correct in the sense of preserving equivalence (cf.
Definition 4.5).

Performance: qps or seconds Races: total (distinct)

Application Benchmark Uninstrumented FASTTRACK RD2 FASTTRACK RD2

H2 database ComplexConcurrency 2011 qps 685 qps 425 qps 1784 (26) 200 (2)

ComplexConcurrency (alternate query distrib.) 1610 qps 601 qps 457 qps 1121 (24) 171 (2)

QueryCentricConcurrency 1666 qps 599 qps 605 qps 209 (4) 0 (0)

InsertCentricConcurrency 1912 qps 622 qps 622 qps 1551 (25) 22 (2)

Complex 1874 qps 1143 qps 989 qps 9 (2) 0 (0)

NestedLists 1893 qps 1086 qps 807 qps 202 (2) 0 (0)

Cassandra DynamicEndpointSnitch test 2.907 s 12.226 s 13.527 s 24 (8) 81 (2)

Table 2. Evaluation of FASTTRACK and RD2 on two industrial applications. The number variables/objects with races are in brackets.

Theorem 6.5. The access point representation obtained by trans-
lating an ECL formula Φ is equivalent to Φ.

Now we consider the complexity of the obtained access point
representation. For each method there are a finite number of possi-
ble β vectors because specifications are finite and therefore there
are only a finite number of atomic LB subformulas appearing.
Also, if o.m1:β1:i:u conflicts with any o.m2:β2:j:v then v must
equal u, that is, the number of such conflicts is a function of the
number of conjuncts in the specification. We obtain:

Theorem 6.6. In the resulting translation shown above, each ac-
cess point conflicts with a bounded number of other access points.

The bound depends on the size of the logical specification. This
property is why we are able to obtain good asymptotic complexity
of the race detection algorithm (see Section 5.4).

7. Evaluation
In this section, we present a preliminary evaluation of our approach.
We focus on answering the following two questions: (i) is the
overhead imposed by the commutativity race detector tolerable in
practice as compared to state of the art low-level race detectors?
(ii) is commutativity race detection effective for finding bugs?

To answer these questions, we implemented our commutativity
analysis in a tool called RD2. RD2 is implemented in RoadRun-
ner [4], an extensible dynamic analysis framework for Java. Then,
we evaluated against two industrial Java applications and corre-
sponding benchmarks, described below.

H2 database server. H2 is an open-source JDBC SQL database
server. H2 recently added a Multi-Version Store (MVStore) which
permits read operations to examine older versions of the data
(i.e. Snapshot Isolation). The implementation is built upon several
ConcurrentHashMaps, which we instrumented. We used H2 ver-
sion 1.3.174 and applied the Pole Position open source benchmark
against the database. Pole Position is a framework that compares
how different SQL databases compare against a suite of benchmark
scenarios, called "circuits". We ran five "circuits" of the benchmark,
three of which are focused on concurrency: ComplexConcurrency,
QueryCentricConcurrency, InsertCentricConcurrency and two
of which do not involve concurrent queries: Complex and NestedLists.
We ran each of the benchmarks for two minutes and calculated the
number of queries per second (qps) that the H2 database handles.

Cassandra 2.0. The Apache Cassandra database is an open-
source distributed database. Cassandra maintains a performance
rank of the database nodes. Its component DynamicEndpointSnitch
calculates this rank by continuously accumulating statistics from
the various nodes using ConcurrentHashMaps. In this work,
we ran our analysis against the DynamicEndpointSnitch test case
which simulates dynamically changing node latencies.

Effectiveness. To measure effectiveness of the race detectors,
we compared the following settings for each of the benchmarks:
(i) uninstrumented code (ii) using the FASTTRACK [3] low-level
race detector, and (iii) using RD2.

Then, we compared the runtime overheads and the reported
races, summarized in Table 2. For FASTTRACK, we show the to-
tal number of races and distinct variables on which they occur,
and for RD2 we show the total number of commutativity races
and the distinct objects on which they occur. In terms of over-
head, we found that RD2 imposes a performance penalty similar
to FASTTRACK, which is expected because even in RD2, Road-
Runner instruments reads and writes to all memory locations (plus
the ConcurrentHashMaps for RD2). We note that if we only in-
strumented the ConcurrentHashMaps objects and not the basic
memory locations, the overhead of RD2 would be lower.

In terms of precision, most races are highly redundant (meaning
that they occur on the same memory locations or on the same
concurrent hash map objects). RD2 discovered the following new
and interesting commutativity races, which we believe are worth
inspecting by the developers:

1. Concurrent accesses to the freedPageSpace map in the MVS-
tore of H2 could lead to incorrect state of the server. The bug is
already fixed in the latest (yet unreleased as of November 2013)
version of the H2 database, but our tool was able to discover it
automatically (in the currently released version).

2. Concurrent accesses to the chunks map in the MVStore of
H2 could lead to the same result being computed multiple
times, which might be a performance issue if the computation
is expensive.

3. New entries to the samples map of the DynamicEndpointSnitch

class could be added while its size is concurrently used as a
performance hint during node rank recalculation, causing the
performance hint to become obsolete.

Overall, we believe that commutativity races are a new and
interesting indicator of concurrency problems that can be efficiently
discovered with a commutativity race detector.

8. Related Work
In this section, we survey some of the more closely related work on
commutativity and concurrency analysis. Most of this work falls in
the space of optimistic concurrency control.

Commutativity. Commutativity has appeared in various contexts
including lower bounds [1], operating system design [2], locking
[9], synchronizing abstract data-types [15], concurrency control
in transactions [18], thread-level speculation [11], transactional
memory [7] and abstract dependence tracking [17].

Our work on the ECL logical fragment is inspired by Kulkarni
et al.’s [10] treatment of commutativity specifications in the context
of parallelization (which also builds on transactional boosting [7]).
Their work defined the logical fragment SIMPLE and provided a
translation from SIMPLE formulas into abstract locks with modes.
However, SIMPLE does not capture many useful specifications such
as sets and dictionaries. In their work, SIMPLE was motivated
by the fact that a translator should be able to statically generate
the abstract locks/modes to be acquired, while for our problem,
this restriction is unnecessary. By lifting this restriction, we were
able to introduce a more expressive fragment than SIMPLE, called
ECL, which can capture practical specifications such as sets and
dictionaries. Further, we have shown how to translate formulas in
that fragment to access points and have also shown that formulas
in ECL enable better complexity of the commutativity analysis.
We believe that ECL is of interest in the context of thread-level
speculation and transactional memory.

In addition, we note that the domains of optimistic paralleliza-
tion and race detection are almost diametrically opposite. In opti-
mistic concurrency, one would like to reduce the number of con-
flicts as much as possible, hence if two transactions do not overlap,
even if they access the same abstract locks, none of the transactions
would typically abort. In race detection however, even when threads
do not overlap in an execution, we would like to find out whether
they may have overlapped in another execution and report a con-
flict. This dictates the need to track a happens-before relation (e.g.
via vector clocks). Further, we never acquire locks per-se (unlike
[7]), meaning that we need not deal with deadlocks as is possible
with transactions.

Further, the work of Kim et al. [8] provides several sound com-
mutativity specifications (e.g. AssociationList) and proves their cor-
rectness. We believe that our work serves as a motivation to further
provide such commutativity specifications. The work of Shacham
et al. [16] found a number of incorrect usages of concurrent ob-
jects. They use a procedure which only generates inputs where the
operations do not commute and then (bounded) model checks the
space of interleavings for that input.

Race and atomicity detection. We see our work as generaliz-
ing classic happens-before dynamic race detectors [3] to deal with
richer notions of conflict than basic reads and writes. Dynamic
atomicity detectors such as Velodrome [5] are another line of work
aiming to generalize race detection. However, it may not always be
possible to write a natural atomicity specification. For instance, for
our running example in Fig. 1, there is no natural atomicity specifi-
cation (yet, there are commutativity conflicts). Further, we note that
similarly to classic race detectors, state-of-the-art dynamic atomic-
ity detectors also use a low-level notion of conflict based on reads
and writes, see page 3, right column in Velodrome [5]. This low-
level definition of conflict can be extended to handle much richer
commutativity specifications (with the appropriate modifications of
the atomicity algorithms to deal with access points). Therefore, we
believe that the techniques presented in this work are applicable to
generalizing atomicity detectors as well.

Checking concurrency patterns. Examples of tools that check
properties on library methods are [6] and [13]. In [6], the authors
dynamically check two quite restricted forms of single object con-
current typestate violations (not arbitrary typestate). In general,
many objects where commutativity analysis is applicable (e.g. sets,
maps) do not have an intuitive typestate and hence their work can-
not handle analysis of such objects. Similarly to [16], the work of
Lin et al. [13] statically checks for few library usage patterns that
are likely to be harmful. Many of these patterns can be framed as
instances of commutativity races.

9. Conclusion and Future Work
In this paper we introduced the concept of a commutativity race and
also presented a dynamic commutativity race detector. Our analysis
is a novel combination of access point representations with vector
clocks. Further, we introduced a logical fragment (ECL) that cap-
tures useful commutativity specifications (e.g. maps) and a trans-
lation from that fragment to access point representations. A key
benefit of ECL is that analysis of objects captured in this fragment
require only a constant number of checks per operation as opposed
to linear. We implemented a proof-of-concept of our approach and
demonstrated its effectiveness in practice. Conceptually, our work
can be seen as a generalization of traditional race detectors.

Interesting items for future work include extending ECL, gen-
eralizing other analyzers (e.g. atomicity) and providing optimizing
compilers from ECL-like logics to access point representations.

References
[1] ATTIYA, H., GUERRAOUI, R., HENDLER, D., KUZNETSOV, P.,

MICHAEL, M., AND VECHEV, M. Laws of order: Expensive syn-
chronization in concurrent algorithms cannot be eliminated. In ACM
POPL’11.

[2] CLEMENTS, A. T., KAASHOEK, M. F., ZELDOVICH, N., MORRIS,
R. T., AND KOHLER, E. The scalable commutativity rule: Designing
scalable software for multicore processors. In ACM SOSP’13.

[3] FLANAGAN, C., AND FREUND, S. N. Fasttrack: Efficient and precise
dynamic race detection. In ACM PLDI’09.

[4] FLANAGAN, C., AND FREUND, S. N. The roadrunner dynamic
analysis framework for concurrent programs. In ACM PASTE’10.

[5] FLANAGAN, C., FREUND, S. N., AND YI, J. Velodrome: A sound
and complete dynamic atomicity checker for multithreaded programs.
In ACM PLDI’08.

[6] GAO, Q., ZHANG, W., CHEN, Z., ZHENG, M., AND QIN, F. 2nd-
strike: Toward manifesting hidden concurrency typestate bugs. In
ACM ASPLOS’11.

[7] HERLIHY, M., AND KOSKINEN, E. Transactional boosting: A
methodology for highly-concurrent transactional objects. In ACM
PPoPP ’08.

[8] KIM, D., AND RINARD, M. C. Verification of semantic commuta-
tivity conditions and inverse operations on linked data structures. In
ACM PLDI’11.

[9] KORTH, H. F. Locking primitives in a database system. Journal of
the ACM’83.

[10] KULKARNI, M., NGUYEN, D., PROUNTZOS, D., SUI, X., AND
PINGALI, K. Exploiting the commutativity lattice. In ACM PLDI’11.

[11] KULKARNI, M., PINGALI, K., WALTER, B., RAMANARAYANAN,
G., BALA, K., AND CHEW, L. P. Optimistic parallelism requires
abstractions. In ACM PLDI’07.

[12] LAMPORT, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM’78.

[13] LIN, Y., AND DIG, D. Check-then-act misuse of java concurrent
collections. In IEEE ICST ’13.

[14] MATTERN, F. Virtual time and global states of distributed systems. In
Proc. Workshop on Parallel and Distributed Algorithms’88.

[15] SCHWARZ, P. M., AND SPECTOR, A. Z. Synchronizing shared
abstract types. ACM Trans. Comput. Syst.’84.

[16] SHACHAM, O., BRONSON, N., AIKEN, A., SAGIV, M., VECHEV,
M., AND YAHAV, E. Testing atomicity of composed concurrent
operations. In ACM OOPSLA’11.

[17] TRIPP, O., YORSH, G., FIELD, J., AND SAGIV, M. Hawkeye:
Effective discovery of dataflow impediments to parallelization. In
ACM OOPSLA’11.

[18] WEIHL, W. E. Commutativity-based concurrency control for abstract
data types. In Twenty-First Annual Hawaii International Conference
on Software Track’88.

A. Appendix
A.1 Proofs
Proof of Theorem 5.1. Let e ∈ π be the current event that is
analyzed. Let pt′ be an access point and let {ei}ni=1 be the set of
all events in which pt′ was previously touched by some action.
The second phase of the algorithm maintains the invariant that
pt′.vc = vc(e1) t · · · t vc(en) and pt′ ∈ active(o) iff n > 0.
Also, from the definitions of t and v , for any c ∈ V C we
have that vc(e1) t · · · t vc(en) 6v c iff ei 6v c for some ei.

It is enough to show that the first phase of Algorithm 1 will
report a race iff there is a race between e and some other event
e′ ≤π e. A race is reported iff there is pt′ such that pt′.vc 6v vc(e)
and (pt, pt′) ∈ Co. Because pt′.vc = vc(e1) t · · · t vc(en), this
happens iff there exist some ei = e′ such that vc(e′) 6v vc(e) and
(pt, pt′) ∈ Co. The last is equivalent to (pt, pt′) ∈ Co and e′ ≤π e,
but e′ 6� e which is equivalent to a commutativity race because we
work with a representation (Definition 4.5).

Proof of Theorem 6.5. Let ϕm1
m2

(x1 . . . xk; y1 . . . yl) ∈ Φ, and
let a and b be some actions ofm1 andm2 respectively. It is enough
to show that that ϕm1

m2
(a, b) ≡ false iff there exist two access points

pt1 ∈ ηo(a), pt2 ∈ ηo(b) such that (pt1, pt2) ∈ Co.
Let β1 and β2 be the corresponding beta vectors of a and b.

By the definition of β1 and β2 we have ϕm1
m2

(a, b) ≡ false iff
ϕm1
m2

[β1;β2](a, b) ≡ false. The formula ϕm1
m2

[β1;β2] is equivalent
to a LS formula, that is, conjunction of literals of the form x 6= y.
Therefore, ϕm1

m2
[β1;β2](a, b) ≡ false iff ϕm1

m2
[β1;β2] ≡ false

or some of the mentioned conjuncts evaluates to false. By the
definition of Co this is the case iff there are two access points
pt1 ∈ ηo(a), pt2 ∈ ηo(b) such that (pt1, pt2) ∈ Co.

A.2 Translating the dictionary specification
Consider the commutativity specification Φ of a dictionary object
o from Fig. 6. The specification fits the ECL fragment and we will
show how to obtain an access point representation from it. The
result, however, will not match the one in Fig. 7 which can be seen
as an optimized variant. Later, we will consider a few automatic
transformations which can achieve this optimization.

We first have to find out the access points for each of the
methods. To determine the shape of the β components, for each
method we need to find out the LB atomic subformulas occurring
in the specification. Actually, only put has any:

B(Φ,put) = {v = p, v = nil, p = nil}

Omitting access points that will not appear in the conflict relation,
we have:

ηo(put(k,v)/p) = {o.put:β:ds, o.put:β:1:k}
ηo(get(k)/v) = {o.get:∅:1:k}
ηo(size()/r) = {o.size:∅:ds}

Where β stands for the beta vector of the corresponding action for
which ηo is being defined.

Now we have to define the conflict relation Co. We will do this
only for the put method, the rest being similar. Directly following
the definition from Section 6.2 we obtain the conflicts:

(o.put:β1:1:u, o.put:β2:1:v) ∈ Co iff
u = v ∧ (¬β1(k = v) ∨ ¬β2(k = v))

(o.put:β1:1:u, o.get:∅:1:v) ∈ Co iff
u = v ∧ ¬β1(k = v)

(o.put:β1:ds, o.size:∅:ds) ∈ Co iff
¬(β1(v = nil) ⇐⇒ β1(p = nil))

However, the result differs from the access point representation
given in Fig. 7. The two, however, are equivalent with respect to
Definition 4.5, as can be shown by applying several transforma-
tions.

A.3 Simplifying the obtained access point representation
Let us continue the example and examine several rules that can be
applied in order to simplify the access point representation of the
specification Φ on Fig. 6.

Consolidation. The domain of put’s β vector is the set of atoms
B(Φ,put) = {v = p, v = nil, p = nil}. However, the two
atoms v = nil and p = nil are only used in the LB subformula
(v = nil ∧ p = nil) ∨ (v 6= nil ∧ p 6= nil). To shorten the notation
we will use the equivalent v = nil ⇐⇒ p = nil. This formula
can replace the two atoms in the domain of β:

β : {v = p, v = nil ⇐⇒ p = nil} → {true, false}
We can consolidate such atoms because their separate valuation is
irrelevant.

Dropping. Note that the two subformulas v = p and v =
nil ⇐⇒ p = nil never appear together in a single formula.
That is why conflicts with o.put:β:1:u do not depend on the truth
value of v = nil ⇐⇒ p = nil and conflicts with o.put:β:ds
do not depend on the truth value of v = p. Therefore, in the corre-
sponding access points we can drop the unneeded atoms from the
domain of the definition of β. We obtain four possible β vectors:

r = {p = v 7→ true}
w = {p = v 7→ false}

noresize = {v = nil ⇐⇒ p = nil 7→ true}
resize = {v = nil ⇐⇒ p = nil 7→ false}

Now, we make the replacement:

o.put:β:1:u→ o:r:u iff β(k = v)

o.put:β:1:u→ o:w:u iff ¬β(k = v)

o.put:β:ds→ o:noresize iff β(k = nil ⇐⇒ p = nil)
o.put:β:ds→ o:resize iff ¬β(k = nil ⇐⇒ p = nil)

In general, parts of β can be dropped when they do not influence
the conflict relation Co.

Cleanup. With the definitions above, the access point representa-
tion becomes:

(o:β1:u, o:β2:v) ∈ Co iff u = v ∧ (β1 = w ∨ β2 = w)

(o:β1:u, o.get:∅:1:v) ∈ Co iff u = v ∧ (β1 = w)

(o:β1, o.size():∅:ds) ∈ Co iff β1 = resize

The access point o:noresize is not referenced at all. Such access
points are unnecessary and can be safely removed.

Replacement. A non-trivial transformation involves the fact that
as far as the conflict relation Co is concerned, the access points
o:r:v and o.get:∅:1:v carry the same information, that is:

(o:β1:u, o:r:v) ∈ Co iff (o:β1:u, o.get:∅:1:v) ∈ Co
Therefore, o:r:v can safely be substituted for o.get:∅:1:v, obtain-
ing:

ηo(get(k)/v) = {o:r:v}
and of course, removing the now redundant access point.

In general, two access points pt1 and pt2 are congruent iff for
any third one pt3 we have (pt1, pt3) ∈ Co iff (pt2, pt3) ∈ Co. Each
access point in a congruence class can be replaced with a single
representative from that class.

