
Incremental Inference for Probabilistic Programs

Marco Cusumano-Towner

MIT, USA

marcoct@mit.edu

Benjamin Bichsel

ETH Zurich, Switzerland

benjamin.bichsel@inf.ethz.ch

Timon Gehr

ETH Zurich, Switzerland

timon.gehr@inf.ethz.ch

Martin Vechev

ETH Zurich, Switzerland

martin.vechev@inf.ethz.ch

Vikash K. Mansinghka

MIT, USA

vkm@mit.edu

Abstract

We present a novel approach for approximate sampling in

probabilistic programs based on incremental inference. The

key idea is to adapt the samples for a program P into samples

for a program Q , thereby avoiding the expensive sampling

computation for programQ . To enable incremental inference

in probabilistic programming, our work: (i) introduces the

concept of a trace translator which adapts samples from P
into samples of Q , (ii) phrases this translation approach in

the context of sequential Monte Carlo (SMC), which gives

theoretical guarantees that the adapted samples converge to

the distribution induced by Q , and (iii) shows how to obtain

a concrete trace translator by establishing a correspondence

between the random choices of the two probabilistic pro-

grams. We implemented our approach in two different prob-

abilistic programming systems and showed that, compared

to methods that sample the program Q from scratch, incre-

mental inference can lead to orders of magnitude increase

in efficiency, depending on how closely related P andQ are.

CCSConcepts •Mathematics of computing→Markov-

chain Monte Carlo methods; Sequential Monte Carlo

methods;

Keywords Probabilistic programming, sequential Monte

Carlo, incremental computation

ACM Reference Format:

Marco Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin

Vechev, and Vikash K. Mansinghka. 2018. Incremental Inference

for Probabilistic Programs. In Proceedings of 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’18). ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3192366.3192399

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192399

1 Introduction

Probabilistic models occur in many application domains such

as machine learning, robotics, networking, and security [16,

25, 30, 42]. Probabilistic programming languages promise to

simplify the process of working with probabilistic models by

providing high-level languages for expressing these models.

Because of this promise, over the last few years, we have

seen an increased interest in different probabilistic languages

and frameworks, including Church [18], Stan [6], R2 [35],

WebPPL [19], Venture [29], Anglican [45], and PSI [17].

Key Challenge A key roadblock to the wider adoption of

probabilistic programming is that general-purpose efficient

inference is an intrinsically hard problem, even using ap-

proximate (typically sampling-based) methods [10, 12]. In

particular, when a probabilistic model is conditioned on ob-

servations, the resulting posterior distribution may be com-

plex and difficult to navigate or summarize.

Existing approaches address this challenge by taking ad-

vantage of analytical solutions [17, 33], possibly to subprob-

lems [32], adaptive inference [11, 26], custom inference pro-

grams [29], scalable parallel implementation [31] or infer-

ence based on sequential observations [37, 45]. However,

given the inference results for one program, inference for a

second, related program may be substantially easier. There-

fore, we address the following incremental inference task:
Given two probabilistic programs P andQ , and samples of

P obtained using an existing inference algorithm, generate

samples for Q by leveraging the samples for P .

Applications Incremental inference arises naturally in prob-

abilistic modeling and inference, as one may often explore

different variants of a model, change the data upon which a

model is conditioned, or change the prior assumptions [40].

Incremental inference can also be used when program modi-

fications originate from an automated process like synthesis

[36] or learning [20].

This Work In this work, we propose a new approach for

incremental inference in the context of probabilistic pro-

gramming. The key idea is the concept of a trace translator,
which adapts samples (traces) of P into samples (traces) of

Q . To guarantee that samples obtained for Q with a trace

https://doi.org/10.1145/3192366.3192399
https://doi.org/10.1145/3192366.3192399
https://doi.org/10.1145/3192366.3192399

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

translator indeed represent the distribution of Q , we formal-

ize our approach in terms of sequential Monte Carlo (SMC,

[13]). We then show how to construct a trace translator by

establishing a correspondence between the random choices

in P and Q , and how to derive a trace translator from pro-

gram edits. These steps are aided by the fact that we work

with a high-level programming language where similarities

between programs are easier to observe.

Main Contributions Our main contributions are:

• The concept of a trace translator which adapts samples

(traces) of one program into traces of another program.

By phrasing this concept in terms of classic sequential

Monte Carlo theory, we ensure the adapted traces con-

verge to the distribution induced by Q , as more traces

are translated (Section 4).

• A concrete instantiation of the trace translator concept

based on correspondence of random choices used in P
andQ (Section 5) and a specific method to derive such

correspondence from program edits (Section 6).

• An end-to-end implementation and evaluation of our

approach. Our experimental results indicate that incre-

mental inference can lead to substantial performance

gains compared to sampling from scratch (Section 7).

Our approach complements standard inference: if the pos-

terior distributions of programs P and Q are close enough,

then one can use our incremental approach, otherwise, one

can proceed with standard non-incremental inference.

2 Overview

In this section we informally introduce our approach on

the example shown in Figure 1. A formal description, and

evaluation on realistic hard inference problems are provided

in later sections. In the figure, we have two versions of a

classic program (see e.g. [7, 17, 22, 36]) capturing the follow-

ing story. Mr. Holmes receives a telephone call by Mary,

notifying him that she just woke, and is not sure if she

heard a burglary alarm. Mr. Holmes wants to determine

the (posterior) probability that – given that Mary woke up

– there really is a burglary in progress. In the program on

the left, Mr. Holmes only takes into account the possibil-

ity of a burglary, an alarm, and of Mary waking up. Here,

burglary = flipα (0.02) means variable burglary is 1 with

probability 0.02 and 0 with probability 0.98. We use α as

an index for the random choice made by flip(0.02). This
allows us to refer to the random choice that produced a cer-

tain value in the trace. Similarly, alarm = flipβ (pAlarm)
means alarm is 1 with probability pAlarm, where pAlarm is

0.9 or 0.01, depending on whether there is a burglary or not.

The line observeo (flip(pMaryWakes) == 1) expresses that
Mary wakes up with probability pMaryWakes, and that we

observe this event. Intuitively, observing that Mary woke up

changes the probability of there being a burglary, because a

burglary (indirectly) makes it more likely that Mary wakes

up. In the (refined) program on the right, Mr. Holmes refines

the model to also take into account the possibility the alarm

was triggered by an earthquake.

Motivation for Trace Translation To estimate the poste-

rior probability of a burglary in the refined program, we can

generate traces from the posterior of that program, counting

how often we see a burglary. This amounts to performing

inference in the refined program. The box plots in Figure 1

show that in both programs, a burglary is roughly 10 times

more likely to occur in the posterior than in the prior, hence

simple rejection sampling using the prior as a proposal will

be inefficient. In contrast, the posterior distributions rep-

resented by both programs are very similar (in the refined

program, the probability of there being a burglary slightly

decreases). This suggests that if we already have sampled

many traces from the posterior of the original program, it

may be cheaper to simply adapt them to the new program.

That is, to translate existing traces of the original program
into traces of the modified program.

Trace Translation Concretely, the bottom half of Figure 1

shows the translation process for one of the traces of the

original program t = [α 7→ 1, β 7→ 1]. Here, α 7→ 1 indicates

that the program sampled value 1 for flipα (0.02). For conve-
nience, we also show the observation o in our visualization

of the trace, even though it is not formally part of the trace.

Next to the trace, we show the probabilities for each random

choice. For example, pα = 0.02 indicates that flipα (0.02)
evaluates to 1 with probability 0.02. Before translation starts,

we establish a correspondence f between random choices

in the two programs. In this example, α corresponds to α ′,
indicating that flipα (0.02) and flipα ′ (0.02) play a similar

role in both programs.

Our trace translator then adapts the trace t into trace

u = [α ′ 7→ 1,γ ′ 7→ 1, β ′ 7→ 1]. Because α and α ′ are in cor-

respondence, the trace translator reuses the random choice

made by α as the random choice for α ′, and likewise for

β and β ′. For γ ′, there is no corresponding random choice

in the original trace. Hence, the trace translator selects the

value of γ ′ by sampling flipγ ′ (0.005).

Weighting Traces Generally, the distribution induced by

our trace translator may not exactly match the actual dis-

tribution induced by the modified program. To compensate

for this difference, we introduce weights for our traces. In-
tuitively, traces sampled too frequently are assigned a low

weight, while traces sampled too infrequently are assigned

a higher weight. When we average over traces (for example

to estimate the probability of an event), traces with higher

weight have higher contribution. In our example, trace u is

slightly more likely to be generated by the modified program

than by our trace translator, and hence gets weighted by

w ′ ≈ 1.19. Intuitively, this is because the random choice

β 7→ 1 is less likely than the random choice β ′ 7→ 1, but

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

burglary=flipααα (0.02);

pAlarm=burglary?0.9:0.01;

alarm=flipβββ (pAlarm);

if alarm

pMaryWakes=0.8;

else

pMaryWakes=0.05;

observeooo(flip(pMaryWakes)==1);

return burglary;

burglary=flipα ′α ′α ′(0.02);

earthquake=flipγ ′γ ′γ ′(0.005);

if earthquake

pAlarm=0.95;

else

pAlarm=burglary?0.9:0.01;

alarm=flipβ ′β ′β ′(pAlarm);

if alarm

pMaryWakes=earthquake?0.9:0.8;

else

pMaryWakes=0.05;

observeo′o′o′(flip(pMaryWakes)==1);

return burglary;

0 1

0%

50%

100%

9
8
%

2
%

7
9
.5
%

2
0
.5
%

Prior

Posterior

0 1

0%

50%

100%

9
8
%

2
%

8
0
.6
%

1
9
.4
%

Prior

Posterior

modification of program

correspondence of

random choices

f = {ααα 7→ α ′α ′α ′,βββ 7→ β ′β ′β ′}

Inference

(expensive)

traces

Inference

(expensive)

(weighted) traces

trace translator R

ααα 7→ 1

βββ 7→ 1

ooo

pααα = 0.02

pβββ = 0.9

pooo = 0.8

α ′α ′α ′ 7→ 1

γ ′γ ′γ ′ 7→ 1

β ′β ′β ′ 7→ 1

o′o′o′

pα ′α ′α ′ = 0.02

pβ ′β ′β ′ = 0.95

po′o′o′ = 0.9

weight : w ′ =
pα ′α ′α ′pβ ′β ′β ′po′o′o′
pαααpβββpooo

≈ 1.19

f (ααα) = α ′α ′α ′

sample

f (βββ) = β ′β ′β ′

Figure 1. Trace translation from an original program to a modified program. In both programs, we have indexed random

choices by letters α , β,α ′, β ′,γ ′ and observations by letters o,o′. The bar graphs show the prior distribution (on burglary)

and posterior distribution (after observing that Mary wakes up with probability pMaryWakes) of the original (left) and the

modified (right) program. The trace translator adapts approximate posterior samples (i.e. traces) for the program on the left

into approximate posterior samples for the program on the right. The size of the traces on the right represents their weight.

our translator always takes the value for β as the value for

β ′. Similarly, the observation that Mary wakes up is slightly

more likely in the modified program (po′ = 0.9) than in the

original program (po = 0.8), meaning that u should get a

higher weight.

Using weights to compensate for the difference between

an actual distribution and a desired distribution is the basis of

many Monte Carlo methods including importance sampling,

and we adapt this approach to the probabilistic program-

ming setting. Taking into account the weights allows us to

aggregate the translated traces to compute properties of the

modified program, such as the probability of some event oc-

curring (see Lemma 2, Section 4.2). If unweighted traces from

the modified program are desired, one can convert weighted

traces to unweighted traces by resampling (see Section 4.2).

Discussion At a first sight, it may seem as if sampling

from the modified program can be achieved in a simpler way,

by leveraging existing techniques and without making use

of a trace translator. An alternative approach could be to

use the traces from the original program as a starting point

for samplers such as Markov chain Monte Carlo (MCMC).

Unfortunately, this is not possible for programs such as the

one in Figure 1, as traces from the original program are

inconsistent with the modified program (they are missing

the random choice γ ′). Further, such an approach would be

less efficient as it ignores knowledge encoded in our weight.

Overall, incremental inference with trace translation can

be seen as a valuable optimization over standard sampling:

if the distributions of the two programs are believed to be

similar, one can use translation to compute the posterior

distribution of the target program, otherwise, one can employ

standard samplers as usual to estimate that distribution.

Paper Structure We first introduce a probabilistic pro-

gramming language with a semantics based on traces (Sec-

tion 3). Then, we introduce the concept of a trace translator
and an incremental SMC inference algorithm based on this

concept (Section 4). We introduce a concrete trace translator

that makes use of a correspondence between the original

and the modified program (Section 5) and show how this cor-

respondence can be derived from program edits (Section 6).

Finally, we provide a detailed evaluation of incremental in-

ference based on trace translation (Section 7).

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

(P[x],σ)
[]

−→
1

(P[σ (x)],σ) (P[⊖v],σ)
[]

−→
1

(P[eval(⊖v)],σ) (P[flip(v)],σ)
[1]

−−→
v

(P[1],σ)

v ∈ [0, 1]

(x = v,σ)
[]

−→
1

(skip,σ [x 7→ v])

(P1,σ)
t
−→
p

(P ′
1
,σ ′)

(P1; P2,σ)
t
−→
p

(P ′
1
; P2,σ

′) (skip; P2,σ)
[]

−→
1

(P2,σ)

(if v {P1} else {P2},σ)
[]

−→
1

(P1,σ)
v , 0

(observe(flip(v) == 1),σ)
[]

−→
v

(skip,σ)

Figure 2. Semantics for expressions and programs. For the rule for P[⊖v], eval(⊖v) evaluates the unary operation ⊖ on v . We

do not mention all rules, but the remaining rules are straight-forward. For example, the rule to evaluate P[v1 ⊕v2] is analogous
to the rule to evaluate P[⊖v]. σ [x 7→ v] updates σ to v at x , and σ (x) evaluates σ at x .

3 A Probabilistic Language

We now introduce a simple probabilistic language and its

semantics. The language will be used to formalize the no-

tion of incremental inference for probabilistic programs. To

ease presentation, we omit functions, continuous distribu-

tions and loops. These can be included if needed (we discuss

continuous distributions at the end of this section).

Syntax The syntax of our programming language describes

expressions (E), random expressions (R) and programs (P):

E ::= v | x | ⊖E | E1 ⊕ E2 | R

R ::= flip(E) | uniform(E1,E2)

P ::= skip | x = E | P1; P2 | observe(R == E) |

if E {P1} else {P2}

Expressions (E) include a rational constant (v), a variable

(x), unary and binary operators (⊖, ⊕) and random expres-

sion (R). The latter include random choices resulting in 1

or 0 with probability E and 1 − E respectively (via flip(E)),
and selecting an integer between E1 and E2 uniformly at

random (via uniform(E1,E2)). Programs include standard de-

terministic constructs, and the statement observe(R == E),
which decreases the probability of specific traces. For exam-

ple, observe(flip(p) == x) decreases the probability of the

current trace by a factor of p if x evaluates to 1, and by a

factor of 1 − p if x evaluates to 0. We refer to statements of

the form observe(R == E) as observations. Note that only
the outcome of random expressions R can be observed (for

example, we cannot write observe(x = 1)). This restriction
is commonly used in sampling-based probabilistic program-

ming languages (e.g. [29]). We express Boolean values in

terms of rational numbers: 0 stands for false, while all other

values stand for true.

Small-step Semantics We provide small-step operational

semantics for our language. We use P[□] to refer to a pro-

gram that contains a hole. The hole is always at the location

of the next expression to be evaluated, making sure the eval-

uation order is clear. For example, P[□] defined by i = i +□

is invalid because for E1 + E2, we evaluate E1 before E2. P[E]
stands for P where the hole is replaced by expression E. For
example, for P[□] defined by “i = □ + 1”, P[i] is “i = i + 1”.

For a program P and a state σ , (P ,σ)
t
−→
p

(P ′,σ ′) means

that one step of the evaluation of P in state σ produces trace

t with probability p ∈ [0, 1]. After this particular step, the
remaining program to be executed is P ′ in state σ ′. Here, σ
is a map from variables to values, e.g. σ = {x 7→ 3,y 7→ 1

2
}.

Figure 2 shows the semantic rules. Note that for many

rules, we assume that sub-expressions are just a value v ∈ Q.
This is because the small-step semantics will first evaluate

that sub-expression to v and only then apply the rule. We

intentionally do not include a rule that handles the program

skip, thus, skip marks the end of a program execution.

Trace Definition A trace of a program is a collection of

values taken from every random expression evaluated during

program execution, that is, t ∈ T :=
⋃

n∈N Q
n
. The classic

notion of a trace (containing the state of the program at each

point in time) can be reconstructed from our notion of a trace.

Likewise, the return value and the result of all observations

can be reconstructed from a trace. Because we think of Q as

inducing a probability distribution, we often refer to traces

of Q as samples of Q .
Note that every element (random choice) of the trace corre-

sponds to a random expression R in the program. We denote

the indices of random choices in a trace t by the set Rt . Be-
cause our language does not support loops, there is at most

one random choice for every random expression in a pro-

gram. For other languages that do support loops, random

choices can by indexed by a specific naming scheme, see for

example [44]. For i ∈ Rt , we denote the result of random
choice i in t by ti . Likewise, Ot is the set of indices of obser-

vations evaluated for t . Note that Ot can be reconstructed

from the trace. Additionally, for i ∈ Rt or i ∈ Ot , t1:i−1 are
the results of all random choices before i .
If a variable is only assigned to once in every execution

of the program, we can index entries in the trace by variable

names. For example, x = flip(1/2);y = flip(1/2); can be

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

written as t = [x 7→ 1,y 7→ 0]. In this example, Rt = {x ,y},
and t1:y−1 = [x 7→ 1].

Probability of a Trace To run a program P0 from state σ0,
we apply small-step transitions. For a sequence of small-step

transitions (P0,σ0)
t0
−−→
p0

(P1,σ1)
t1
−−→
p1
· · ·

tn
−−→
pn

(skip,σn), we

write:

(P0,σ0)
t0++t1++· · ·++tn
===========⇒

p0 ·p1 · · ·pn
σn

Here, ++ denotes trace concatenation and the above equation

means that we ran P0 from state σ0 and produced a trace

t = t0++t1++ · · ·++tn with (sub-)probability p = p0 ·p1 · · ·pn ,
ending in state σn . In this case, we define the unnormalized
probability of trace t , denoted as P̃r[t ∼ P], by p. To make

sure that P̃r[t ∼ P] does not depend on σ0, we assume that

our programs initialize all variables before first use.

Let Pr [ti ∼ P | t1:i−1] be the probability that random ex-

pression i chooses value ti given the evaluation of all random
expressions before i . Similarly, let Pr [i ∼ P | t1:i−1] be the

probability of satisfying observation i given evaluations t1:i−1.
Then,

P̃r[t ∼ P] =
∏
i ∈Rt

Pr [ti ∼ P | t1:i−1] ·
∏
i ∈Ot

Pr [i ∼ P | t1:i−1]

Let TP denote the set of all traces for program P . The

normalizing constant for P is ZP defined by

∑
t ∈TP P̃r[t ∼ P].

In the absence of observations, ZP = 1.

Pr[t ∼ P] :=
P̃r[t∼P]
ZP

denotes the probability distribu-

tion that results after normalization of P̃r[t ∼ P]. If t is

sampled according to this distribution, we write t ∼ P .

a = 1;

b = flip(a/3);

if a<2

c = uniform(1,6);

else

c = uniform(6,10);

d = flip(b/2);

observe(flip(1/5)==d);

Figure 3. Simple proba-

bilistic program.

Example 1. Consider the pro-

gram P in Figure 3. A possi-

ble trace of P is t = [1, 4, 1].
For readability, we can index

t by variable names, resulting

in [b 7→ 1, c 7→ 4,d 7→ 1].

The unnormalized probability

of t is given by P̃r[t ∼ P] =
1

3
· 1
6
· 1
2
· 1
5
, where we have a

factor for the random choice of

b, c and d , and a factor for the

observation. Summing over all

traces of P yields ZP = 0.7 (i.e., the probability of satisfying

the observation is 0.7). Hence, the normalized probability of

t is Pr[t ∼ P] = P̃r[t∼P]
0.7 .

Continuous Distributions In order to handle a purely

continuous setting (without discrete random choices), the

necessary changes to our semantics are minimal. First, we

capture the small-step semantics by (P ,σ)
t
−→
f

(P ′,σ ′), mean-

ing one step of the evaluation of P in state σ produces trace

t with density f ∈ R≥0 (by using densities, we avoid is-

sues with zero-probability traces). Second, we compute the

normalizing constant by integration over all possible traces

(instead of summation). Note that since different traces can

be of different length, we have to sum over all possible trace

lengths. Adapting the trace translator to the purely continu-

ous setting requires interpreting the forward kernel (intro-

duced in Section 4) kP→Q (u; t) as a family of densities on

traces u, and likewise for the backward kernel.

A formal semantics for programs with both continuous

and discrete random choices requires measure theory. To

avoid complicating this work substantiallywith the increased

complexity of measure theory, we informally treat continu-

ous and discrete random choices the same (leading to multi-

plication of probabilities and densities). This is a common

approach in sampling-based probabilistic programming sys-

tems, see e.g. [29].

4 SMC for Probabilistic Programs

This section introduces a general approach that uses the

results of sampling-based inference for a given probabilistic

program P in order to make inference for a new probabilistic

program Q more efficient. The main idea is to transform the

set of traces generated by the inference algorithm for P into

a set of traces of Q in a way where these traces are accurate

approximate samples of Q .
To ensure the transformed samples follow the distribution

induced by Q arbitrarily closely, we phrase this transforma-

tion in terms of sequential Monte Carlo (SMC, [13]) theory.

To apply this theory in the context of probabilistic programs,

we introduce the concept of a trace translator.

4.1 Trace Translators

If we can efficiently transform posterior samples for one

inference problem into posterior samples for a second infer-

ence problem, we achieve efficient incremental inference. We

formalize this notion of a transformation using the concept

of a trace translator. Formally, a trace translator R is a tuple:

R = (P ,Q,kP→Q , ℓQ→P)

where P and Q are probabilistic programs expressed in the

language of Section 3. The forward kernel kP→Q (u; t) of the
translator defines a distribution on traces u of program Q
for each possible trace t of program P . Intuitively, kP→Q
translates traces of P to traces of Q . In our illustration of

trace translators (Figure 1), kP→Q (u; t) = 0.005, because
kP→Q translates the trace t = [α 7→ 1, β 7→ 1] to the trace

u = [α ′ 7→ 1,γ ′ 7→ 1, β ′ 7→ 1] by reusing the random

choices made by α and β and sampling from the random

choice γ ′ (sampling 1 with probability 0.005). The output
distribution ηP→Q (u) of the translator is the probability that

a trace translator produces u, if we assume that its input

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

trace t was itself sampled from the program P :

ηP→Q (u) :=
∑
t ∈TP

Pr[t ∼ P] kP→Q (u; t)

In Figure 1, ηP→Q (u) =
1

ZP
· 0.02 · 0.9 · 0.8 · 0.005 (the

sum disappears because kP→Q (u; t
′) = 0 for all t ′ , t).

Here,
1

ZP
comes from normalization, 0.02 and 0.9 come from

flipα (0.02) and flipβ (0.9), 0.8 comes from the observation

observeo (flip(pMaryWakes) == 1), and 0.005 = kP→Q (u; t).
A perfect trace translator has the posterior for program

Q as its output distribution, that is, ηP→Q (u) = Pr[u ∼ Q].
In general, perfect trace translators are not feasible, and

we resort to approximate trace translators. For approximate

trace translators, theweight is a function on tracesu ofQ that

corrects for the difference between ηP→Q (u) and Pr[u ∼ Q],

by assigning larger weight to traces u that are generated less

often under ηP→Q than under the posterior Pr[u ∼ Q]:

wP→Q (u) :=
Pr[u ∼ Q]

ηP→Q (u)
=

Pr[u ∼ Q]∑
t ∈TP Pr[t ∼ P] kP→Q (u; t)

(1)

In Figure 1,wP→Q (u) =
1/ZQ ·0.02·0.005·0.95·0.9
1/ZP ·0.02·0.9·0.8·0.005

≈
ZP
ZQ
· 1.19.

The sum in the denominator of Equation (1) is often in-

tractable to compute. In this case, the weight can be replaced

by a weight estimate, which is the following function on

traces u and t :

ŵP→Q (u; t) :=
P̃r[u ∼ Q] ℓQ→P (t ;u)

P̃r[t ∼ P] kP→Q (u; t)
(2)

where ℓQ→P is a backward kernel that defines a distribu-

tion on traces t of program P , for each possible trace u of

program Q . Given u, the weight estimate is an unbiased

estimate of
ZQ
ZP

wP→Q (u) (see Appendix A of the supplemen-

tary material). Hence, the weight estimate is in expectation

proportional to the weight (proportionality is enough to

ensure the theoretical guarantees of SMC). The additional

factor
ZQ
ZP

is due to the unnormalized probabilities P̃r[u ∼ Q]

and P̃r[t ∼ P] in Equation (2), which are substantially eas-

ier to compute than their normalized versions. In Figure 1,

ℓQ→P (t
′
; [α ′ 7→ a,γ ′ 7→ c, β ′ 7→ b]) is a point distribution

that is 1 if and only if t ′ = [α 7→ a, β 7→ b]. This choice of
ℓQ→P yields ŵP→Q (u; t) ≈ 1.19.
The optimal backward kernel is the one that reduces

ŵP→Q (u; t) to
ZQ
ZP

wP→Q (u):

ℓOPT
Q→P (t ;u) :=

Pr[t ∼ P] kP→Q (u; t)

ηP→Q (u)
(3)

The procedure translate in Algorithm 1 defines the op-

eration of a trace translator.

Trace Translator Error The error of an approximate trace

translator for programs P and Q depends on both kP→Q and

Algorithm 1 Abstract Trace Translator

Require: Trace translator R = (P ,Q,kP→Q , ℓQ→P),
Input trace t of program P

procedure translate(R, t)
u ∼ kP→Q (·; t) ▷ Generate trace for program Q
w ← ŵP→Q (u; t) ▷ Evaluate weight
return (u,w)

end procedure

ℓQ→P , and is quantified using Kullback-Leibler (KL) diver-

gence. Recall that the KL divergence between two distribu-

tions µ and ν on a discrete set X is defined as:

DKL (µ ����ν) :=
∑
x ∈X

µ (x) log

(
µ (x)

ν (x)

)
The KL divergence is zero if and only if the distributions are

the same. We define the trace translator error ϵ (R) as:

ϵ (R) := DKL
(
Q ���

���ηP→Q
)

+ Eu∼Q
[
DKL

(
ℓQ→P (·;u)

���
��� ℓ

OPT
Q→P (·;u))

)]
(4)

The first term in Equation (4) accounts for the difference

between the output distribution ηP→Q and the posterior for

program Q , and the second term accounts for any error in

our estimate of the weight.

4.2 SMC with Trace Translators

The trace translator primitive can be used to construct incre-

mental inference algorithms. For programs P and Q , infer
in Algorithm 2 gives an incremental inference algorithm

based on SMC that takes as input a weighted collection

{(tj ,w j)}
M
j=1 of traces of P that approximates the posterior

distribution Pr[t ∼ P], and returns a new weighted collec-

tion {(u ′j ,w
′
j)}

M
j=1 of traces of Q that approximates the new

posterior distribution Pr[u ∼ Q]. Concretely, a weighted

collection of traces {(tj ,w j)}
M
j=1 approximates Pr[t ∼ P] by a

distribution P̂ (t) of the form:

P̂ (t) :=
M∑
j=1

w j∑M
k=1wk

δ (t , tj) ≈ Pr[t ∼ P]

where δ is the Kronecker delta. The output approximation

Q̂ (u) ≈ Pr[u ∼ Q] is defined analogously in terms ofweighted

traces {(u ′j ,w
′
j)}

M
j=1. Algorithm 2 works by first translating

allM traces of P into traces of program Q using translate,

and then updates the weights of the translated traces. Next,

it optionally resamples the translated traces and sets their

weights to 1. Finally, it runs mcmcQ , an MCMC (Markov

Chain Monte Carlo) sampler for Q , to produce a new trace

u ′j from trace uj with probabilitymcmcQ (u
′
j ;uj) (by running

an independent Markov chain for each j). We illustrate Al-

gorithm 2 in Figure 4. Algorithm 2 can be interpreted as a

single step of a sequential Monte Carlo sampler [13], applied

to generic sequences of probabilistic programs.

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Algorithm2A single step of SMC for probabilistic programs

Require: Trace translator R = (P ,Q,kP→Q , ℓQ→P),
MCMC samplermcmcQ for program Q
Weighted traces {(tj ,w j)}

M
t=1 of program P

procedure infer(R,mcmcQ , {(tj ,w j)}
M
j=1)

for j ← 1 . . .M do

(uj ,∆w j) ∼ translate(R, tj)
w ′j ← w j · ∆w j ▷ Update weight

end for

{(uj ,w
′
j)}

M
j=1 ← resample({(uj ,w

′
j)}

M
j=1) ▷ (Optional)

for j ← 1 . . .M do

u ′j ←mcmcQ (·;uj) ▷ MCMC for Q

end for

return {(u ′j ,w
′
j)}

M
j=1

end procedure

procedure resample({(uj ,w j)}
M
j=1)

for j ← 1 . . .M do

aj ∼ Categorical([w1, . . . ,wM]/
∑M

k=1wk)
u ′j ← uaj

end for

return {(u ′j , 1)}
M
j=1

end procedure

Multiple Steps and resample Often, programs are mod-

ified in an iterative process, and thus, it may be desirable

to generate traces from a sequence of programs. In this case,

we can run Algorithm 2 repeatedly, once for each new pro-

gram in the sequence, to iteratively transform the weighted

collection of traces from one program to the next. However,

after several iterations, only a small fraction of traces in the

collection will likely have appreciable weight, reducing the

effective number of traces.
1
To remedy this, we can optionally

execute resample, which picksM traces (with replacement),

with a probability proportional to their weight, producing a

collection of new traces that each have weight 1. Formally,

when samplingaj fromCategorical([w1, . . . ,wM]/
∑M

k=1wk),

aj will be set to x with probabilitywx/
∑M

k=1wk . This means

that traceswith a highweight (i.e. more representative traces)

will get chosen more often than traces with low weight. By

duplicating high weight traces, we re-allocate our computa-

tional resources to those traces that are more representative

of the posterior so that future steps will be more efficient.

One can also use the weights to detect when an incremental

approach may not be feasible, by monitoring the ‘effective

sample size’ [28].

Interoperability with MCMC Sampling Using MCMC

after trace translation in infer can increase the quality of

the output approximation, but is not necessary to achieve

formal guarantees (see Lemma 2). The algorithm is amenable

1
This is called particle degeneracy in the SMC literature. Other resampling

schemes besides independent resampling are also possible.

t1 t2 t3 t4

u1 u2 u3 u4

u1 u2 u3 u4

u2 u3 u3 u4

u ′
1

u ′
2

u ′
3

u ′
4

translate (Alg. 1)

update weight (Alg. 2)

resample (Alg. 2)

mcmcQ (Alg. 2)

P

Q

Figure 4. Illustration of Algorithm 2 forM = 4. Each circle

stands for a trace. The size of the circle represents its weight.

Traces t1:4 belong to program P and have equal weight, while

traces u1:4 and u
′
1:4

belong to program Q . resample removes

u1, and duplicates u2.

to a modular design in which the trace translation and the

MCMC samplers are implemented independently. To use

an MCMC sampler mcmcQ with Algorithm 2, we impose

the (standard) requirement that it must admit the posterior

Pr[u ∼ Q] as an invariant distribution:∑
u ∈TQ

Pr[u ∼ Q]·mcmcQ (u
′
;u) = Pr[u ′ ∼ Q] for all u ′ ∈ TQ

This allows interoperation with various MCMC samplers,

including generic single site Metropolis-Hastings [18, 44],

Gibbs sampling, and custom user-specified MCMC algo-

rithms [29]. Note that one call tomcmcQ can lead to multiple

iterations of an MCMC sampler: the input u is the initial

state of the Markov chain and u ′ is the state after the last
iteration.

Using the Output of infer The weighted collection of

traces {(u ′j ,w
′
j)}

M
j=1 returned by Algorithm 2 can be used to es-

timate the expectationEu∼Q [φ (u)] of any property (captured
by a function) φ : TQ → R under the posterior distribution

for program Q , using:∑M
j=1 φ (u

′
j)w

′
j∑M

j=1w
′
j

≈ Eu∼Q [φ (u)] (5)

For example, to estimate the probability of an event A ⊆ TQ ,
we use φ (u) := 1[u ∈ A] (the indicator function of set A) ,
which gives the estimate:∑M

j=1w
′
j1[u

′
j ∈ A]∑M

j=1w
′
j

≈
∑
u ∈A

Pr[u ∼ Q]

If unweighted approximate posterior samples from Q are de-

sired, the weighted collection {(u ′j ,w
′
j)}

M
j=1 can be converted

to an unweighted collection using resample.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

Formal Guarantees The following lemma states that by

translating sufficiently many traces, the estimator in Equa-

tion (5) produced using weighted collections of traces from

infer will converge to the true expectation.

Lemma 2. Let R = (P ,Q,kP→Q , ℓQ→P) be a trace translator
with finite error ϵ (R). Letφ : TQ → R be a function. Let tj ∼ P
and w j = 1 for j ∈ {1, . . . ,M }. Let MCMC samplermcmcQ
have invariant distributionQ . Let {(u ′j ,w

′
j)}

M
j=1 be the output of

infer on input (R,mcmcQ , {(tj ,w j)}
M
j=1). Then, almost surely,∑M

j=1w
′
jφ (u

′
j)∑M

j=1w
′
j

−−−−−→
M→∞

Eu∼Q [φ (u)]

Note that Lemma 2 only gives guarantees in the limit of

infinitely many traces. However, the number of translated

traces needed to achieve a given error crucially depends on

the trace translator error ϵ (R). If ϵ (R) is large, then more

traces are needed; thus ϵ (R) determines the efficiency of Al-

gorithm 2. Indeed, the number of tracesM needed to achieve

a given error in estimates of the form Equation (5) scales

approximately exponentially in the trace translator error

ϵ (R). See Appendix B of the supplementary material for

more details.

When Algorithm 2 is iterated across a sequence of pro-

grams, we retain the theoretical guarantee of Lemma 2, even

if we do not run MCMC up to convergence (i.e. even though

the collection of weighted traces passed from one step to the

next are not independent and identically distributed exact

samples from the previous step) [21].

5 Trace Translator with Correspondence

The design space of trace translators for two probabilistic

programs P and Q is massive and hence, designing an effi-

cient translator relies on knowledge of how P and Q relate.

This section describes the design of such a translator, one

that is appropriate for cases when we can establish semantic

correspondence between some of the random expressions

in P and Q . Intuitively, we say two random expressions are

in correspondence if we know (or believe) that they play

the same or similar role in the two programs (this will be

formalized below).

5.1 Forward Kernel

A (semantic) correspondence between two programs P and Q
is a bijection f : FQ → FP . Here, FQ ⊆ ∪t ∈TQRt is a collec-
tion of indices of possible random choices inQ , and likewise

for FP . We describe the forward kernel by giving a proce-

dure that samples from it. That is, for a correspondence f
between P and Q , and for a trace t of program P , we define
kP→Q (u; t) as the probability that the following procedure

produces the trace u as output: Initialize an empty trace u
(i.e. a trace that has no random choices in it). Execute Q ,
but when Q makes a random choice i for which a corre-

spondence is given (i.e. i ∈ FQ), look up the value for the

1 a=flipα (
1

2
);

2 if a==0

3 b=uniformβ (0,5);

4 else

5 b=flipγ (
1

2
);

6 c=flipδ (
1

2
);

7

1 a=flipϵ (
1

3
);

2 if a==0

3 b=uniformζ (0,5);

4 else

5 b=flipη(
1

2
);

6 c=uniformθ (1,6);

7 d=uniformι(-5,-2);

Figure 5. Two simple programs P and Q . Random expres-

sions are indexed by letters α , β ,γ ,δ , ϵ, ζ ,η,θ and ι.

corresponding choice f (i) in the trace t , and populate the

trace u with this value (ui ← tf (i)). If i < FQ , sample ui by
evaluating the appropriate random expression in Q . Finally,

return u. If u agrees with t on the corresponding random

choices then kP→Q (u; t) is the product of the probabilities of
each non-corresponding random choice. If u does not agree

with t then kP→Q (u; t) = 0:

kP→Q (u; t) =
∏

i ∈Ru \FQ

Pr [ui ∼ Q | u1:i−1]
∏

i ∈Ru∩FQ

δ (ui , tf (i))

(6)

where δ is the Kronecker delta.

There are two cases when using the correspondence f is

not possible: (i) f (i) is not present in t where i ∈ FQ and

i is a random choice occurring in u (this can happen be-

cause of branching), and (ii) the support of a random choice

i ∈ FQ in u is different from the support of f (i) in t . Recall
that the support of a distribution is the set of all elements

that have positive probability of occurring. For instance, if

uniform(0,x) is a statement in the program where during

execution of a trace t , x takes the value 9, then the sup-

port of that random choice in t is {0, . . . , 9}. We can handle

both cases by dynamically detecting them and evaluating

the appropriate random expression in Q , just as if no cor-

respondence for i was available. For simplicity, we restrict

our attention to the case where using the correspondence is

always possible.

Example 3. Figure 5 shows two short programs P and Q ,
where we indexed the random choices to aid presentation.

For these programs, it is reasonable to establish correspon-

dence between the random choices as follows: ϵ ↔ α , ζ ↔ β
and η ↔ γ . Note that ι is not matched because there is no cor-

responding random expression in P . Also, we cannot match

δ and θ , even though both are assigned to the same variable c .
This is because δ and θ have different support and matching

them would mean the translator could never produce traces

where, e.g, [θ 7→ 6]. We cannot match β ↔ η for the same

reason.

Assuming the correspondence above, consider a specific

trace t = [α 7→ 1,γ 7→ 1,δ 7→ 1] of P . In the construction of

the translated trace u from t , kP→Q will reuse the random

choices α andγ , but not δ . A possible result of the translation

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

is thus u = [ϵ 7→ 1,η 7→ 1,θ 7→ 3, ι 7→ −3]. Formally,

kP→Q (u; t) =
1

6
· 1
4
, because during construction of u, kP→Q

samples from the two random expressions uniformθ (1, 6) and
uniformι (−5,−2).

5.2 Estimating the Weight

For a trace u of Q , the set {t ∈ TP | kP→Q (u; t) > 0} is

referred to as the explanations of u. To evaluate the weight

wP→Q (u) of a trace u produced by our algorithm, we would

need to sum over all possible explanations of u, as shown
in Equation (1). Although there are fewer explanations than

there are traces of P , the sum over all explanations of u
may still be computationally intractable. To avoid computing

this intractable sum, we instead compute an estimate of

the weight. In particular, we use the backward kernel that

translates traces fromQ to P in the same way as the forward

kernel which starts from Q and translates to P :

ℓQ→P (t ;u) := kQ→P (t ;u) (7)

This choice of backward kernel means that the weight es-

timate ŵP→Q (u; t) only depends on random choices in cor-

respondence and on observations. Concretely, using Equa-

tions (6) and (7) to replace kP→Q (u; t) and ℓQ→P (t ;u) in
ŵP→Q (u; t) yields the following weight estimate:∏

i ∈FQ∩Ru
Pr [ui ∼ Q | u1:i−1]

∏
i ∈Ou

Pr [i ∼ Q | u1:i−1]∏
i ∈FP∩Rt

Pr [ti ∼ P | t1:i−1]
∏
i ∈Ot

Pr [i ∼ P | t1:i−1]
(8)

Applying Equation (8) for the programs in Figure 5 and

original trace t = [α 7→ 1,γ 7→ 1,δ 7→ 1] and translated trace

u = [ϵ 7→ 1,η 7→ 1,θ 7→ 3, ι 7→ −3], the numerator contains

factors for random choices ϵ and η, while the denominator

contains factors for random choices α and γ . The weight

estimate is:

ŵP→Q (u; t) =
Pr[flip(1/3) = 1] · Pr[flip(1/2) = 1]

Pr[flip(1/2) = 1] · Pr[flip(1/2) = 1]

= 2/3

Note that this example does not contain any observations.

To compute the numerator of the weight estimate in (8),

it suffices to execute program Q , drawing random choices

deterministically from u, and to multiply factors for all ob-

servations and those random choices in FQ . To compute the

denominator, we can execute program P , drawing random
choices from t , and accumulate factors analogously.

5.3 Trace Translator Error

Given a correspondence f for programs P andQ , we analyze

trace translator R = (P ,Q,kP→Q , ℓQ→P) with kP→Q defined

by Equation (6) and ℓQ→P defined by Equation (7). Let Q (f)

denote the distribution produced by samplingu ∼ Q and then

only keeping random choices that have a correspondence

in f . Let P (f)
denote the distribution produced by sampling

u ∼ ηP→Q and then only keeping random choices that have a

correspondence in f . Note that the random choices in ηP→Q

that have a correspondence in f follow the same distribution

as in P , because kP→Q does not modify those random choices.

Samples fromQ (f)
and P (f)

are partial traces of programQ—

they only contain values for random choices that are in the

correspondence f . We denote a partial trace of program Q
by s . LetQ (u |s) denote the posterior distributionQ on traces

u, conditioned on u being consistent with a partial trace s:

Q (u |s) ∝ Pr[u ∼ Q]
∏

i ∈Ru∩Rs

δ (ui , si)

Likewise, let ηP→Q (u |s) denote the distribution ηP→Q (u) on
traces u, conditioned on u being consistent with s . Note
that ηP→Q (u |s) is precisely the probability that the forward

kernel produces a trace u from a previous trace t that agrees
with s on the corresponding random choices:

ηP→Q (u |s) = kP→Q (u; t) for any t s.t. si = tf (i)∀i ∈ Ru ∩ Rs

Let r = f [s] denote the partial trace of P with rf (i) = si
for each i in s . Define P (t |r) analogously to Q (u |s), and de-

fine ηQ→P (t |r) analogously to ηP→Q (u |s). Then, the trace

translator error is a sum of three non-negative error terms:

ϵ (R) =DKL
(
Q (f) ���

��� P
(f)

)
+ Es∼Q (f)

[
DKL

(
Q (·|s) ���

���ηP→Q (·|s)
)]

+ Es∼Q (f)

[
DKL

(
ηQ→P (·| f [s])

���
��� P (·| f [s])

)]
The first term reflects the difference in the probabilistic

semantics of the corresponding random choices under the

two programs, where Q (f)
defines the semantics under Q

and P (f)
defines the semantics under P . The second term

reflects the error introduced by sampling non-corresponding

random choices in Q by evaluation (e.g. sampling from the

‘prior’) as in ηP→Q (·|s), instead of by posterior sampling as in

Q (·|s). The third term accounts for the error in the estimate

of the weight, which is determined by the error of sam-

pling non-corresponding random choices in P by evaluation

(ηQ→P (·| f [s])), instead of by posterior sampling (P (·| f [s])).
Note that if every random choice in P is in correspondence

with some random choice in Q , then the third term is zero.

Also note that if all random choices in both programs are in

the correspondence f , then ϵ (R) reduces to the difference

in probabilistic semantics DKL (Q
(f) | |P (f)).

5.4 Correspondence for Loops

When we add loops to the probabilistic programming lan-

guage in Section 3, the same expression may be executed

multiple times. To uniquely identify random choices, we

index them both by their syntactic position and by their

(possibly nested) loop index, as in [44]. This allows us to

introduce correspondence between random choices in P and

in Q .
As a simple example, consider the geometric distribution

implemented in Figure 6, that counts the number of Bernoulli

trials until a failure. Suppose the Bernoulli choices in the

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

condition are indexed with N = {1, 2, . . . }. When changing

the success probability from p = 1

2
to p = 1

3
, we can use the

correspondence f that maps i to i for i ∈ N.

p= 1
2
;

n=1;

while(flip(p))

n++;

Figure 6. Geomet-

ric distribution.

Alternatively, we can handle

bounded loops by loop unrolling.

Since the loop in Figure 6 is un-

bounded, this is not possible here.

Often however, loop unrolling is

sufficient, e.g. many machine learn-

ing applications loop over a finite

number of data points, finite num-

ber of dimensions, or a number of latent components.

6 Correspondence from Program Edits

If Q is the result of a small edit to the text of P , most parts

of P will not be affected by that edit. Then, a simple cor-

respondence between random choices in P and Q can be

constructed automatically. In this case, the translation can

be optimized due to potentially massive cancellation in the

weight expression (8).

We generate a semantic correspondence automatically

from a program edit by assuming that random expressions

that correspond syntactically in the two programs also corre-

spond semantically. Concretely, for two random expressions

in syntactic correspondence, we place their random choices

in (semantic) correspondence.

Note that the syntactic correspondence is likely to, but

need not, result in a good semantic correspondence—the

jump from syntax to semantics is best viewed as an in-

formed heuristic. The algorithm guarantees soundness (as

in Lemma 2), even if the syntactic correspondence does not

result in a good semantic correspondence. In this case how-

ever, the convergence in Lemma 2 will be slower, requiring

more samples to achieve a certain error.

Partial Execution of Q When Q is the result of an edit to

P , the procedure of sampling from the forward kernel (Sec-

tion 5.1) and evaluation of the weight estimate (Equation 8)

can be optimized to avoid a full execution of program Q .
Consider the trace t = [b 7→ 1, c 7→ 4,d 7→ 0] for the

original program depicted in Figure 7. We assume that t
is provided to the algorithm in the form of a graph data

structure Gt , where every expression, sub-expression, and

statement evaluated during the construction of t is a node.
Figure 7 depicts the graph Gt on the left. For convenience,

we conflate assignments x = e with the node for their right-

hand side e . We introduce an edge between nodes n1 and n2
of Gt whenever n1 must be evaluated in order to evaluate

node n2. Note that the graph data structure is similar to

the probabilistic execution trace introduced in the Venture

platform [29].

Given Gt and an edit to P that results inQ , we construct a

traceu ofQ , its graphGu , and theweight estimate ŵP→Q (u; t),
by first deleting nodes in Gt whose source code in P was part

of the edit, adding new nodes for any expressions and state-

ments introduced in the edit, and then propagating changes

from these nodes throughout the dependency graph in topo-

logical order (i.e. triggering re-evaluation of nodes if any of

their parents in the graph were re-evaluated).

To traverse the changed nodes in topological order, we

first compute a forward slice of the dependency graph that

contains an overapproximation of all the nodes that should

be re-evaluated during the current propagation of changes.

Then, we order the resulting set of nodes topologically. One

could instead maintain the global order of nodes explicitly

using a dedicated data structure. Then, one would use a

priority queue to dynamically process the set of re-evaluated

nodes in topological order. This technique has previously

been used for (deterministic) self-adjusting computation [1].

Figure 7 displays a dependency graph Gu constructed

based on the edit from a = 1 to a = 2. In constructing

Gu , we removed node a = 1 and replaced it by a = 2. We

then propagated that change through the dependency graph.

Note that the change does not propagate through node b =
flip(a/3), because the correspondence allows one to reuse
the random choice b 7→ 1 in the translated trace u. Because
u takes the then-branch instead of the else-branch, node c =
uniform(0, 5) and its parents must be deleted, and replaced

by those in the else-branch.

The propagation amounts to a partial execution of Q be-

cause nodes for random choices that were part of the corre-

spondence f do not trigger re-evaluation of their children.

EfficientWeight Estimate Evaluation Recall the weight

estimate ŵP→Q (u; t) in Equation 8 is defined by:∏
i ∈FQ∩Ru

Pr [ui ∼ Q | u1:i−1]
∏

i ∈Ou

Pr [i ∼ Q | u1:i−1]∏
i ∈FP∩Rt

Pr [ti ∼ P | t1:i−1]
∏
i ∈Ot

Pr [i ∼ P | t1:i−1]

To efficiently compute ŵP→Q (u; t), we initialize it to 1 prior

to propagation. For each random choice i ofQ that has a cor-

respondence f (i) and is visited during propagation, the fac-

tors Pr [ui ∼ Q | u1:i−1] and Pr

[
tf (i) ∼ P | t1:f (i)−1

]
are eval-

uated and factored into the numerator and denominator of

the weight estimate, respectively. Note that these probabili-

ties can be computed from the values of the random choices

and their arguments.

To efficiently deal with observations, we require a cor-

respondence analogous to the correspondence for random

choices. For each observation i of Q that is visited during

propagation, we compute Pr [i ∼ Q | u1:i−1] and factor this

into the numerator of the weight estimate. If i has a corre-

sponding observation in t , we factor Pr
[
f (i) ∼ P | t1:f (i)−1

]

into the denominator. For any observation i of P that was re-

moved from the graph (because there was no corresponding

observation in u), we compute Pr [i ∼ P | t1:i−1] and factor

this into the denominator of the weight estimate. If we were

to add observe(flip(1/5) == d) to the modified program in

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

a = 1; // edit: 1->2

b = flip(a/3);

if a<2

c = uniform(0,5);

else

c = uniform(6,10);

d = flip(b/2);

a = 13

a/3

b = flip(a/3)
(b 7→ 1)

2

a < 2

0 5

c = uniform(0, 5)
(c 7→ 4)

if a < 2 {c = uniform(0, 5)}
else {c = uniform(6, 10)}

2

b/2

d = flip(b/2)
(d 7→ 0)

12

3

4

5

6 7 8

9

10

11

12

13

a = 23

a/3

b = flip(a/3)
(b 7→ 1)

2

a < 2

6 10

c = uniform(6, 10)
(c 7→ 7)

if a < 2 {c = uniform(0, 5)}
else {c = uniform(6, 10)}

2

b/2

d = flip(b/2)
(d 7→ 0)

12

3

4

5

6
7 8

9

10

11

12

13

Figure 7. Representation of two traces of two programs that are related by a change of a constant (a = 1 vs a = 2). On the left,

we show the trace of the original program. Each node corresponds to an expression, sub-expression or statement evaluated

during the construction of the trace. Circled numbers indicate the order of evaluation. On the right, we show the trace of the

modified program. Edges traversed during the construction of the modified trace are bold. Edges from newly created nodes are

dotted.

Figure 7, the observation would be visited during propaga-

tion and hence factored into the numerator of the weight

estimate. If observe(flip(1/5) == d) would occur in both

the original and the modified program, it would not lead

to a factor (neither in the nominator nor the denominator),

because it is not visited during propagation.

Note that all factors in the numerator of Equation (8) that

were not factored into the weight estimate (i.e. factors for

corresponding random choices, or observations, whose argu-

ments were not changed from P to Q) cancel with identical

factors in the denominator.

7 Implementation and Evaluation

In this section, we describe two implementations of our ap-

proach. Their evaluation shows that using incremental in-

ference can improve the efficiency of inference by orders of

magnitude.

7.1 Implementation

To illustrate the generality of our approach, we implemented

our algorithms and evaluated them in two separate prob-

abilistic programming systems. The incremental inference

approach described in Section 4 and Section 5 is compatible

with embedded probabilistic languages implemented using

the lightweight transformational compilation design of [44].

Runtime systems for languages following this design run

the program end-to-end and score each random choice. The

optimized algorithm for efficient trace translation that can

be used when the two programs are related by a small edit

(Section 6), relies on a more involved runtime that tracks

dependencies between random choices in a trace, allowing

to run the modified program only partially.

For a Lightweight Embedded Language We implemented

a lightweight embedded probabilistic programming language,

embedded in Julia, based on the transformational compila-

tion design of [44], with built-in support for trace transla-

tion. In our language, the programmer may annotate random

choices with ‘addresses’ that may be dynamically computed.

In our implementation of incremental inference for this light-

weight language, to specify a semantic correspondence re-

quired by the algorithm of Section 5, the user defines a Julia

function that maps addresses of random choices in the sec-

ond program Q to addresses in the first program P . In this

language, observations are not specified in the probabilistic

program itself, but instead are represented externally by con-

straints on the values of random choices at certain addresses.

For a Language with Dependency Tracking We also im-

plemented our approach in PSI [17], a probabilistic program-

ming language for exact symbolic and approximate sampling-

based inference, that includes a dependency tracking mech-

anism suitable for implementing the algorithm of Section 6.

7.2 Robust Bayesian Linear Regression

We first evaluated our lightweight incremental inference im-

plementation on a data set of hospital operating costs and

quality measures for 305 municipalities in the United States

[43]. We modeled the data using a Bayesian regression prob-

abilistic program P (shown in Listing 1 in the supplementary

material). We then wrote a variant of P , denoted Q , that was

modified to be more robust to outliers (shown in Listing 2).

Specifically, Q allows for the possibility that a data point is

an outlier, and contains a random choice not present in P
that defines the variance of outliers. Robust Bayesian regres-

sion is a practical family of statistical models that generally

lack closed-form posterior solutions [5]. We evaluated the

incremental inference implementation, as well as an imple-

mentation of (non-incremental) MCMC inference, for the

task of estimating the posterior mean of the slope parameter

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

10−2 10−1 100 101 102 103

Median runtime (seconds per estimate)

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

er
ro

r
in

es
ti

m
at

e

MCMC

Incremental

Incremental (no weights)

Figure 8. Evaluation of incremental inference (Algorithm 2)

and MCMC for parameter estimation in probabilistic for

robust regression, applied to a data set of hospital operating

costs and quality metrics.

in the robust model. Both algorithms were implemented in

the same lightweight probabilistic programming language.

Because exact posterior sampling is tractable in P , we use
posterior samples for P as input to the incremental infer-

ence algorithm. We placed the coefficients of the regression

(the intercept and slope) in correspondence for the tran-

sition from P to Q . The incremental algorithm did not use

MCMC updates after trace translation. TheMCMC algorithm

was based on a cycle of independent Metropolis updates to

each latent variable in Q . We also evaluated a variant of

the incremental algorithm that does not utilize the weight

estimates produced by the trace translator. Figure 8 shows

the results, which show that incremental inference gives a

substantial 84% reduction in mean error for approximately

10x less runtime, relative to the MCMC approach, using a

hand-optimized MCMC algorithm as the gold-standard (in-

cremental inference gave 0.031 error at 0.043 seconds per
estimate, and MCMC gave 0.19 error at 0.53 seconds per

estimate). Both incremental inference and MCMC converged

to the correct value, but incremental inference without use

of the weight estimates did not.

7.3 Higher-order Markov Model

We next evaluated the lightweight incremental inference

implementation on a typo correction task. We trained a

first-order hidden Markov model and a second-order hidden

Markov model on a training set of 29,056 words with typos

and associated ground truth, and wrote probabilistic pro-

grams P and Q for the first-order and second-order models,

respectively, shown in Listing 3 and Listing 4. The presence

of second-order dependencies in Q impedes exact inference,

whereas exact samples from the first-order model are effi-

ciently obtained using dynamic programming. We use exact

posterior samples for P as input to the incremental inference

algorithm. We placed each hidden state in correspondence

10−5 10−4 10−3 10−2 10−1 100 101 102

Median runtime per estimate (seconds)

−2.5

−2.0

−1.5

−1.0

−0.5

L
og

pr
ob

ab
ili

ty
of

gr
ou

n
d

tr
u

th

MCMC

Incremental

Incremental (no weights)

Figure 9. Evaluation of incremental inference (Algorithm 2)

and MCMC for posterior inference over hidden states in a

higher-order HMM, applied to typo correction.

for the transition from P to Q (note that there are no other

latent random choices in either P or Q). The incremental

algorithm did not use MCMC updates. We also evaluated a

Gibbs sampling algorithm for Q implemented in the same

lightweight probabilistic programming language. We quanti-

fied the accuracy of an inference algorithm by the estimated

log probability of the ground truth hidden sequence under

the approximate posterior, for a set of held out words. Fig-

ure 9 shows the results. Incremental inference using 30 traces

gave average per-character ground truth posterior proba-

bility of 0.41 on a test set, for a median runtime of 0.013
seconds, whereas the Gibbs sampler for the second-order

HMM performed substantially worse, giving 0.18 posterior
probability, for approximately 10x the runtime (0.14 seconds,
for 10 back-and-forth Gibbs sweeps). Incremental inference

without use of the weights, which converges to the poste-

rior of the first-order model P and not the posterior of the

second-order model Q , performed worse than incremental

inference using the weights, giving 0.38 posterior probability
in 0.14 seconds with 30 traces.

7.4 Gaussian Mixture Model

To evaluate the optimized trace translation algorithm de-

scribed in Section 6, we implemented a Gaussian mixture

model in PSI (code shown in Listing 5). We consider an edit

to the program that modifies the value of a hyperparameter—

the variance of the prior on cluster centers.When themixture

model models N data points from K clusters, the algorithm

of Section 5 scales as O (N + K) because it visits every ele-

ment of the trace, but the algorithm of Section 6 scales as

O (K), because the changed hyperparameter only affects the

cluster centers, which are in correspondence between the

two programs, and do not propagate the change forward.

The results are depicted in Figure 10.

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

100 101 102 103

Number of data points

10−4

10−2

100

T
ra

n
sl

at
io

n
ti

m
e

(s
ec

on
d

s)

Baseline

Optimized

Figure 10. Comparing runtime of the baseline trace transla-

tion algorithm (Section 5) against the optimized algorithm

that uses dependency tracking (Section 6), as the number of

data points (and therefore the size of the trace) grows.

8 Related Work

Although Sequential Monte Carlo (SMC) has been previously

applied for inference in probabilistic programs, existing work

has focused on using SMC for specialized classes of incre-

mentalization: Using sequential observation of data to make

inference more efficient [19, 29, 37, 45] or iteratively refining

the domain of random choices [41]. Instead, we provide a gen-

eral framework for incremental inference that allows reuse

of inference computation between two arbitrary programs,

provided that a semantic correspondence is given between

their random choices. Our work generalizes the sequential

observation case studied in previous work. For example, we

can also handle adding or removing latent variables.

The adaptation of approximate samples from one distribu-

tion to another is the basis of importance sampling, which

has been used in Bayesian statistics to update posterior ap-

proximations in light of new data or changed priors [40].

Solving a sequence of inference problems constructed by

incremental modification of a model is often used instrumen-

tally in statistics as a means of solving the final inference

problem more efficiently [9, 13, 34], and a similar approach

is used in simulated annealing for optimization [23]. Our

approach adopts and builds on the SMC formalism of [13]

to propose a general approach for incremental inference in

probabilistic programs.

The problem of exact inference when incrementally modi-

fying factor graphs and Bayesian networks has been studied

in [2–4, 14, 15, 27]. Instead, we tackle incremental approxi-

mate Monte Carlo inference, which has very different scaling

properties to these approaches—our approach scales primar-

ily in the semantic difference induced by the change, instead

of in ‘syntactic’ parameters like the number of added ran-

dom variables. For deterministic programs, Acar [1] describes

self-adjusting computation that adapts an existing program

trace to account for modified input. Partush [38] investigates

possible relationships between variables in two deterministic

programs, with the goal of computing semantic differences

between the two programs. Investigating different correspon-

dences of random choices in the original and the modified

program is a possible extension of our work.

Incremental data flow analysis of probabilistic programs

(with only discrete and bounded random choices) has been

investigated in [48]. Also, various probabilistic program-

ming systems perform incremental computation for effi-

cient evaluation of Metropolis-Hastings acceptance ratios

[24, 29, 39, 46, 47]. These systems efficiently compute the

ratio of probabilities of an original trace and a proposal trace

of the same program, whereas our efficient weight computa-

tion procedure (Section 6) compares probabilities of traces

from two different programs.

9 Conclusion

Approximate inference for a program in a general-purpose

probabilistic programming language is an intrinsically hard

problem. However, this task may be substantially simplified

if we are given the inference results for a related program.

We have presented the concept of a trace translator that

adapts traces of an original program into traces of a modified

program. By formulating this concept as a general frame-

work in terms of SMC, we have provided formal guarantees

that will be useful for future work in this domain. Given a

semantic correspondence between random choices of two

programs, we provide a trace translator that samples from the

modified program by picking the values of random choices

based on the values of corresponding random choices in

the original program. When two programs are related by

an edit, we can infer a semantic correspondence based on

syntactic correspondence, and we can perform trace transla-

tion asymptotically more efficiently using partial edits of a

dependency graph data structure. Note that we make use of

two distinct forms of incremental computation: (i) reusing

inference results from a program with similar probabilistic

semantics, and (ii) incrementally transforming a trace data

structure from one program to another. The first depends

on the (probabilistic) semantic relationship between the pro-

grams, and the second relies on their syntactic relationship.

We have implemented and evaluated our approach, demon-

strating that it can improve the efficiency of inference by

orders of magnitude by leveraging inference for a simpler

model. However, the efficiency gains depend critically on

the trace translator error (Section 5.3), which is smaller when

corresponding random choices follow a similar distribution,

and increases with each additional non-corresponding ran-

dom choice. Reducing the error of the trace translator by

exploiting analytically tractable conditional distributions for

non-corresponding choices is a promising area for future

work. Also, finding a good correspondence can be hard in

general. Thus, techniques for automatically identifying cor-

respondences between general programs is an interesting

area of future work.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

Acknowledgments

This research was supported in part by the US Department

of the Air Force contract FA8750-17-C-0239, grants from the

MIT Media Lab/Harvard Berkman Center Ethics & Gover-

nance of AI Fund and the MIT CSAIL Systems that Learn

Consortium, a gift from the Aphorism Foundation, and the

the US Department of Defense through the the National De-

fense Science & Engineering Graduate Fellowship (NDSEG)

Program.

References

[1] Umut A Acar. 2009. Self-adjusting computation (an overview). In

Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation
and program manipulation. ACM, 1–6.

[2] Umut A Acar, Alexander T Ihler, Ramgopal Mettu, and Özgür Sümer.

2012. Adaptive inference on general graphical models. arXiv preprint
arXiv:1206.3234 (2012).

[3] Umut A Acar, Alexander T Ihler, Ramgopal R Mettu, and Özgür Sümer.

2007. Adaptive Bayesian inference. In Proceedings of the 20th Inter-
national Conference on Neural Information Processing Systems. Curran
Associates Inc., 1441–1448.

[4] Hamza Agli, Philippe Bonnard, Christophe Gonzales, and Pierre-Henri

Wuillemin. 2016. Incremental junction tree inference. In International
Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems. Springer, 326–337.

[5] James O Berger, Elías Moreno, Luis Raul Pericchi, M Jesús Bayarri,

José M Bernardo, Juan A Cano, Julián De la Horra, Jacinto Martín,

David Ríos-Insúa, Bruno Betrò, et al. 1994. An overview of robust

Bayesian analysis. Test 3, 1 (1994), 5–124.
[6] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben

Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,

and Allen Riddell. 2017. Stan: A probabilistic programming language.

Journal of Statistical Software 76, 1 (2017).
[7] Arun Chaganty, Aditya Nori, and Sriram Rajamani. 2013. Efficiently

sampling probabilistic programs via program analysis. In Artificial
Intelligence and Statistics. 153–160.

[8] Sourav Chatterjee and Persi Diaconis. 2015. The sample size required

in importance sampling. arXiv preprint arXiv:1511.01437 (2015).

[9] Nicolas Chopin. 2002. A sequential particle filter method for static

models. Biometrika 89, 3 (2002), 539–552.
[10] Gregory F Cooper. 1990. The computational complexity of probabilistic

inference using Bayesian belief networks. Artificial intelligence 42, 2-3
(1990), 393–405.

[11] Marco F Cusumano-Towner, Alexey Radul, David Wingate, and

Vikash K Mansinghka. 2017. Probabilistic programs for inferring the

goals of autonomous agents. arXiv preprint arXiv:1704.04977 (2017).

[12] Paul Dagum and Michael Luby. 1993. Approximating probabilistic

inference in Bayesian belief networks is NP-hard. Artificial intelligence
60, 1 (1993), 141–153.

[13] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential

monte carlo samplers. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 68, 3 (2006), 411–436.

[14] M Julia Flores, José A Gámez, and Kristian G Olesen. 2002. Incremental

compilation of Bayesian networks. In Proceedings of the Nineteenth
conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann

Publishers Inc., 233–240.

[15] M Julia Flores, Jose A Gámez, and Kristian G Olesen. 2011. Incremental

compilation of bayesian networks based on maximal prime subgraphs.

International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 19, 02 (2011), 155–191.

[16] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,

and Alexandra Silva. 2016. Probabilistic netkat. In European Symposium
on Programming Languages and Systems. Springer, 282–309.

[17] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. Psi: Exact sym-

bolic inference for probabilistic programs. In International Conference
on Computer Aided Verification. Springer, 62–83.

[18] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz,

and Joshua B Tenenbaum. 2012. Church: a language for generative

models. arXiv preprint arXiv:1206.3255 (2012).
[19] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and

Implementation of Probabilistic Programming Languages. http://dippl.
org. Accessed: 2017-8-26.

[20] Roger Grosse, Ruslan R Salakhutdinov, William T Freeman, and

Joshua B Tenenbaum. 2012. Exploiting compositionality to explore a

large space of model structures. arXiv preprint arXiv:1210.4856 (2012).
[21] Jonathan H Huggins and Daniel M Roy. 2015. Convergence of

sequential Monte Carlo-based sampling methods. arXiv preprint
arXiv:1503.00966 (2015).

[22] Jin H Kim and Judea Pearl. 1983. A computational model for causal and

diagnostic reasoning in inference systems.. In IJCAI, Vol. 83. 190–193.
[23] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. 1987. Opti-

mization by simulated annealing. In Spin Glass Theory and Beyond: An
Introduction to the Replica Method and Its Applications. World Scientific,

339–348.

[24] Oleg Kiselyov. 2016. Probabilistic programming language and its in-

cremental evaluation. In Asian Symposium on Programming Languages
and Systems. Springer, 357–376.

[25] Martin Kučera, Petar Tsankov, Timon Gehr, Marco Guarnieri, and

Martin Vechev. 2017. Synthesis of Probabilistic Privacy Enforcement.

Analysis 1 (2017), 1.
[26] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. 2016. Inference

compilation and universal probabilistic programming. arXiv preprint
arXiv:1610.09900 (2016).

[27] Wei Li, Peter Van Beek, and Pascal Poupart. 2006. Performing incre-

mental Bayesian inference by dynamic model counting. In Proceedings
of the National Conference on Artificial Intelligence, Vol. 21. Menlo Park,

CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 1173.

[28] Jun S Liu and Rong Chen. 1995. Blind deconvolution via sequential

imputations. J. Amer. Statist. Assoc. 90, 430 (1995), 567–576.
[29] Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a

higher-order probabilistic programming platform with programmable

inference. arXiv preprint arXiv:1404.0099 (2014).
[30] Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective.

The MIT Press.

[31] Lawrence M Murray. 2013. Bayesian state-space modelling on high-

performance hardware using LibBi. arXiv preprint arXiv:1306.3277
(2013).

[32] Lawrence M Murray, Daniel Lundén, Jan Kudlicka, David Broman,

and Thomas B Schön. 2017. Delayed Sampling and Automatic

Rao-Blackwellization of Probabilistic Programs. arXiv preprint
arXiv:1708.07787 (2017).

[33] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh

Shan, and Robert Zinkov. 2016. Probabilistic inference by program

transformation in Hakaru (system description). In International Sym-
posium on Functional and Logic Programming. Springer, 62–79.

[34] Radford M Neal. 2001. Annealed importance sampling. Statistics and
computing 11, 2 (2001), 125–139.

[35] Aditya V Nori, Chung-Kil Hur, Sriram K Rajamani, and Selva Samuel.

2014. R2: An Efficient MCMC Sampler for Probabilistic Programs.

[36] Aditya V Nori, Sherjil Ozair, Sriram K Rajamani, and Deepak Vijay-

keerthy. 2015. Efficient synthesis of probabilistic programs. In ACM
SIGPLAN Notices, Vol. 50. ACM, 208–217.

[37] Brooks Paige and Frank Wood. 2014. A compilation target for proba-

bilistic programming languages. arXiv preprint arXiv:1403.0504 (2014).

http://dippl.org
http://dippl.org

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

[38] Nimrod Partush and Eran Yahav. 2014. Abstract semantic differencing

via speculative correlation. ACM SIGPLAN Notices 49, 10 (2014), 811–
828.

[39] Daniel Ritchie, Andreas Stuhlmüller, and Noah Goodman. 2016. C3:

Lightweight incrementalized MCMC for probabilistic programs us-

ing continuations and callsite caching. In Artificial Intelligence and
Statistics. 28–37.

[40] Adrian FM Smith and Alan E Gelfand. 1992. Bayesian statistics without

tears: a sampling–resampling perspective. The American Statistician
46, 2 (1992), 84–88.

[41] Andreas Stuhlmüller, Robert XD Hawkins, N Siddharth, and Noah D

Goodman. 2015. Coarse-to-fine sequential monte carlo for probabilistic

programs. arXiv preprint arXiv:1509.02962 (2015).
[42] Sebastian Thrun. 2002. Probabilistic robotics. Commun. ACM 45, 3

(2002), 52–57.

[43] John E. Wennberg, Elliott S. Fisher, David C. Goodman, and Jonathan S.

Skinner. 2008. Tracking the Care of Patients with Severe Chronic

Illness - The Dartmouth Atlas of Health Care 2008.

[44] David Wingate, Andreas Stuhlmueller, and Noah Goodman. 2011.

Lightweight implementations of probabilistic programming languages

via transformational compilation. In Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and Statistics. 770–778.

[45] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. 2014. A

new approach to probabilistic programming inference. In Artificial
Intelligence and Statistics. 1024–1032.

[46] YiWu, Lei Li, Stuart Russell, and Rastislav Bodik. 2016. Swift: Compiled

inference for probabilistic programming languages. arXiv preprint
arXiv:1606.09242 (2016).

[47] Lingfeng Yang, Patrick Hanrahan, and Noah Goodman. 2014. Generat-

ing efficient MCMC kernels from probabilistic programs. In Artificial
Intelligence and Statistics. 1068–1076.

[48] Jieyuan Zhang, Yulei Sui, and Jingling Xue. 2017. Incremental Analysis

for Probabilistic Programs. In International Static Analysis Symposium.

Springer, 450–472.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Cusumano-Towner, Bichsel, Gehr, Vechev, and Mansinghka

Supplemental materials

A Guarantees of SMC

In this section, we derive some guarantees of SMC. These

are adaptations of standard results to our setting. In the

following, the expectation and probabilities are over T ,U
sampled by T ∼ P andU ∼ kP→Q (·;T).
First, we show that in expectation, the weight estimate

ŵP→Q (u; t) introduced in Section 4 is proportional to the

importance weightwP→Q (u).

Lemma 4.

ET ,U [ŵP→Q (U ;T) | U = u] =
ZQ

ZP
wP→Q (u) ∝ wP→Q (u)

Proof.

ET ,U [ŵP→Q (U ;T) | U = u]

=
∑
t ∈TP

PrT ,U [T = t | U = u]ET ,U [ŵP→Q (U ;T) | U = u,T = t]

=
∑
t ∈TP

PrT ,U [T = t | U = u]ŵP→Q (u; t)

=
∑
t ∈TP

PrT ,U [T = t ,U = u]

PrT ,U [U = u]
ŵP→Q (u; t)

=
∑
t ∈TP

Pr[t ∼ P]kP→Q (u, t)∑
s ∈TP Pr[s ∼ P]kP→Q (u; s)

ŵP→Q (u; t)

=
∑
t ∈TP

Pr[t ∼ P]kP→Q (u, t)∑
s ∈TP Pr[s ∼ P]kP→Q (u; s)

P̃r[u ∼ Q]ℓQ→P (t ;u)

P̃r[t ∼ P]kP→Q (u; t)

=
∑
t ∈TP

Pr[t ∼ P]kP→Q (u, t)

P̃r[t ∼ P]kP→Q (u; t)

P̃r[u ∼ Q]ℓQ→P (t ;u)∑
s ∈TP Pr[s ∼ P]kP→Q (u; s)

=
ZQ

ZP

∑
t ∈TP

Pr[u ∼ Q]ℓQ→P (t ;u)∑
s ∈TP Pr[s ∼ P]kP→Q (u; s)

=
ZQ

ZP

Pr[u ∼ Q]∑
s ∈TP Pr[s ∼ P]kP→Q (u; s)

=
ZQ

ZP

Pr[u ∼ Q]

η(u)

=
ZQ

ZP
wP→Q (u)

□

Lemma 4 is important because it allows to compute the

expectation of any test function φ : TQ → R from traces of

Q to real numbers.

Lemma 5. Let φ : TQ → R by any test function from traces
of Q to real numbers. Then,

EU ,T [ŵP→Q (U ;T)φ (U)] =
ZQ

ZP
EU∼Q [φ (U)]

Proof.

ET ,U [ŵP→Q (U ;T)φ (U)]

=
∑
u ∈TQ

PrU [U = u]ET ,U [ŵP→Q (U ;T)φ (U) | U = u]

=
∑
u ∈TQ

PrU [U = u]φ (u)ET ,U [ŵP→Q (U ;T) | U = u]

=
∑
u ∈TQ

PrU [U = u]φ (u)
ZQ

ZP
wP→Q (u)

=
∑
u ∈TQ

PrU [U = u]φ (u)
ZQ

ZP

Pr[u ∼ Q]

η(u)

=
ZQ

ZP

∑
u ∈TQ

φ (u) Pr[u ∼ Q]

=
ZQ

ZP
EU∼Q [φ (U)]

Here, we have used that η(u) = Pr[U = u]. □

Lemma 6. Let (P ,Q,kP→Q , ℓQ→P) be a trace translator. Let
tj ∼ P and uj ∼ kP→Q (·, tj) for j ∈ {1, . . . ,M }. Then, almost
surely:

1

M

M∑
j=1

ŵP→Q (uj ; tj) −−−−−→
M→∞

ZQ

ZP

Proof. By Lemma 5, we have for φ (u) ≡ 1

EU ,T [ŵP→Q (U ;T) · 1] =
ZQ

ZP
· 1

By the law of large numbers, we get

1

M

M∑
j=1

ŵP→Q (uj ; tj) −−−−−→
M→∞

ZQ

ZP

□

The previous Lemmas allow to approximate the expecta-

tion of any test function φ : TQ → R from traces ofQ to real

numbers.

Lemma 7. Let (P ,Q,kP→Q , ℓQ→P) be a trace translator. Let
φ : TQ → R be any test function.

Let tj ∼ P and uj ∼ kP→Q (·, tj) for j ∈ {1, . . . ,M }. Then,
almost surely,∑M

j=1 ŵP→Q (uj ; tj)φ (uj)∑M
j=1 ŵP→Q (uj ; tj)

−−−−−→
M→∞

EU∼Q [φ (U)]

Proof. From Lemma 5, we have by the law of large numbers:

1

M

M∑
j=1

ŵP→Q (uj ; tj)φ (uj) −−−−−→
M→∞

ZQ

ZP
EU∼Q [φ (U)]

Lemma 7 follows by combining this with Lemma 6. □

Incremental Inference for Probabilistic Programs PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

B Scaling of Necessary Sample Size

Applying Theorem 1.2 of [8] with the proposal distribu-

tion Pr[t ∼ P]kP→Q (u; t) and with the target distribution

Pr[u ∼ Q] ℓQ→P (t ;u), shows that the necessary and suffi-

cient sample size is approximately exponential in the KL

divergence from the target to the proposal, which is ϵ (R).

C Evaluation Programs

In this section, we provide the probabilistic programs used

for evaluation.

1 @probabilistic function (params::NoOutlierModelParams,

2 x::Vector{Float64})

3 slope = @address(normal(0., params.prior_std),

4 ADDR_SLOPE)

5 intercept = @address(normal(0., params.prior_std),

6 ADDR_INTERCEPT)

7 ys = Vector{Float64}(length(x))

8 for (i, xi) in enumerate(x)

9 y_mean = intercept + slope * xi

10 ys[i] = @address(normal(y_mean, params.std),

11 addr_y(i))

12 end

13 end

Listing 1. Bayesian linear regression

1 @probabilistic function (params::OutlierModelParams,

2 x::Vector{Float64})

3 prob_outlier = params.prob_outlier

4 inlier_std = params.inlier_std

5 outlier_log_var = @address(

6 normal(params.outlier_log_var_mu,

7 params.outlier_log_var_std),

8 ADDR_OUTLIER_LOG_VAR)

9 outlier_std = sqrt(exp(outlier_log_var))

10 slope = @address(normal(0., params.prior_std),

11 ADDR_SLOPE)

12 intercept = @address(normal(0., params.prior_std),

13 ADDR_INTERCEPT)

14 ys = Vector{Float64}(length(x))

15 for (i, xi) in enumerate(x)

16 y_mean = intercept + slope * xi

17 ys[i] = @address(two_normals(y_mean, prob_outlier,

18 inlier_std, outlier_std),

19 linreg_addr_y(i))

20 end

21 end

Listing 2. Robust Bayesian linear regression

1 @probabilistic function (params::FirstOrderParams,

2 num_steps::Int)

3 x = Vector{Int}(num_steps)

4 if num_steps >= 1

5 x[1] = @address(uniform_discrete(1, params.num_states),

6 addr_hidden(1))

7 end

8 for i=2:num_steps
9 x[i] = @address(categorical_log(

10 params.log_transition_model[x[i-1],:]),

11 addr_hidden(i))

12 end

13 for i=1:num_steps

14 @address(categorical_log(

15 params.log_observation_model[x[i],:]),

16 addr_y(i))

17 end

18 end

Listing 3. First-order hidden Markov model

1 @probabilistic function (params::SecondOrderParams,

2 num_steps::Int)

3 x = Vector{Int}(num_steps)

4 if num_steps >= 1

5 x[1] = @address(uniform_discrete(1, params.num_states),

6 addr_hidden(1))

7 end

8 if num_steps >= 2

9 x[2] = @address(categorical_log(

10 params.log_first_order_transition_model[x[1],:]),

11 addr_hidden(2))

12 end

13 for i=3:num_steps

14 x[i] = @address(categorical_log(

15 params.log_transition_model[x[i-2],x[i-1],:]),

16 addr_hidden(i))

17 end

18 for i=1:num_steps

19 @address(categorical_log(

20 params.log_observation_model[x[i],:]),

21 addr_y(i))

22 end

23 end

Listing 4. Second-order hidden Markov model

1 def main(sigma,n){

2 k := 10;

3 centers := array(k,0);

4 for i in [0..k){

5 centers[i]=gauss(0,sigma);

6 }

7 data := array(n,0);

8 for i in [0..n){

9 data[i]=gauss(centers[uniformInt(0,k-1)],1);

10 }

11 return data;

12 }

Listing 5. Finite Gaussian mixture model (PSI)

	Abstract
	1 Introduction
	2 Overview
	3 A Probabilistic Language
	4 SMC for Probabilistic Programs
	4.1 Trace Translators
	4.2 SMC with Trace Translators

	5 Trace Translator with Correspondence
	5.1 Forward Kernel
	5.2 Estimating the Weight
	5.3 Trace Translator Error
	5.4 Correspondence for Loops

	6 Correspondence from Program Edits
	7 Implementation and Evaluation
	7.1 Implementation
	7.2 Robust Bayesian Linear Regression
	7.3 Higher-order Markov Model
	7.4 Gaussian Mixture Model

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Guarantees of SMC
	B Scaling of Necessary Sample Size
	C Evaluation Programs

