
SDNRacer: Concurrency Analysis for Software-Defined Networks

Ahmed El-Hassany‡ Jeremie Miserez] Pavol Bielik]

Laurent Vanbever‡ Martin Vechev]

Dept. of Information Technology and Electrical Engineering‡ Dept. of Computer Science]

ETH Zürich, Switzerland
{eahmed,lvanbever@ethz.ch} miserezj@student.ethz.ch {pavol.bielik, martin.vechev@inf.ethz.ch}

http://sdnracer.ethz.ch

Abstract
Concurrency violations are an important source of bugs in
Software-Defined Networks (SDN), often leading to pol-
icy or invariant violations. Unfortunately, concurrency viola-
tions are also notoriously difficult to avoid, detect and debug.

This paper presents the design and the implementation of
a sound and complete dynamic analyzer, SDNRacer, which
can ensure a network is free of harmful errors such as data
races or per-packet incoherences. SDNRacer is based on
two key ingredients: (i) a precise happens-before model for
SDNs that captures when events can happen concurrently,
and; (ii) a set of sound, domain-specific filters that reduce
the reported violations by orders of magnitude.

We evaluated SDNRacer on several real-world SDN con-
trollers, running both reactive and proactive applications in
large networks. We show that SDNRacer is practically effec-
tive: it quickly (within 30 seconds in 90% of the cases) pin-
points harmful concurrency violations (including unknown
bugs) without overwhelming the user with false positives.

Categories and Subject Descriptors C.2.3 [Computer-
Communication Networks]: Network Operations; D.2.4
[Software Engineering]: Software/Program Verification; D.2.5
[Software Engineering]: Testing and Debugging

General Terms Software Defined Networking, OpenFlow,
Commutativity Specification, Happens-before, Nondeter-
minism

1. Introduction
In the last few years, Software-Defined Networking (SDN)
managed to establish itself as a promising approach for de-
signing and operating computer networks. At its core, SDN
is predicated around two key principles. First, SDN argues
for a physical separation between the control-plane, which
decides how to forward data packets, and the data-plane,
which forwards packets according to control-plane deci-
sions. Second, SDN argues for a (logical) centralization of
the control logic which relies on standardized APIs, such as
OpenFlow [1], to program forwarding state in each network
device (SDN switch).

While the basic premises of SDN are simple, realizing
this vision in practice requires developers to build highly so-
phisticated and reliable control software operating on top
of a network—a highly asynchronous and distributed en-
vironment. Building such highly asynchronous programs is
known to be a very difficult problem due to inadvertently
introducing harmful concurrency errors.

In the context of SDN, there are two places where con-
current interference can occur: (i) within the SDN control
software itself (e.g., if it is multi-threaded or distributed),
and; (ii) at the interface between the control software and the
SDN switches. SDN switches can indeed be seen as memory
locations which are read and modified by various events and
entities. While the first kind of interference can be detected
with standard approaches [15], the second kind of interfer-
ence is harder to detect as it often depends on a particular
ordering of specific, but unpredictable events. Yet, detecting
these interferences is important as they are typically at the
root of deeper semantic problems such as blackholes, for-
warding loops or non-deterministic forwarding.

This work In this paper, we present a system called SDN-
Racer, the first comprehensive dynamic and controller-
agnostic concurrency analyzer for production-grade SDN
controllers. SDNRacer checks for a variety of errors includ-
ing (high-level) data races, packet coherence violations, and
update isolation violations. It precisely captures the asyn-

http://sdnracer.ethz.ch

chrony of SDN environments thanks to the first formulation
of a happens-before (HB) model [24, 32] for the most com-
monly used OpenFlow features. Our HB relation is based
on an in-depth study of the OpenFlow specification [1] and
the behavior of network switches [2]. Further, we present
a commutativity specification of an SDN switch under which
two operations on the switch commute. This specification
elegantly abstracts the behaviors of the switch and is a
principled approach to reducing the number of false posi-
tives, enabling precise and scalable analysis. We illustrate
the practicality of SDNRacer by analyzing real-world SDN
controllers (both, single and multi-threaded) and show that
it automatically discovers harmful and previously unknown
concurrency errors.

Contributions The main contributions of this paper are:

1. A thorough happens-before model which precisely cap-
tures the asynchronous interaction between an OpenFlow-
based SDN controller and the SDN switches (§4).

2. A set of effective filters that dramatically reduce the
number of reports, including a commutativity specifica-
tion which captures the precise conditions under which
two operations on the network switch commute (§5). To-
gether, the specification and the filters reduce the number
of reported issues by several orders of magnitude.

3. A complete implementation of SDNRacer, a dynamic
analyzer which can readily analyze production-grade
(single and multi-threaded) SDN controllers for various
properties including: data races, per-packet consistency
and update consistency (§7).

4. A comprehensive evaluation of SDNRacer attesting that
it can uncover harmful and previously unknown bugs in
existing SDN applications [7–11, 29–31, 35] (§8).

2. Overview
This section provides an overview of SDNRacer. We start
with some background notions on concurrency issues in
SDN programming (§2.1). Then, we give a motivating ex-
ample illustrating how concurrency errors can arise and the
negative effects they can have on the network (§2.2). We also
explain how SDNRacer addresses the key problem of reduc-
ing the number of false positives (§2.3). Finally, we discuss
how to use SDNRacer for detecting higher level properties
(beyond races) such as consistency violations (§2.4).

2.1 SDN programming and concurrency issues
An SDN controller is an event-driven program whose goal
is to compute, maintain and populate the forwarding table
of each SDN switch in the network. The forwarding table of
a switch is an ordered (by priority) list of forwarding entries
composed, among other things, of a boolean predicate and
a forwarding action. The predicate identifies a set of pack-
ets to which the corresponding forwarding action is applied.

S1
S3

Controller
load-balancer

Replica#1
198.51.100.1

Replica#2
198.51.100.1

Internet

Host#1
203.0.113.1

S1

S3

2 3 9
76

1

854 10

slow

S2

if dst == server:
rep = rep[idx]
idx = (idx+1)%2
install path(src, rep)
install path(rep, src)
packet out(pkt,in sw)
...

def install path(s,d):
path = dijkstra(s,d)
for i in path:
flow mod(i,s,d,
fwd(p[i+1]))

Figure 1: An example of a simple load-balancing application (bot-
tom) and a sequence of events (top), which leads to a forwarding
loop. The cause of the issue is a concurrency error.

Forwarding actions include sending the packet to the con-
troller or to a given output port.

SDN controllers operate in highly asynchronous environ-
ments where events such as packets arriving at a switch, link
or node failures, or expiring flows can be dispatched to the
controller at any time, all non-deterministically. Other events
such as collecting various statistics from the switches are
dispatched to the controller synchronously.

In the following, we say that a concurrency issue arises
when there are two unordered accesses to the switch flow
table, one of which is a write produced by the controller.

2.2 Example: a non-deterministic forwarding loop in
a load balancer

Consider a simple controller program which runs a load-
balancer application (see Fig. 1) that directs external re-
quests to a chosen replica in a round-robin fashion.

Now, consider the following sequence of events: an ex-
ternal host, Host#1, sends a request directed to a farm of web
server replicas identified by the IP address 198.51.100.1.
That request hits the first switch in the network, S1 1©; since
it is a new request, S1 sends the request to the controller 2©
in an OpenFlow message called PACKET IN. The controller
(i) elects Replica#1; (ii) computes the shortest-path between
S1 and Replica#1 (as well as the return path); (iii) pushes
down two write events (called FLOW MODs), one for each
traffic direction, on S1 3©– 4© and similarly on S2 9©– 10©
to forward the packets from Host 1 to Replica#1, and; (iv)
sends the request back to S1 in a PACKET OUT 5©. S1 sends
the request to S2 6©. In this trace, the packet hits S2 7©
before the corresponding flow rules 9©– 10© are installed on
S2, causing the packet to be sent back to the controller 8©.
Assuming a round-robin selection algorithm, the controller
now elects Replica#2, computes the shortest-path between

S2 and Replica#2 and pushes down the corresponding flow
rules on S2, S1 and S3.

From this point on, the traffic is processed incorrectly,
in a non-deterministic manner, as S1 and S2 each have
forwarding entries with the same priority that match each
direction of the traffic. Concretely, both directions of the
traffic either end up caught in a forwarding loop, if S1
(resp. S2) uses the rule to forward the traffic to S2 (resp.
S3), or hits one of the two replicas, non-deterministically.
As replicas maintain state for each connection they receive,
changing the replica on-the-fly will cause the connection to
drop. In both cases, traffic ends up being lost.

In this example, the concurrency error arises between the
read event caused by the packet received by S2 7© and
the write event 9© matching it which leads to lost traffic.
Note that the controller could prevent this problem by using
OpenFlow Barrier messages to ensure the rules are installed
on both S1 and S2 before pushing the request back to S1.

Detecting such issues requires careful and precise defini-
tion of how ordering between operations is induced in the
network as well as a definition for what it means for two
events to interfere. We address both of these requirements
in the paper by defining a happens-before model for SDNs
as well as a commutativity specification of the flow table,
enabling us to precisely state when two events interfere.

2.3 Reducing the amount of concurrency issues
A key problem that every practical concurrency analyzer
must address is reducing the amount of reported issues that
are false positives and therefore, harmless. SDNRacer filters
numerous false positives by leveraging two distinct filters.
Together, these two filters reduce the number of races by up
to 99.97%. Detailed evaluation of the filtering performance
of our tool is provided in §8.

Filter 1: Commuting events Commutativity relates to
whether changing the order of two events affects the network
state in different ways. If not, then even if two events are in-
terfering with each other (via low level reads and writes), the
network state ends up being identical. Such an interference
is therefore harmless and can be filtered out.

Consider Fig. 1 again and the write events 3©– 4© that are
pushed to S1 upon the reception by the controller of the
packet sent by Host#1 2©. These two write events race with
each other as the switch does not guarantee any ordering
between write requests: either 3© will happen before or 4©.
However, the race is harmless as the two events are for
non-overlapping entries of the forwarding table. In other
words, the forwarding table at S1 will end up being identical
independently of whether 3© happens before 4© or not. We
say that 3© and 4© commute. Later in the paper, we present a
precise formal definition of the commutativity specification
of the forwarding table.

Filter 2: Time In theory, SDN switches can take an un-
bounded amount of time to perform a command (read or

write). In practice though, they tend to execute them within
a relatively short time frame. This observation enables SDN-
Racer to filter unlikely interference issues [19, 23, 38]. For
instance, if a read and a write event are separated by, say 10
seconds, then they are unlikely to be reordered in practice.
SDNRacer enables the SDN developer to specify a time δ
after which two events cannot interfere anymore. This δ can
easily be estimated based on the maximum network delay
and the maximum switch processing time.

2.4 Detecting violations of high level properties
SDNRacer goes beyond detecting interferences and is capa-
ble of detecting violations of higher level properties such
as inconsistent packet forwarding during a network up-
date [37]. Update consistency means that packets are either
forwarded by the old or the new version of the forwarding
state, but not by an interleaving of the two.

So far, only a few SDN controllers such as Frenetic [17]
guarantee update consistency. With SDNRacer, an SDN de-
veloper can now analyze any controller for consistency prob-
lems. In §8, we show that many such controllers (Flood-
light [16], POX [28], ONOS [6]) are actually inconsistent.
Most importantly, SDNRacer consistency analysis enabled
us to discover previously unknown harmful bugs in several
of them.

3. Formal Model of SDN operation
In this section, we define a formal model of a Software-
Defined Network. This model includes both events occurring
in the network as well as a model of the flow table in an
OpenFlow switch. In later sections, we use this formalization
to specify a precise happens-before (HB) relation and a
commutativity specification of the flow table.

3.1 Operations and Events
We begin by defining a small set of events which succinctly
encapsulate the relevant operations performed by the con-
troller, the network switches, and hosts in the network. The
operations are defined in §3.2.2 and contain the reads and
writes (updates) to the flow table.

For each event type, we define a set of attributes that de-
scribe the event. Depending on the event type, only a subset
of attributes is used: 〈pid,mid, out pids, out mids,msg
type, sw, ops〉 where pid is the identifier of the packet pro-
cessed by the event. Since network packets are potentially
processed by more than one event, SDNRacer generates
a Packet ID pid that does not map directly to any of the
headers but rather it designates a specific packet in a spe-
cific event. mid is the identifier of the OpenFlow message
processed by the event. If there are no such packets/mes-
sages, these attributes are set to the undefined value ⊥. The
set out pids contains the identifiers of all packets emitted by
the event. For each event that emits a packet (e.g., SendPkt)
SDNRacer will generate a new unique pid for the packet

and add it to its out pids set. Each out pids is a set be-
cause events emitting multiple packets will generate multiple
new pids. For instance, SDN switches can duplicate packets
and output them on multiple ports. The HB model uses the
packet ids to link causally related events as defined in §4.
The set out mids contains the identifiers of all OpenFlow
messages emitted by the event. Each out mids is a set be-
cause the controller can issue multiple messages in response
to one event. If there are no such packets or messages, these
sets are empty ∅. For events where mid 6= ⊥, the Open-
Flow message processed by the event is of type msg type.
The relevant message types for our analysis are: PACKET IN,
PACKET OUT, BARRIER REQUEST, BARRIER REPLY, PORT
MOD, FLOW REMOVED and FLOW MOD. Finally, sw is a switch
identifier, and ops is the set of flow table operations the event
contains.

The following events capture the behavior of the switches,
controllers, and hosts:

HandlePkt(sw, pid, out pids, out mids, ops) denotes that
a switch received and processed a data plane packet pid.
There are three cases: i) either OpenFlow messages are gen-
erated, in which case out mids contains the OpenFlow mes-
sages and out pids contains the packet stored in the switch
buffer; ii) a packet is forwarded, in which case out pids
contains the packet to be forwarded, or; iii) the packet is
dropped.

HandleMsg(sw, mid, pid, out pids, out mids, msg type,
ops) denotes that the switch received and processed the
OpenFlow message mid with type msg type. The pid is
⊥ unless a packet is read from the switch buffer. As a re-
sult of processing this packet, OpenFlow messages can be
generated (in which case out mids contains the OpenFlow
messages), and a packet can be forwarded (in which case
out pids contains the packet to be forwarded).

SendPkt(sw, pid, out pids) denotes that the switch sw sent
the packet pid with a new identifier (in out pids) out to
another switch or host.

SendMsg(sw, mid, out mids) denotes that a switch sent
the OpenFlow message mid out to the controller with the
identifier in out mids.

RemovedFlow(sw,mid, out mids, ops) denotes that a flow
table entry in the switch timed out or was explicitly deleted.
As a result of this event, a flow removed message may be
generated (in which case the out mids contains it).

CtrlHandleMsg(mid, out mids) denotes that the controller
received and processed the OpenFlow message mid, and
generated the OpenFlow messages in out mids in response.

CtrlSendMsg(mid, out mids) denotes that the controller
sent the OpenFlow message mid out to the control plane
with the identifier in out mids.

HostHandlePkt(pid, out pids) denotes that a host received
and processed the packet pid, and generated the packets in
out pids in response.

HostSendPkt(pid, out pids) denotes that a host sw sent the
packet pid with a new identifier (in out pids) out to another
switch or host.

3.2 A model of an SDN flow table
We now define a model of the flow table in an OpenFlow
switch which contains a set of entries used to match packets.

3.2.1 Flow Table: Entries
A packet contains a header and a payload. The header con-
sists of a set of fields (e.g., IP source, IP destination or
VLAN id) used to match packets against flow table entries.
The payload is a sequence of bits and does not affect our
specification (discussed later). For a packet pkt we use the
notation pkt.h to refer to the header associated with pkt.

Each flow table entry contains the fields match, prior-
ity, actions, counters, and timeouts. The match can be either
an exact match or a wildcard match. Priority is a number
specifying entry preference in case the packet matches mul-
tiple flow entries, and actions specify a set of forwarding
operations to be performed on a matching packet. Counters
contains values used for statistics, while timeouts contains
hard and idle timeout values.

For a flow table entry e we use the shortcut notation
e.m, e.p and e.a to refer to the match, priority and actions.
A match between two entries e1 and e2 is exact, denoted as
e1.m = e2.m, when all match fields are exactly the same
(including the wildcards). A match between e1 and e2 is
wildcard, denoted as e1.m ⊆ e2.m, if some of the fields
in e1.m are not an exact match but contained in e2.m due to
more permissive wildcards. The same definition of wildcard
and exact match applies to a packet and to a flow table entry.

3.2.2 Flow Table: Operations
There are four types of operations that can be performed
on the flow table: read operations are part of HandlePkt
events and are performed for each received packet, while
add,mod and del operations are part ofHandleMsg events
with a msg type of FLOW MOD and are performed when the
message is processed. In our work we used the OpenFlow
specification 1.0 [1] to define the semantics of all of the
above operations.
read(pkt)/eread: The read operation denotes that a packet

pkt is matched against the flow table to determine the high-
est priority flow table entry eread that should be applied. If
there is no such flow table entry, eread is set to the empty
value none. Note that the value of eread depends on the
state of the flow table against which the packet pkt is being
matched.
add(eadd, no overlap): An add operation tries to add

a new entry eadd to the flow table. If no overlap is true then

SWITCHDATAPLANE:
α ∈ HandlePkts ∪HandleMsgs

β ∈ SendPkts β.pid ∈ α.out pids
α ≺ β

SWITCHCONTROLPLANE:
α ∈ HandlePkts ∪HandleMsgs ∪RemovedF lows

β ∈ SendMsgs β.mid ∈ α.out mids
α ≺ β

SWITCHBUFFER: α ∈ HandlePkts ∪HandleMsgs
β ∈ HandleMsgs β.pid ∈ α.out pids

α ≺ β
HOST: α ∈ HostHandlePkts

β ∈ HostSendPkts β.pid ∈ α.out pids
α ≺ β

CONTROLLER: α ∈ CtrlHandleMsgs
β ∈ CtrlSendMsgs β.mid ∈ α.out mids

α ≺ β
DATAPLANE:

α ∈ SendPkts ∪HostSendPkts
β ∈ HandlePkts ∪HostHandlePkts β.pid ∈ α.out pids

α ≺ β

CONTROLPLANETO: α ∈ SendMsgs
β ∈ CtrlHandleMsgs β.mid ∈ α.out mids

α ≺ β
CONTROLPLANEFROM:

α ∈ CtrlSendMsgs
β ∈ HandleMsgs β.mid ∈ α.out mids

α ≺ β
BARRIERPRE:

α, β ∈ HandleMsgs
α.msgtype = BARRIER REQUEST α.sw = β.sw α <π β

α ≺ β
BARRIERPOST:

α, β ∈ HandleMsgs
β.msgtype = BARRIER REQUEST α.sw = β.sw α <π β

α ≺ β
TIME1: α ∈ HandlePkts ∪HandleMsgs

β ∈ HandleMsgs β.t− α.t > δ

α ≺ β
TIME2: α ∈ HandleMsgs

β ∈ HandlePkts ∪HandleMsgs β.t− α.t > δ

α ≺ β
Figure 2: Happens-before rules capturing ordering of packets and OpenFlow messages for a trace π.

a new entry is not added if a single packet may match both
the new entry and an entry already in the flow table, and both
entries have the same priority.
mod(emod, strict): A mod operation modifies existing

entries in the flow table. A boolean flag strict is used to
distinguish between the two types of modifications issued
by the controller. In strict mode, an exact match (including
the priorities) is used to determine whether an entry should
be modified whereas in non-strict mode a wildcard match is
used. Note that mod will act as an add in case no match is
found.
del(edel, strict): A del operation deletes all entries that

match the entry edel in the flow table. Similarly to the mod
operation, strict affects how the matching is performed.

4. Happens-Before Model
In this section we define a precise happens-before (HB)
model for SDNs (based on the events described earlier).
To ensure correctness of the happens-before model, we de-
signed the model based on an in-depth study of the Open-
Flow switch specification [1] and the analysis of two soft-
ware switch implementations: the POX software switch as
well as the production quality Open vSwitch [2].

The HB relation is a binary relation≺⊆ Event×Event
that is irreflexive and transitive. For convenience, we use the
notation α ≺ β instead of (α, β) ∈≺. For a finite trace con-
sisting of a sequence of events π = α0 ·α1 · . . . ·αn we use
α <π β to denote that event α occurs before event β in π.
We use HandleMsgs to denote a set of all the events
of type HandleMsg and define such sets for each event
type defined in §3. We illustrate the HB ordering rules in-
duced from a given trace π in Fig. 2. All except four rules
(BARRIERPRE, BARRIERPOST, TIME1, TIME2) make use

of the information provided by the attributes pid, out pids,
mid, and out pids. These capture the causality between
two events α and β in the trace, where α caused β to hap-
pen. BARRIERPRE, BARRIERPOST describe the effect of
BARRIER REQUEST messages on OpenFlow switches. The
rules TIME1 and TIME2 are speculative (discuss later).

We next proceed to describe our rules. We also illustrate
the effect of each rule on the example shown in Fig. 1.

SWITCHDATAPLANE and SWITCHCONTROLPLANE:
These rules order event processing packets and OpenFlow
messages within a single switch. They order events that
result in new SendPkt and SendMsg events before the new
events. In our example, this rule introduces the orderings
1©≺ 2©, 5©≺ 6©, and 7©≺ 8©.

SWITCHBUFFER: When sending a PACKET IN message to
the controller in a SendMsg event, the full packet con-
tents need not be contained inside the message. Instead, the
switch may store the packet in its buffer and send only a part
of the packet to the controller. Later, a HandleMsg event
of msg type PACKET OUT or FLOW MOD may retrieve the
packet from the buffer before processing it. This rule orders
HandlePkt and HandleMsg events that store a packet in
the switch buffer before the HandleMsg event that eventu-
ally retrieves a packet from the switch’s buffer. In the exam-
ple, this rule introduces the ordering 1©≺ 5©.

HOST: This rule orders the processing of the packet in
a HostHandlePkt event before the sending of the reply
packets in HostSendPkt events.

CONTROLLER: This rule orders the processing of the Open-
Flow message in a CtrlHandleMsg event before the send-
ing of the reply messages in CtrlSendMsg events. In the

example, this rule introduces the orderings 2©≺ 3©, 2©≺ 4©,
2©≺ 5©, 2©≺ 9©, and 2©≺ 10©.

DATAPLANE: This rule orders events that send a packet
before events that receive the packet. In the example, this
rule introduces the ordering 6©≺ 7©.

CONTROLPLANETO and CONTROLPLANEFROM: These
rules order events that send an OpenFlow message before
events that receive the message. In our example, these rules
order the send of 2©, 3©, 4©, 5©, 8©, 9©, and 10© before the
respective receive.

BARRIER: For performance reasons, the switch is allowed
to handle messages received from the controller in a dif-
ferent order from the one they were sent. To enforce or-
dering, the controller can issue a BARRIER REQUEST mes-
sage which ensures that the network switch finishes process-
ing of all previously received messages (enforced by BAR-
RIERPRE rule), before executing any messages beyond the
BARRIER REQUEST (enforced by BARRIERPOST rule). Note
that the switch sends BARRIER REPLY message to the con-
troller once it finished processing BARRIER REQUEST and
all the messages before it.

SPECULATIVE TIME-BASED RULES This rule adds edges
between events that are highly unlikely to be reordered due
to the physical limits of the network. The value of δ de-
pends on the specific parameters of the network. It should
include the maximum delay that a packet might take travers-
ing the network and the time window in which the OpenFlow
switches can reorder write events. The proper value of δ can
be inferred from related work that measured flow setup time
in different environments and switches from various vendors
[19, 23, 38]. We show the effect of choosing δ in §8.2.

5. Commutativity Specification
In this section we introduce a commutativity specification
for an OpenFlow switch. This is an important component
that has been used previously to improve concurrency of
multicore systems [13] as well as to enhance the precision of
program analyses dealing with interference [14] (here, it is
important to reduce the number of reported false positives).
As with the HB model, we designed the model based on an
in-depth study of the OpenFlow switch specification [1] and
experimental testing with Open vSwitch [2].

To define what commutativity means, we compare the
results of two operations, in particular, flow table state and
the returned values (if any) of the participating operations.
We consider two flow tables to be in the same state if all
their flow table entries contain identical priority, match, and
actions fields. For the purposes of commutativity we ignore
the counters and timeout fields as they are not used for
matching packets or entries.

The commutativity specification is conveniently specified
in a form of a logical predicate ϕ over pairs of operations.

For a pair of operations a and b, the predicate ϕab evaluates
to true if operations commute and to false otherwise.

Auxiliary Relations. We define three auxiliary functions.
First, we overload the set intersection operator e1 ∩ e2 for
entry match structures e.m (and packet headers e.p) and use
it to compute all packet headers that may match both e1 and
e2. Next, we use e1

strict
⊆ e2 to model the semantics of table

entry matching in regular and strict modes as follows:

e1
strict
⊆ e2 :=

e1.m = e2.m ∧ e1.p = e2.p

e1.m ⊆ e2.m
if strict
if ¬strict

A deletes predicate models the semantics of a delete
operation and specifies whether an entry e can be deleted:

deletes(edel, e, strict) :=

e
strict
⊆ edel ∧ e.out port ⊆ edel.out port

Commutativity Specification. The commutativity specifi-
cation of an OpenFlow switch is shown in Fig. 3. All of the
rules are written in the form that specifies when the opera-
tions do not commute which is then negated. We adopt this
approach as the resulting rules are more intuitive to read.
What follows is a description of some of the non-trivial rules.

ϕ(add, add): Adding two entries does not commute if: (i)
the second entry overwrites the first one, or (ii) the second
entry is not added because the first entry is already in the
table. The entries can overwrite each other only if both are
added without the no overlap option and their match and
priority is identical. In this case the old entry is replaced
with the new one and as long as their actions are different
they do not commute. If at least one entry specifies the no
overlap option, then they do not commute if they have the
same priority and there exists an entry that can be matched
by both entries.

ϕ(add,mod): In case the no overlap option is not set, add
and mod do not commute in cases when they are allowed to
modify the same entry with different actions. If no overlap
is set, then mod can add a new entry that overlaps with add
which would result in add not being added.

ϕ(del,mod): If mod affects only a single entry (strict
mode), we simply check whether this entry can be deleted.
Otherwise, as long as both rules can match the same entry,
they do not commute.

ϕ(add, del): add and del do not commute if: (i) the added
entry can be removed by a subsequent delete, or (ii) the
delete does not remove the entry to be added but might en-
able adding it by removing some other entries. This situation
arises when headers that may match add and del overlap.

ϕ(mod,mod): If neither modify operation uses strictmode
then they do not commute if there is an entry that may match
both. If they are both strict then this entry needs to be ex-
actly the same. Otherwise they do not commute if they are
allowed to change the entry of each other.

ϕ
read(pkt)/eread
add(eadd, no overlap)

:=

¬(eread 6= none ∧ eread = eadd)

¬(pkt.h ⊆ eadd.m ∧ (eread = none

∨(eread.p ≤ eadd.p ∧ eread.a 6= eadd.a)))

if add <π read
if read <π add

ϕ
read(pkt)/eread
mod(emod, strict)

:= ¬(eread 6= none ∧ eread
strict
⊆ emod ∧ eread.a = emod.a)

¬(eread 6= none ∧ pkt.h ⊆ emod.m ∧ eread.a 6= emod.a)

if mod <π read
if read <π mod

ϕ
read(pkt)/eread
del(edel, strict)

:=
¬(pkt.h ⊆ edel.m)

¬(eread 6= none ∧ deletes(edel, eread, strict))
if del <π read
if read <π del

ϕ
del(edel, strictdel)

mod(emod, strictmod)
:=
¬(deletes(edel, emod, true))
¬(edel.m ∩ emod.m 6= ∅)

if strictmod
otherwise

ϕ
add(eadd, no overlap)

del(edel, strict)
:= ¬(deletes(edel, eadd, strict) ∨ (no overlap ∧ eadd ∩ edel 6= ∅))

ϕ
mod(e1, strict1)

mod(e2, strict2)
:=

¬(e1.m ∩ e2.m 6= ∅ ∧ e1.a 6= e2.a)

¬(e1.m = e2.m ∧ e1.p = e2.p ∧ e1.a 6= e2.a)

¬((e1
strict2
⊆ e2 ∨ e2

strict1
⊆ e1) ∧ e1.a 6= e2.a)

if ¬strict1 ∧ ¬strict2
if strict1 ∧ strict2
otherwise

ϕ
add(eadd, no overlap)

mod(emod, strict)
:= ¬(eadd

strict
⊆ emod ∧ eadd.a 6= emod.a)

¬(eadd ∩ emod 6= ∅)
if ¬no overlap
otherwise

ϕ
add(e1, no overlap1)

add(e2, no overlap2)
:=
¬(e1.m ∩ e2.m 6= ∅ ∧ e1.p = e2.p)

¬(e1.m = e2.m ∧ e1.p = e2.p ∧ e1.a 6= e2.a)

if no overlap1 ∨ no overlap2
otherwise

Figure 3: Commutativity specification of an OpenFlow switch. Two read or two del operations always commute.

ϕ(read, add/mod/del): For read operations we distin-
guish two cases depending on the order in which the op-
erations are executed in the trace. If a read happens first,
the operations do not commute if the matched entry is not
guaranteed to match after the second operation is performed.
Since we know the concrete flow entry that matched the ini-
tial read, such a check can be performed precisely. In the
case of a read executing second, we simply check whether
the matched rule is identical to the one added or modified.
For a del operation, we conservatively check whether an
entry that matches the packet can be removed.

Key Points. Note, that for the read operations our commuta-
tivity specification incorporates parts of the flow table state
by using the returned values. Further, commutativity rules
for read are specialized based on the trace order, which is
a direct consequence of depending on the state in which the
operations were performed. However, commutativity check-
ing remains efficient, as no flow table state beyond these re-
turn values needs to be stored or simulated.

6. Consistency Properties
In this section, we discuss the checking of two important
previously defined consistency related properties (§6.2 and
§6.3). A useful guarantee of our checking approach is that
if we establish the properties holding on a single trace, it
follows that the properties hold for all traces which contain
the same events (though perhaps events appear in a different
order) where the traces use the same input (§6.4). This guar-
antee reduces the number of traces we need to explore per
input.

6.1 Network Update
SDN applications typically update more than one flow rule
in the network to reflect entire policy changes; e.g. re-routing
congested traffic through a different end-to-end path. To cap-
ture this behavior, we map individual events containing write
operations in a trace π into sets of network updates, such that
each set Γ of network updates reflects a policy change in
the network. Network updates are either triggered reactively
by messages from switches (e.g., PACKET IN messages), or
proactively by an external event (e.g., manual change from
a network operator).

In reactive applications such as a learning switch, we can
use the happens-before model to extract the set Γ of events
that are part of a reactive update for the event α. For reactive
updates, α is of type RemovedF low or SendMsg. More
formally, a reactive update for event α is the set of events
defined as follows:

R(π, α) ::=

{β | β ∈ π ∧ α ≺ γ1 ≺ γ2 ≺ β
∧ γ1 ∈ CtrlHandleMsgs ∧ γ1 ∈ Succ(α)
∧ γ2 ∈ CtrlSendMsgs ∧ γ2 ∈ Succ(γ1)

∧ β ∈ Succ(γ2)}

where Succ(γ) returns all events created directly as a re-
sult of processing event γ:

Succ(γ) ::= {e | e.pid ∈ γ.pid outs}

On the other hand, in proactive applications, such as
a static flow pusher, the updates are caused by external
events or internal controller configurations and hence are
outside the scope of our HB model. We provide two options

to group proactive write events into network updates. The
controller can annotate the writes with the version number.
Alternatively, to keep controller instrumentation to a min-
imum, we provide a heuristic to detect proactive updates.
The heuristic uses a clustering algorithm to group events to-
gether based on time into a set Γ of network updates. Then,
we merge different clusters if there is a barrier request in
one cluster and the response in another. This merge opera-
tion mitigates clustering errors from slow network updates.

Commutativity race Beyond standard read-write data races,
a core high level property that we check is commutativity
races [14]. A commutativity race occurs when two events: (i)
do not commute according to our commutativity specifica-
tion, and (ii) the events are unordered by our happens-before
relation. Given a trace π, we denote the set of commutativity
races in π as CR(π).

Further, for the reported commutativity races the same
guarantees as in existing state-of-the-art commutativity
happens-before race detectors [14] are provided. In particu-
lar: (i) the first reported race is always guaranteed to be a real
race, and (ii) if no race is reported for the given execution,
then no execution from the same input state contains a race.

6.2 Update Isolation
Wang et al. [3] define a set of policy changes to be isolated
if they do not interfere with each other. That is, executing the
updates defined by each policy in any interleaving results in
a network state that is equivalent to one that is obtained by
some serial execution. We check if a set of multiple policy
changes Γ? = {Γ1,Γ2,Γ3, . . .} is isolated, by checking if
no pair of events (across different policy changes) is in the
set of commutativity races CR(π):

UI(Γ?) ::= @ α, β : (α, β) ∈ CR(π)∧
α ∈ Γu ∧ β ∈ Γv ∧ Γu 6= Γv

6.3 Packet Coherence
The next property we check is coherence of a packet trace.
We say that a packet trace is coherent if each packet is pro-
cessed entirely using one consistent global network config-
uration [25, 37]. To check for this property, given a trace π,
we first define the notion of a packet trace which is a subset
of events that participate in processing packet pkt as it tra-
verses throughout the network until the packet reaches a des-
tination host. An event trace τ(π, γ) is a subset of the events
in trace π that were created as a result of processing event γ.
We say that event trace τ(π, γ) corresponds to a packet trace
for a given packet pkt if event γ originated the packet pkt.
More formally, the event trace τ(π, γ) is defined as follows:

τ(π, γ) ::= γ ∪ {τ(π, β) | β ∈ Succ(γ)∧
β 6∈ HostHandlePkts}

Then, we write CRτ (π, γ) to denote all races where one
of the racing events is in τ(π, γ).

CRτ (π, γ) ::= {(α, β) | α ∈ τ(π, γ) ∧ (α, β) ∈ CR(π)}

We check packet coherence for all packets pkt in a given
trace π, i.e, we check coherence for each packet trace τ(π, γ)
extracted from the trace π. We can be certain that a packet
trace τ(π, γ) exhibits packet coherence if CRτ (π, γ) = ∅:
any network update that could affect the packet trace would
introduce at least one race between the previous network
state and the updated state.

However, under certain conditions a packet trace can be
coherent in the presence of races, i.e., when CRτ (π, γ) 6=
∅. Then, there is packet coherence if (i) there is only a single
event e (containing flow table read operations on a single
switch sw) that is part of any races in CRτ (π, γ), and (ii)
there are no events in CRτ (π, γ) that modify any switches
other than sw.

PC(π, γ) ::= CRτ (π, γ) = ∅
∨(∃ e : (∀(α, β) ∈ CRτ (π, γ) : α = e
∧∀(α, β) ∈ CRτ (π, γ) : β.sw = e.sw))

Intuitively, this means that there can be packet coherence
even in the presence of races, if the reordering of the single
event in the races does not negatively affect packet coher-
ence. This is possible if there is only a single such event, i.e,
if there are only two possible reorderings.

6.4 Guarantees
We note that our checks for the properties discussed above
are more general than simply taking snapshots of the flow
tables [20–22], as verification of a static snapshot does not
consider event reorderings. Even though a trace π may be
free of violations, there may be another trace π′ with the
same inputs as π which does contain violations. In contrast,
our checks on π guarantee that any such trace π′ is free of
violations, which is useful as it means we do not need to
explore all possible traces π′. Our guarantee is standard in
happens-before classic race detectors [14, 15], however, here
we ensure the guarantee even beyond races.

7. Implementation
We implemented a full prototype of SDNRacer in around
3, 000 lines of Python code1. The implementation consists of
three parts: (i) an instrumentation of the SDN troubleshoot-
ing system STS [39]; (ii) an instrumentation of several con-
troller frameworks (POX, Floodlight, ONOS), and; (iii) a
concurrency analyzer that implements the happens-before
rules, commutativity checks, and consistency checks.

Network instrumentation STS simulates a complete net-
work, including OpenFlow switches, links, and hosts. We
instrumented STS to further track packets, messages and
switch operations and write them to a file.

(Optional) controller instrumentation The controller in-
strumentation for POX, Floodlight, and ONOS includes
a wrapper around the respective event handlers for incoming

1 https://github.com/nsg-ethz/SDNRacer

https://github.com/nsg-ethz/SDNRacer

Controller POX FloodLight ONOS

LoC 40 139 55

Table 1: While SDNRacer does not require controller instrumen-
tation, few lines of instrumentation code enables to filter harmless
issues (around 20% more).

messages, and links the incoming message with the corre-
sponding outgoing message, when possible. Instrumenting
the controller only requires few lines of code (Table 1). The
controller instrumentation then passes this information to
STS. Instrumenting the controller is not needed for SDN-
Racer to work, but it helps in filtering harmless concurrency
issues by adding more HB orderings in addition to those
defined in §4 (e.g., from 314 to 239 reported races, 23.9%,
in one experiment). POX uses cooperative threading and
runs only one task at any given time while Floodlight and
ONOS are multi-threaded and they context-switch threads.
However, this is not relevant to our model because SDN-
Racer treats the controller as a blackbox, allowing us to use
SDNRacer on a wide set of controllers with minimal instru-
mentation in the controller framework. A more specific ap-
proach would allow for more precision at the price of being
controller-specific.

SDNRacer SDNRacer reads events from a trace file, builds
the HB graph and then runs the concurrency analysis on top
of it. The HB graph as well as the races and inconsistent
packets are output graphically for further inspection.

8. Evaluation
In this section, we evaluate SDNRacer’s performance and
usability. After describing our setup (§8.1), we first show
that SDNRacer detects many consistency issues in existing
controllers. As the number of issues is often large, we also
show that SDNRacer can efficiently reduce the number of
reported issues through filtering (§8.2). Second, we show
several examples of consistency violations discovered by
SDNRacer (§8.3). Finally, we show that SDNRacer is fast
and completes its analysis in few seconds on large traces
containing thousands of events (§8.4). Our results indicate
that SDNRacer is an effective tool for troubleshooting real-
world SDN deployments.

8.1 Experimental Setup
We ran SDNRacer on a set of network traces collected from
a representative set of SDN controllers, running different
existing applications, on different network topologies. All
experiments were performed on a machine with 16GB of
RAM and a modern 4-core processor running at 2.5GHz.

SDN controllers We run SDNRacer against three con-
trollers: Floodlight version 0.91 [16], POX EEL [28], and
ONOS version 1.2.2 [6]. We further instrumented them to
better track HB relationships (Table 1).

Applications We choose 5 representative applications in-
cluding purely proactive and pure reactive applications. Un-
less specified otherwise, we run the same application on each
controller. The implementation of all analyzed applications
is included as part of the official controller distribution.
App#1. MAC-learning: A purely reactive application builds
and maintains a dynamic MAC address table for each switch.
This table maps known MAC addresses to the physical port
on which they can be reached. We analyze the implementa-
tions shipped with Floodlight and POX [10, 31].
App#2. Forwarding: MAC-learning applications are highly
inefficient as they work on a per-switch basis. To alleviate
this, most controllers include a “Forwarding Application”
which works at the network-level and reactively builds and
maintains one network-wide MAC address table. We an-
alyze the implementations shipped with Floodlight, POX,
ONOS [9, 29, 30, 35].
App#3. Circuit Pusher: This purely proactive application
automatically installs paths between two hosts identified by
their MAC addresses, as well as the switch and port they are
connected to. We analyze the implementation shipped with
Floodlight [7].
App#4. Admission Control: This application allows/drops
host communication based on given operator policies. We
analyze the implementation shipped with Floodlight [8].
App#5. Load Balancer: This application performs stateless
load balancing among a set of replica identified by a virtual
IP address (VIP). Upon receiving packets destined to a VIP,
the application selects a particular host and installs flow
rules along the entire path. We analyze the implementation
shipped with Floodlight [11].

Topologies We ran each controller on three different topolo-
gies: Single, Linear, and BinTree. Single has one switch with
two hosts. Linear has two switches with one host connected
to each. BinTree has seven switches connected as a binary
tree with four hosts connected to leaf switches.

Traces We collected 29 traces using STS and a mix of ap-
plications, controllers, and network topologies. The traces
have between 193 and 24, 612 events spanning between 26
and 74 seconds (Table 2). Each trace is the result of 200 STS
simulation steps. In every step, each host in the topology de-
cides randomly whether it is going send a packet to another
randomly chosen host.

Some applications required additional parameters to run.
For Circuit Pusher, we install a new circuit every second
between two randomly selected hosts as well as remove one
existing circuit with a probability of 0.5. For Admission
Control, we allow 80% of the hosts (randomly selected) to
communicate. For Load Balancer, we create replica pools
with two hosts and assign them a VIP. All hosts send traffic
to the VIP. Since Load Balancer only makes sense with more
than two hosts, we run it on larger topologies: (Single4 and
Linear4), connecting four hosts instead of two.

Events Races Updates Packet Coherence

App Topology Controller Events WR RD Races Comm. Time Remain. Num ¬ Isolt. Pkts Racing Incoh

LearningSwitch Single POX EEL 193 7 42 294 218 66 10 (3.40%) 6 0 42 10 0
Floodlight 314 7 70 494 223 227 44 (8.91%) 5 0 70 18 0

Linear POX EEL 274 16 66 532 387 121 24 (4.51%) 18 0 34 11 5
Floodlight 233 6 66 190 64 125 1 (0.53%) 5 0 33 1 0

BinTree POX EEL 4033 487 663 62066 61337 664 65 (0.10%) 402 0 190 28 18
Floodlight 9320 1251 904 275257 270217 4737 302 (0.11%) 1156 34 223 119 72

Forwarding Single POX Angler 106 4 16 61 33 21 7 (11.48%) 12 0 16 7 0
POX EEL 145 8 19 109 84 24 1 (0.92%) 12 0 17 1 0
POX EEL Fx 184 8 29 189 145 42 1 (0.53%) 12 0 26 2 1
ONOS 476 18 71 1336 1163 127 14 (1.05%) 3 0 73 27 22
Floodlight 97 3 13 35 13 14 8 (22.86%) 5 0 13 8 0

Linear POX Angler 248 13 48 323 116 191 12 (3.72%) 31 1 20 6 6
POX EEL 306 20 50 405 235 159 7 (1.73%) 28 1 20 7 7
POX EEL Fx 303 16 51 276 206 62 4 (1.45%) 27 0 20 3 3
ONOS 880 44 181 4059 3781 228 49 (1.21%) 11 0 76 19 15
Floodlight 180 6 36 104 46 45 13 (12.50%) 5 0 14 5 5

BinTree POX Angler 2106 286 359 20447 13179 6988 272 (1.33%) 127 4 77 43 42
POX EEL 4362 504 453 34385 27956 6201 219 (0.64%) 138 3 86 59 58
POX EEL Fx 4283 467 413 12509 12238 242 24 (0.19%) 147 0 92 61 55
ONOS 8031 1492 920 236429 233578 2598 239 (0.10%) 37 0 131 66 49
Floodlight 1886 203 323 12293 11766 317 209 (1.70%) 71 0 76 57 53

CircuitPusher Single Floodlight 218 25 41 1301 1040 218 43 (3.31%) 8 1 41 35 0
Linear Floodlight 327 42 74 1933 1581 287 65 (3.36%) 10 1 38 34 21
BinTree Floodlight 1200 144 227 6156 5605 507 44 (0.71%) 14 3 142 10 6

Adm. Ctrl. Single Floodlight 190 3 36 104 35 62 6 (5.77%) 5 0 36 7 0
Linear Floodlight 221 6 48 139 56 69 14 (10.07%) 6 0 21 6 6
BinTree Floodlight 841 52 170 1384 1090 228 66 (4.77%) 25 0 74 20 10

LoadBalancer Single4 Floodlight 3889 822 476 703864 685158 16492 2214 (0.31%) 449 1114 77 22 0
BinTree Floodlight 24612 6213 2163 4705379 4642118 62031 1230 (0.03%) 1419 464 226 101 97

Table 2: Reported races and properties violations for different traces with applying time filter using δ = 2. The numbers in bold are the final
numbers of races and incoherent packets reported to the user of SDNRacer.

8.2 Race Detection and filtering efficiency
SDNRacer reports many races (Table 2) whose actual num-
ber depends on the number of read and write events which
in turn depend on the controller running the application. As
an illustration, the same set of inputs led to 16 reads and
66 writes for the MAC-learning application running on POX
EEL, but only six reads and 66 writes when running on
Floodlight.

Reporting too many races is of little use to the developer.
So, to be of practical use, SDNRacer is equipped with a set of
filters based on commuting events, timing and race coverage
[36]. We now evaluate the efficiency of each filter in turn.
When all filters are applied, SDNRacer manages to filter out
more than 90% of the races in the vast majority of cases.

Filter 1. Commutativity Commutativity is a major contrib-
utor to reducing the number of reported races. This filter
alone reduces at least 33% of the races in almost all traces
and more than 73% of races in 65.5% of the traces (Fig. 4).

Commutativity filtering performs best in traces that have
many unrelated reads and writes. This high number of dis-
joint reads and writes is often the result of different hosts
sharing the same path. For example, 91% of all races re-
ported by running Circuit Pusher on the BinTree topology
commute (Table 2) as the events relate to different hosts and
non-overlapping entries.

Filter 2. Time-based Time filtering further helps reduce
more than 20% of the races in about half of our traces (Fig. 5)
with a δ value of 2 seconds (§4).

In Fig. 5, we report how much filtering is done as a func-
tion of δ. If δ is set to a high value, more false-positive races
will be reported. For instance, if δ is set to 8 seconds, the
time filter can only reduce up to 34.5% of the races in its
best case. In contrast, it can filter up to 51.7% of the races
in its best case when δ is set to 2 seconds. For our evalua-
tion, 2 seconds is safe given our switch implementation and
network size.

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
�
�

��������������������������������

�������
�����������������

����������

Figure 4: The effect of SDNRacer filters. When all filters are ap-
plied, more than 90% of all races are filtered in 89% of the cases.
Commutativity filtering is the most efficient, followed by Time-
based filtering.

Other filters Like all happens-before detectors (e.g., Fast-
Track [15]), SDNRacer’s checks are as precise as the happens-
before model. Hence, there can be false positives for covered
races [36] due to data dependencies. To discover such cases,
in addition to commutativity-based and time-based filter-
ing, SDNRacer provides an additional filter that discovers
covered races. Covered races are reported interferences that
cannot happen because of high-level dependencies. We ob-
served however that covered races account for only up to
2.4% of the races. As such, to speed-up processing, SDN-
Racer does not enable that filter by default.

8.3 Consistency Checks
SDNRacer detected consistency violations in all applica-
tions and controllers used in our experiments. In many cases,
these violations turned out to be subtle (and some are un-
known) bugs. In the following, we detail both update iso-
lation and packet coherence violations (§6). Recall that the
former leads to ultimately different network states being in-
stalled in the network while the latter relates to packets being
forwarded according to different policies.

Violations of update isolation SDNRacer discovered up-
date consistency violations in four applications (10 out of
29 traces): MAC-Learning, Forwarding, Circuit Pusher, and
Load Balancer. For the Load Balancer application, the vio-
lation was the source of a serious bug.
• Violation#1: Floodlight Load Balancer distributes flows

inconsistently. SDNRacer reports 1114 inconsistent net-
work updates on the single switch topology and 464 in-
consistent network update on the BinTree topology (Ta-
ble 2).
At a first glance, the number of update isolation viola-
tions might seem high. However, the vast majority of the
violations are symptoms of the same bug. By analyzing
the reported violations by SDNRacer and the application
code we realized that, upon packet reception, the con-
troller selects a replica, pushes flow rules to direct traffic

��

����

����

����

����

��

�� ���� ���� ���� ���� ���� ���� ����

�
�
�

������������������������������������

��������������
��������������
��������������

Figure 5: The effect of time-based filter. Choosing smaller δ filters
more races. With δ=2, SDNRacer can filter more than 20% of the
races in 48% of the cases. While with δ=8, SDNRacer can filter
20% of the races in 40% of the cases.

to it, sends the packet back in the network towards the
replica without waiting for the flow rule to be commit-
ted to the switch. As the rules are being installed, further
packets go to the controller and trigger the process again.
Concretely, this means that multiple load-balancing de-
cisions can be taken for the same flow. Inconsistent flow
assignments can lead to bad performance but also to con-
nection drops as the same flow can be assigned to differ-
ent replicas.
Fix: The bug is easily fixed by forcing the Load-Balancer
to request a barrier before pushing packets back into the
network and by having it buffer (or drop) any subsequent
packets it receives for the same connection.

• Violation#2: POX forwarding module deletes rules in-
stalled by other modules. SDNRacer reports an inconsis-
tent update where a removal of flow induced by one mod-
ule raced with a flow insertion induced by another mod-
ule. Investigating the application code, we found out that
the rules installed by the Discovery module (in charge of
learning the network topology) were deleted by the For-
warding module whenever the topology changed.
In this specific case the race between the two modules
was not harmful as the default action directs packets to
the controller anyway. This ensured that even though
rules from the Discovery modules were deleted, it was
still able to learn the topology. We stress that in newer
versions of OpenFlow, the default action is now to drop
packets, meaning this bug would cause the entire network
traffic to be dropped whenever the topology changes.
Fix. This bug is easily fixed by ensuring that the Forward-
ing application only deletes its own flow rules.

Violations of packet coherence SDNRacer discovered per-
packet coherence violations in almost all traces (Table 2).
Most of the incoherent packet cases concerned races occur-
ring when the controller installs a set of flow rules and then
sends a packet matching these flow rules without waiting for

��

����

����

����

����

��

����� ���� �� ��� ���� �����

�
�
�

���������������������������

������
��������������

Figure 6: Analysis time for traces from Table 2. In 90% of the cases
SDNRacer can analyze the traces in less than 30 seconds.

the flow rules to be committed first. As such, these type of
races occurred more often in traces of reactive applications
such as the Forwarding application. While waiting for writes
to be committed is an obvious solution, it also slows down
network operations indicating that many controllers trade
consistency for speed. In general, violating per-packet co-
herence may not always be harmful. Poorly performed pol-
icy updates, for instance, can create per-packet coherence
violations without leading to data losses. Even in this case,
we believe that it is still important to report and quantify vio-
lations of per-packet coherence as correctness predicated on
policy content is undesirable.

8.4 Time
SDNRacer finishes its analysis in less than 32 seconds in
the vast majority of traces (Fig. 6). To measure this, we
ran SDNRacer 20 times and collected the total time for: (i)
loading the trace; (ii) building the HB graph; (iii) applying
all filters, and; (iv) performing all consistency analysis.

The worst case (3.7 minutes) happened when SDNRacer
analyzed the FloodLight Load Balancer on the BinTree
topology. This long running time is due to a bug in the ap-
plication (see §8.3) that caused the trace to have an order of
magnitude more events and races than other traces.

9. Related Work

Data plane verification Several projects are aimed at veri-
fying the correctness of SDNs. Anteater [26], HSA [21] and
Libra [40] collect snapshots of the network forwarding state
and check if it violates certain properties. VeriFlow [22] and
NetPlumber [20] build on this by allowing real-time check-
ing upon network updates. An extension [5] of VeriFlow
allows using assertions to check network properties during
controller execution. Similar to SDNRacer, these tools can
detect interesting invariant violations. However, they cannot
tell what precise sequence of events led to them, only that the
latest update triggered the violation. STS [39] extends these
works by considering the minimal sequence of events re-
sponsible for a given invariant violation. Unlike SDNRacer,
STS does not have a precise formal specification of the par-

tial orderings of events or the conditions under which two
operations commute. As a result, STS cannot detect bugs
unless the invariant is violated in a given trace. On the other
hand, SDNRacer reports strictly more violations than STS
by generalizing the observed trace to all traces obtainable
from the same inputs. Additionally, STS uses network-wide
snapshots to check various properties while SDNRacer con-
siders all relevant events and thus does not miss any harmful
violations. Finally, the output of SDNRacer and STS is dif-
ferent. STS outputs the minimal sequence of input events
that reproduce an invariant violation while SDNRacer out-
puts the exact pairs of read/write events that caused the prop-
erty violation.

Controller verification Other approaches seek to eliminate
controller bugs, for instance, by synthesizing provably cor-
rect controllers [18]. Similarly, in FlowLog [34], rulesets are
partially compiled to NetCore [33] policies and then verified.

NICE [12] uses concolic execution of Python controller
programs with symbolic packets and then runs a model
checker to determine invariant violations. Kuai [27] uses
a simplified version of an OpenFlow switch as well as a cus-
tom controller language, but applies partial order reduction
techniques to reduce the number of states the model checker
has to explore. Although significantly more performant,
Kuai still suffers from the state-space explosion problem
associated with full model checking. Vericon [4] converts
programs into first-order logic formulas and uses a theorem
prover to verify safety properties. In contrast, SDNRacer is
a dynamic analyzer that operates on actual controller traces
and can quickly detect concurrency issues: the root cause of
many bugs. The speed of the analysis only depends on the
trace size, not on the controller. Previous approaches could
benefit from our formal specifications in order to speed-up
their verification time, e.g., by not checking operations that
do not interfere with the network state.

10. Conclusion
In this paper, we presented SDNRacer, the first scalable anal-
ysis system for finding a variety of concurrency-induced
errors including (high-level) data races, per-packet consis-
tency, and update consistency. SDNRacer makes several key
contributions: (i) a precise formal happens-before model of
SDN (OpenFlow) concurrency; (ii) efficient filters including
a commutativity specification of a network switch, and; (iii)
a thorough experimental evaluation illustrating that our tech-
niques for filtering races and identifying high-level (consis-
tency) violations work in practice. SDNRacer was also able
to identify previously unknown and harmful bugs in existing
SDN controllers.

Acknowledgements We thank the anonymous reviewers and
our shepherd, Ben Liblit, for their insightful feedback.

References
[1] OpenFlow Switch Specification. Version 1.0.0.

https://www.opennetworking.org/images/
stories/downloads/sdn-resources/
onf-specifications/openflow/
openflow-spec-v1.0.0.pdf.

[2] Open vSwitch. Production Quality, Multilayer Open Virtual
Switch. http://openvswitch.org/.

[3] Anduo, W. Zhou, B. Godfrey, and M. Caesar. Software-
Defined Networks as Databases. In Presented as part
of the Open Networking Summit 2014 (ONS 2014),
Santa Clara, CA, 2014. USENIX. URL https:
//www.usenix.org/conference/ons2014/
technical-sessions/presentation/wang.

[4] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev,
M. Sagiv, M. Schapira, and A. Valadarsky. VeriCon: Towards
Verifying Controller Programs in Software-defined Networks.
In ACM PLDI ’14. doi: 10.1145/2594291.2594317.

[5] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and
D. Walker. An Assertion Language for Debugging SDN
Applications. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, HotSDN ’14. ACM.
doi: 10.1145/2620728.2620743.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow,
and G. Parulkar. ONOS: Towards an Open, Distributed SDN
OS. In Proceedings of the Third Workshop on Hot Top-
ics in Software Defined Networking, HotSDN ’14. ACM.
doi: 10.1145/2620728.2620744.

[7] Big Switch Networks, Inc. Floodlight Circuit Pusher
Application. https://github.com/floodlight/
floodlight/tree/v0.91/apps/circuitpusher,
2013.

[8] Big Switch Networks, Inc. Floodlight Fire-
wall. https://github.com/floodlight/
floodlight/tree/v0.91/src/main/java/net/
floodlightcontroller/firewall, 2013.

[9] Big Switch Networks, Inc. Floodlight Forwarding Ap-
plication. https://github.com/floodlight/
floodlight/blob/v0.91/src/main/java/
net/floodlightcontroller/forwarding/
Forwarding.java, 2013.

[10] Big Switch Networks, Inc. Floodlight Learning
Switch. https://github.com/floodlight/
floodlight/tree/v0.91/src/main/java/net/
floodlightcontroller/learningswitch, 2013.

[11] Big Switch Networks, Inc. Floodlight Load-Balancer
Application. https://github.com/floodlight/
floodlight/tree/v0.91/src/main/java/net/
floodlightcontroller/loadbalancer, 2013.

[12] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford.
A NICE Way to Test OpenFlow Applications. In USENIX
NSDI ’12.

[13] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Mor-
ris, and E. Kohler. The Scalable Commutativity Rule: De-

signing Scalable Software for Multicore Processors. In ACM
SOSP ’13. doi: 10.1145/2517349.2522712.

[14] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen. Com-
mutativity Race Detection. In ACM PLDI ’14. doi: 10.
1145/2594291.2594322.

[15] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. In ACM PLDI ’09. doi: 10.
1145/1542476.1542490.

[16] Floodlight. Floodlight Open SDN Controller. http://
projectfloodlight.org/floodlight.

[17] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rex-
ford, A. Story, and D. Walker. Frenetic: A Network Pro-
gramming Language. In ACM ICFP ’11. doi: 10.1145/
2034773.2034812.

[18] A. Guha, M. Reitblatt, and N. Foster. Machine-verified Net-
work Controllers. In ACM PLDI ’13. doi: 10.1145/
2491956.2462178.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: Experience with a Globally-
deployed Software Defined WAN. In ACM SIGCOMM ’13.
doi: 10.1145/2486001.2486019.

[20] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte. Real Time Network Policy Checking Using
Header Space Analysis. In USENIX NSDI ’13, .

[21] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In USENIX
NSDI ’12, .

[22] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veri-
flow: Verifying Network-wide Invariants in Real Time. SIG-
COMM Comput. Commun. Rev., 42(4), Sept. 2012. doi: 10.
1145/2377677.2377766.

[23] M. Kuźniar, P. Perešı́ni, and D. Kostić. What You
Need to Know About SDN Flow Tables. In Interna-
tional Conference on Passive and Active Measurement, PAM
’15. Springer International Publishing. doi: 10.1007/
978-3-319-15509-8_26.

[24] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7), 1978.
doi: 10.1145/359545.359563.

[25] R. Mahajan and R. Wattenhofer. On Consistent Updates in
Software Defined Networks. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, HotNets-XII,
2013. doi: 10.1145/2535771.2535791.

[26] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. God-
frey, and S. T. King. Debugging the Data Plane with
Anteater. In ACM SIGCOMM ’11. doi: 10.1145/
2018436.2018470.

[27] R. Majumdar, S. D. Tetali, and Z. Wang. Kuai: A Model
Checker for Software-defined Networks. In Proceedings of
the 14th Conference on Formal Methods in Computer-Aided
Design, FMCAD ’14.

[28] J. Mccauley. POX: A Python-based OpenFlow Controller.
https://github.com/noxrepo/pox.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
http://openvswitch.org/
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/wang
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/wang
https://www.usenix.org/conference/ons2014/technical-sessions/presentation/wang
http://dx.doi.org/10.1145/2594291.2594317
http://dx.doi.org/10.1145/2620728.2620743
http://dx.doi.org/10.1145/2620728.2620744
https://github.com/floodlight/floodlight/tree/v0.91/apps/circuitpusher
https://github.com/floodlight/floodlight/tree/v0.91/apps/circuitpusher
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/firewall
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/blob/v0.91/src/main/java/net/floodlightcontroller/forwarding/Forwarding.java
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/learningswitch
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer
https://github.com/floodlight/floodlight/tree/v0.91/src/main/java/net/floodlightcontroller/loadbalancer
http://dx.doi.org/10.1145/2517349.2522712
http://dx.doi.org/10.1145/2594291.2594322
http://dx.doi.org/10.1145/2594291.2594322
http://dx.doi.org/10.1145/1542476.1542490
http://dx.doi.org/10.1145/1542476.1542490
http://projectfloodlight.org/floodlight
http://projectfloodlight.org/floodlight
http://dx.doi.org/10.1145/2034773.2034812
http://dx.doi.org/10.1145/2034773.2034812
http://dx.doi.org/10.1145/2491956.2462178
http://dx.doi.org/10.1145/2491956.2462178
http://dx.doi.org/10.1145/2486001.2486019
http://dx.doi.org/10.1145/2377677.2377766
http://dx.doi.org/10.1145/2377677.2377766
http://dx.doi.org/10.1007/978-3-319-15509-8_26
http://dx.doi.org/10.1007/978-3-319-15509-8_26
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/2535771.2535791
http://dx.doi.org/10.1145/2018436.2018470
http://dx.doi.org/10.1145/2018436.2018470
https://github.com/noxrepo/pox

[29] J. McCauley. POX Angler Forwarding Application.
https://github.com/noxrepo/pox/blob/
angler/pox/forwarding/l2_multi.py, 2012.

[30] J. McCauley. POX EEL Forwarding Application.
https://github.com/noxrepo/pox/blob/eel/
pox/forwarding/l2_multi.py, 2015.

[31] J. McCauley. POX EEL L2 Learning Switch.
https://github.com/noxrepo/pox/blob/eel/
pox/forwarding/l2_learning.py, 2015.

[32] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and
M. Vechev. SDNRacer: Detecting Concurrency Violations in
Software-defined Networks. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Re-
search, in ACM SOSR ’15. doi: 10.1145/2774993.
2775004.

[33] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A
Compiler and Run-time System for Network Programming
Languages. In ACM POPL ’12. doi: 10.1145/2103656.
2103685.

[34] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishna-
murthi. Tierless Programming and Reasoning for Software-
defined Networks. In USENIX NSDI ’14.

[35] Open Networking Laboratory. ONOS (Open Net-
work Operating System): Forwarding Application.

https://github.com/opennetworkinglab/
onos/tree/onos-1.2/apps/fwd, 2015.

[36] V. Raychev, M. Vechev, and M. Sridharan. Effective Race
Detection for Event-driven Programs. In ACM OOPSLA ’13.
doi: 10.1145/2509136.2509538.

[37] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for Network Update. In ACM SIG-
COMM ’12. doi: 10.1145/2342356.2342427.

[38] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore.
OFLOPS: An Open Framework for Openflow Switch Eval-
uation. In International Conference on Passive and Active
Measurement, PAM’12. Springer-Verlag. doi: 10.1007/
978-3-642-28537-0_9.

[39] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, H. Acharya,
K. Zarifis, and S. Shenker. Troubleshooting Blackbox SDN
Control Software with Minimal Causal Sequences. In ACM
SIGCOMM ’14. doi: 10.1145/2619239.2626304.

[40] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu,
N. McKeown, and A. Vahdat. Libra: Divide and Conquer
to Verify Forwarding Tables in Huge Networks. In USENIX
NSDI ’14.

https://github.com/noxrepo/pox/blob/angler/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/angler/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_multi.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_learning.py
https://github.com/noxrepo/pox/blob/eel/pox/forwarding/l2_learning.py
http://dx.doi.org/10.1145/2774993.2775004
http://dx.doi.org/10.1145/2774993.2775004
http://dx.doi.org/10.1145/2103656.2103685
http://dx.doi.org/10.1145/2103656.2103685
https://github.com/opennetworkinglab/onos/tree/onos-1.2/apps/fwd
https://github.com/opennetworkinglab/onos/tree/onos-1.2/apps/fwd
http://dx.doi.org/10.1145/2509136.2509538
http://dx.doi.org/10.1145/2342356.2342427
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1007/978-3-642-28537-0_9
http://dx.doi.org/10.1145/2619239.2626304

	Introduction
	Overview
	SDN programming and concurrency issues
	Example: a non-deterministic forwarding loop in a load balancer
	Reducing the amount of concurrency issues
	Detecting violations of high level properties

	Formal Model of SDN operation
	Operations and Events
	A model of an SDN flow table
	Flow Table: Entries
	Flow Table: Operations

	Happens-Before Model
	Commutativity Specification
	Consistency Properties
	Network Update
	Update Isolation
	Packet Coherence
	Guarantees

	Implementation
	Evaluation
	Experimental Setup
	Race Detection and filtering efficiency
	Consistency Checks
	Time

	Related Work
	Conclusion

