
Learning Fast and Precise Numerical Analysis

Jingxuan He
Department of Computer Science

ETH Zurich, Switzerland
jingxuan.he@inf.ethz.ch

Gagandeep Singh
Department of Computer Science

ETH Zurich, Switzerland
gsingh@inf.ethz.ch

Markus Püschel
Department of Computer Science

ETH Zurich, Switzerland
pueschel@inf.ethz.ch

Martin Vechev
Department of Computer Science

ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

Abstract

Numerical abstract domains are a key component of modern
static analyzers. Despite recent advances, precise analysis
with highly expressive domains remains too costly for many
real-world programs. To address this challenge, we introduce
a new data-driven method, called Lait, that produces a faster
and more scalable numerical analysis without significant
loss of precision. Our approach is based on the key insight
that sequences of abstract elements produced by the ana-
lyzer contain redundancy which can be exploited to increase
performance without compromising precision significantly.
Concretely, we present an iterative learning algorithm that
learns a neural policy that identifies and removes redundant
constraints at various points in the sequence. We believe
that our method is generic and can be applied to various
numerical domains.
We instantiate Lait for the widely used Polyhedra and

Octagon domains. Our evaluation of Lait on a range of real-
world applications with both domains shows that while the
approach is designed to be generic, it is orders of magnitude
faster on the most costly benchmarks than a state-of-the-
art numerical library while maintaining close-to-original
analysis precision. Further, Lait outperforms hand-crafted
heuristics and a domain-specific learning approach in terms
of both precision and speed.

CCS Concepts: • Theory of computation → Program

analysis; Program verification;Abstraction; •Comput-

ing methodologies→ Neural networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386016

Keywords: Abstract interpretation, Numerical domains, Ma-
chine learning, Performance optimization

ACM Reference Format:

JingxuanHe, Gagandeep Singh,Markus Püschel, andMartin Vechev.
2020. Learning Fast and Precise Numerical Analysis. In Proceedings
of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI ’20), June 15–20, 2020,
London, UK. ACM, New York, NY, USA, 16 pages. https://doi.org/
10.1145/3385412.3386016

1 Introduction

In modern static analysis, numerical abstract domains are
typically used to automatically infer numerical invariants for
proving critical safety properties of various applications in-
cluding standard imperative programs [7, 22, 46], untrusted
kernels [19], and machine learning classifiers [18]. Develop-
ing a practically useful abstract domain is very challenging
as one needs to carefully balance a fundamental tradeoff be-
tween domain expressivity and complexity. For example, Poly-
hedra [14] is the most expressive linear relational domain.
However, it also comes with a worst-case exponential as-
ymptotic time and space complexity. Over the years, various
works introduced relational domains with weaker expressiv-
ity to boost analysis speed. Examples include Octahedron
[11], TVPI [41], Octagon [34], Zones [33], and Zonotope [20].
Recently, there has been an increased interest in tech-

niques that speed up existing numerical domains without
losing precision (i.e., the strength of inferred invariants)
[9, 10, 16, 28, 32, 45, 48]. Among these, online decomposition
[13, 45] provides a general solution for multiple domains.
However, there are still cases where the analysis based on
online decomposition can be expensive. Orthogonally, an-
other line of research based on machine learning has inves-
tigated creative heuristic methods to selectively lose some
analysis precision for gaining performance [25, 26, 36, 42].
While promising, many of these techniques tend to be heav-
ily specialized to the particular domains they consider. A key
challenge then is developing learning-based methods which
are both generic (applicable to different numerical domains),
yet can provide significant benefits in terms of performance
while incurring minimal precision loss.

https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1145/3385412.3386016

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

Lait: generic learning-based approximations. In this
work, we present a new generic learning-based method,
called Lait (Learning-based Abstract Interpretation Trans-
formers). The basic idea is to consider a generic approxima-
tion of abstract transformers based on removing constraints
from the formula, and to then learn a neural classifier that
identifies constraints to remove from the output of certain
abstract transformers (we consider joins). The key insight
enabling Lait to achieve close-to-original analysis precision
is that sequences of abstract elements produced by a nu-
merical static analyzer can contain substantial redundancy
in the form of constraints not needed for computing the
final invariants. This means that a classifier can learn how
to selectively reduce this intermediate redundancy to boost
analysis speed significantly, while still producing the same
final result as that of the original sequence.

We instantiate Lait for speeding up analysis with the pop-
ular and expensive Polyhedra and Octagon domains. Note
that Lait is also applicable to other domains such as Zones.
We evaluated the performance and precision of Lait on
a large number of challenging real-world benchmarks in-
cluding Linux device drivers. Our results demonstrate that
Lait can indeed boost analysis speed without significant
loss of precision. Moreover, although Lait employs a generic
method for losing precision, it produces better results than
existing solutions including hand-made heuristics and a
domain-specific learning method based on a state-of-the-
art numerical library Elina [1].

Main contributions. Our contributions are:
• A generic approach for removing redundancy based on ap-
proximating the join transformer that can be instantiated
for existing numerical domains. (Section 5.2)
• A learning framework for generating approximate trans-
formers, called Lait. Our framework constructs a neural
policy that employs graph-based structured prediction for
removing redundant constraints. (Section 5.3)
• An instantiation and a complete implementation1of Lait
on the Polyhedra and Octagon domains based on online
decomposition. The instantiation includes the definition
of features and weighted dependency graphs that enable
structured prediction. (Section 6)
• An evaluation showing the effectiveness of Lait for speed-
ing up both Polyhedra and Octagon analysis on a large
set of real-world programs. For Polyhedra, Lait achieves
orders of magnitude speedup while maintaining a mean
precision of 98% w.r.t. Elina, the state-of-the-art library
for numerical domains. For Octagon (which has lower com-
plexity), Lait yields a mean speedup of 1.3x and a mean
precision of 99%. Despite its generality, Lait is also faster
and more precise than a prior learning-based method and
hand-crafted heuristics. (Section 7)

1We include the learned Lait transformers in a new version of Elina [1].

2 Overview

In this section, we provide an overview of Lait on a small il-
lustrative example. Figure 1 (a) shows the control flow graph
(CFG) of a programwith variables x ,y,m andn. The program
assumes that y ≥ 0 and x = n initially. Then it executes a
while loop containing an if-else branch and an assignment
statement. We consider the task of computing a loop invari-
ant for the example program using the Polyhedra domain.
We demonstrate that approximate analysis with Lait pro-
duces the same invariant as the precise analysis.

2.1 Precise Analysis

The analysis associates a polyhedron, represented by a con-
junction of linear constraints, with each edge in Figure 1 (a).
The polyhedron over-approximates the concrete values of
the program variables before executing the statement in the
successor node of the edge. Initially, the analysis sets the
polyhedron I0 to ⊤ and the rest to ⊥. For the polyhedra
inside the loop, we use superscripts to distinguish between
the polyhedra produced at different loop iterations.

First iteration. Now we execute the precise analysis step
by step until the end of the first iteration of the loop:

1. It propagates I0 to the assume statement and intersects
the constraints y ≥ 0 and x = n with I0, resulting in
I1 = {y ≥ 0, x = n}.

2. At the loop head, it considers the polyhedra from the entry
(I1) and exit (I09) of the while loop. It applies the join (⊔)
transformer: I12 = I1 ⊔ I

0
9 = I1 ⊔ ⊥ = I1.

3. It enters the loop and sets I13 = {y ≥ 0, x = n,y ≥ x} by
intersecting I12 with the loop condition y ≥ x .

4. It propagates I13 to the two branches of the if-else. In
the if-branch, the analysis intersects I13 with the branch
conditionm ≥ 0 and computes I14 = {y ≥ 0, x = n,y ≥
n,m ≥ 0}. Next, it applies the assignment transformer for
x:=x+1+m onI14 and obtainsI15 = {y ≥ 0, x = n+m+1,y ≥
n,m ≥ 0}. The analysis handles the else branch similarly
and outputs I17 = {y ≥ 0, x = n + 2,y ≥ n,m ≤ 0}.

5. It exits the if-else branches and joins the branch outputs
to compute I18 = {y ≥ 0, x ≥ n +m + 1, x ≥ n + 1,y ≥ n}.

6. It applies the assignment transformer for y:=y-1 onI18 and
gets I19 = {y ≥ −1, x ≥ n+m+1, x ≥ n+1,y ≥ n−1}. I19
represents an over-approximation of the concrete values
of the program variables at the loop exit after executing
one iteration of the loop.

Second iteration. The analysis starts from the loop head
again with the updated polyhedra from the first iteration.
It computes I22 = I

1
2 ⊔ I

1
9 = {y ≥ −1, x ≥ n, x + y ≥ n}.

Then the widening (▽) transformer is applied on I12 and I22
for faster convergence towards a fixed point. This yields the
polyhedron Iprecise = I12 ▽ I

2
2 = {x ≥ n, x + y ≥ n}. This

polyhedron is then propagated through the while loop again

Learning Fast and Precise Numerical Analysis PLDI ’20, June 15–20, 2020, London, UK

Entry

assume(y>=0 && x==n);

∪

while(y >= x)

if(m>=0)

x:=x+m+1;

else

x:=x+2;

∪

y:=y-1;

I0 = ⊤

I1

Ii2

Ii4 Ii6

Ii5 Ii7

Ii8

Ii9

Ii3

(a) The CFG of an example program.

⊤

I0

Precise Analysis

y ≥ 0
x = n

I1 y ≥ 0
y ≥ n
x ≥ n +m + 1
x ≥ n + 1

I18

x ≥ n
x + y ≥ n

Iprecise

x ≥ n
x + y ≥ n

ILait

Precise
Analysis

I18 I18

Lait
Figure 1(c)

Approximate
Analysis

=

(b) The precise analysis vs. the approximate
analysis with Lait.

1 2
1

1

y ≥ 0
⟨4.,1.,1.,1.⟩

x ≥ m + n + 1
⟨4.,3.,2.,0.⟩

y ≥ n
⟨4.,2.,2.,1.⟩

x ≥ n + 1
⟨4.,2.,2.,1.⟩

0

1

0

0

y ≥ 0
y ≥ n
x ≥ n + 1

I
approx
8

(c) The Lait transformer for constraint
removal using graph neural networks.

Figure 1. Overview of our learned approximate join transformer Lait on an illustrative example.

and the analysis computes I32 in the next loop iteration. For
space reasons, we omit the computation of the third iteration.
The analysis then checks if the new polyhedron I32 is

included in Iprecise using the inclusion (⊑) transformer. Here,
the ⊑ transformer returns true and the analysis terminates
yielding the loop invariant {x ≥ n, x +y ≥ n}. Note that this
invariant cannot be computed with weaker domains such as
Interval, Octagon, or TVPI, since the constraint x + y ≥ n
cannot be represented in these domains.

2.2 Analysis with Lait

Now we explain the analysis with our learned Lait-enabled
approximate join transformer on the same program.

Key insight: learning to remove redundant constraints.

Our key insight is that the join transformer may create a
large number of redundant constraints, which can be re-
moved without affecting the computed loop invariant. Since
the complexity of Polyhedra transformers is exponential in
the number of constraints, this removal can yield consider-
able speedups without precision loss. The main challenge
is to identify which constraints can be removed. If the re-
moved constraints are relevant for the resulting fixed point,
imprecision is introduced and will carry over for the subse-
quent program statements. The policy for constraint removal
should be adaptive as the redundancy of a given constraint
is determined by the dynamic state of the analysis.
In this work, we adopt a data-driven approach, imple-

mented in Lait, which is based on a neural classifier. The
learning algorithm drives Lait to identify redundant con-
straints to be removed based on the semantic, structural

information of the analysis state. Next, we describe how
Lait works on the example program.

Approximate analysis with Lait. We compare the pre-
cise analysis and our approximate analysis in Figure 1 (b) (we
use green for the approximate analysis). The approximate
analysis computes the same polyhedra as the precise analysis
until the join of I15 and I17 where it invokes Lait.

Lait first calls the precise join and obtains I18 = I
1
5 ⊔ I

1
7 .

Then, it removes constraints from I18 . We show the steps in
Figure 1 (c). First, Lait extracts a feature vector for each con-
straint in I18 and weighted edges between constraints, yield-
ing a weighted dependency graph (top of Figure 1(c)). De-
fined in Section 6.1, the features capture polyhedron and con-
straint shape, and the edges indicate relationships between
constraints (the number of shared variables in our case). Sec-
ond, the graph is passed to a pre-trained structured predic-
tion based classifier (in our case a graph convolutional neural
network, depicted in the middle of Figure 1 (c)). The classifier
makes a binary decision for each constraint: whether to keep
or remove it. To learn such a classifier, we propose a special-
ized algorithm in Section 5.3. In our example, the predictor
decides to remove the constraint x ≥ m + n + 1 and obtains
the approximation Iapprox8 = {y ≥ 0, x ≥ n + 1,y ≥ n} of I18
(bottom of Figure 1(c)).

The approximate analysis continues with the assignment
transformer for y:=y-1 and Iapprox8 to produce I19 = {y ≥
−1, x ≥ n + 1,y ≥ n-1}. The join transformer is then applied
to compute I22 = I

1
2 ⊔ I

1
9 = {y ≥ −1, x ≥ n, x + y ≥ n}. For

this join, Lait decides not to remove any constraints. Note
that this is the same result as in the precise analysis, i.e., the

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

removed constraint had no effect on the precision. However,
the inputs of these two transformers in the approximate anal-
ysis have fewer constraints and so the analysis runs faster.
In real-world benchmarks, a large number of transformers
can benefit from such constraint removal.

The subsequent widening produces the same loop invari-
ant ILait = I12 ▽ I

2
2 = {x ≥ n, x + y ≥ n} as the precise

analysis (ILait = Iprecise). After obtaining ILait, we run the
precise analysis for one iteration to generate precise invari-
ants for all program points. Any assertions dischargeable by
the precise analysis can also be discharged by our approxi-
mate analysis since they produce the same invariants.

3 Background

We provide the necessary background on numerical abstract
domains, online decomposition for fast numerical analysis,
and the graph neural network model.

3.1 Numerical Abstract Domains

A numerical abstract domainD consists of abstract elements
I defined over the set of variables X = {x1, x2, . . . , xn} and
a set of abstract transformers. An abstract element describes
the abstract state, which over-approximates the possible
concrete states obtained by assigning numerical values to the
variables inX. The abstract transformers operate on abstract
elements to compute over-approximations of concrete state
changes due to program statements.

In this paper, we focus on sub-polyhedra domains where
an abstract element is represented by a conjunction of a finite
number of linear constraints C = {c1, c2, . . . , cm} relating
the variables inX. We describe in greater detail two example
domains considered in this paper: the Polyhedra [14] and
the Octagon [34] domains, both of which are widely used in
modern program analysis and can be expensive in practice.

Polyhedra. Each constraint c in the Polyhedra abstract do-
main is in the following form:

n∑
i=1

aixi ◦ b, ai ∈ Z, xi ∈ X, ◦ ∈ {=, ≤, ≥}, and b ∈ Q.

It is the most expressive linear relational domain but also
the most expensive with a worst-case exponential time and
space complexity.

Octagon. Each constraint c in the Octagon domain is re-
stricted to contain at most two variables with the coefficients
taken from the setK = {−1, 0, 1}. Formally, c takes the form:

aixi + ajx j ≤ b, ai ,aj ∈ K, xi , x j ∈ X, and b ∈ R ∪ {∞}.

The restriction reduces the time and space complexity of the
Octagon domain to cubic and quadratic respectively.

Join. The join transformer (⊔) over-approximates the union
of abstract elements originating from program branches. It
is usually the most expensive transformer among about 40

transformers required for analyzing programs in modern lan-
guages. For example, the join transformer of the Polyhedra
domain has worst-case exponential time complexity in terms
of both the number of input constraints and the number of
variables. It is also the most expensive transformer in the
Octagon domain as it requires a closure operation with cubic
time complexity. In practice, the join transformer may intro-
duce a large number of (potentially redundant) constraints
to the analysis causing a performance bottleneck.

3.2 Online Decomposition

Online decomposition [13, 23, 43–45] is based on the ob-
servation that the variable set X can often be decomposed
w.r.t. an abstract element I into multiple small, non-related
blocks on which transformers can operate independently.
Formally, it constructs a partition π I = {X1,X2, . . . ,Xr } of
X, where each Xi ⊆ X is a block. π I requires that every
constraint in I only relates variables in the same block. Ac-
cordingly, I = I(X) can be decomposed into smaller factors
I(Xi) on which transformers operate much faster. Online
decomposition has enabled orders of magnitude speedup for
sub-polyhedra domains [45] including Polyhedra [23, 44]
and Octagon[43].

The main challenge in online decomposition is to maintain
partitions that keep the precision of a non-decomposed anal-
ysis. We note that static partitioning [7, 25, 35] is imprecise
as the partition changes dynamically during analysis.

Decomposed join. Now we introduce the decomposed join
transformer. LetIP andIQ be inputs to the join in the domain
D with the associated partitions π IP and π IQ respectively.
We compute the partition π = π IP ⊔ π IQ for the inputs
where ⊔ is the least upper bound operator in the partition
lattice. Next, consider N =

⋃
{A ∈ π | IP (A) , IQ (A)} as

the union of all blocks A ∈ π such that the corresponding
factors in IP and IQ are not equal, and U = {A ∈ π |
IP (A) = IQ (A)} be the set of blocks for which the factors
are equal. Then the decomposed output and an associated
partition can be computed [44] as:

π IP⊔IQ = N ∪U

IP ⊔ IQ =
⋃
{IP (A) ⊔ IQ (A) | A ∈ π IP⊔IQ }.

(1)

The output is computed by refactoring IP and IQ so that the
factors in both correspond to the partition π IP⊔IQ and then
applying the join transformer on the new factors separately.

3.3 Graph Neural Network Model

We now explain the graph neural network model used to
represent the Lait transformer discussed in Section 5.

Graph convolutional network. Consider a graph G =
(V, E) where V is the set of nodes and E is the set of
weighted edges. A Graph Convolutional Network (GCN) [31]
transforms feature vectors associated with each node inV

Learning Fast and Precise Numerical Analysis PLDI ’20, June 15–20, 2020, London, UK

according to the graph structure. Formally, it consists of mul-
tiple graph convolutional layers. Each layer Ci : R |V |×di →
R |V |×di+1 performs the following computation:

Ci (H) = σ (AHWi),

where H ∈ R |V |×di is the input feature matrix to the layer,
A ∈ R |V |×|V | is the adjacency matrix of G, Wi ∈ Rdi×di+1 is
the learned weight matrix, and σ is an activation function.
Intuitively, at each layer, each node propagates its feature
vector to its neighbors and updates it according to the re-
ceived feature vectors. After multiple layers, a feature matrix
associated withV is computed that takes the graph structure
of G into account. Fully connected networks can be added
after GCNs, enabling the network to perform classification.

4 Redundancy in Abstract Sequences

Our high-level goal is to speed up numerical analysis by
exploiting the redundancy found in a sequence of abstract
elements generated when computing the fixed point of the
loop. The key observation is that it is possible to lose pre-
cision in some abstract elements in the sequence without
affecting the final result computed by that sequence (Sec-
tion 7). By losing the appropriate amount of precision, one
can speed up the computation in the sequence as well as the
overall analysis. Determining such abstract elements and
how to lose precision is the challenging problem that we
address in this paper. Concretely, we will focus on losing
precision in the sequence of outputs produced by the join
operations. We consider the join transformer as it is usually
the most expensive transformer [43, 44] and can introduce
many redundant constraints causing a performance bottle-
neck. To formalize our problem statement, we first introduce
the abstract sequence of join outputs induced by analyzing
the loop, define redundancy in these sequences, and finally
state our objective for removing redundant constraints.

Abstract sequence. For a given loop, we capture the join
outputs in each of its l iterations, T = [(IiH ,Li)]

l
i=1. For

each loop iteration i , IiH is the current abstract element at
the head of the loop, and Li = [(I

(i , j)
P ,I

(i , j)
Q ,I

(i , j)
⊔)]sj=1 is a

sequence of s join operations during the analysis of the loop
body, with I(i , j)⊔ = I

(i , j)
P ⊔ I

(i , j)
Q . Loop analysis reaches a

fixed point when Il+1H ⊑ IlH , i.e., I
l
H is a loop invariant.

Redundancy in a sequence. A join transformer ⊔̂ approx-
imates ⊔ when for any IP and IQ , we have that IP ⊔ IQ =
I⊔ ⊑ Î⊔ = IP ⊔̂ IQ . For a given loop, analysis with ⊔̂
generates the loop invariant Il

Ĥ
with iteration sequence

T̂ = [(Ii
Ĥ
, L̂i)]

l
i=1, where L̂i = [(I

(i , j)
P̂
,I
(i , j)
Q̂
,I
(i , j)
⊔̂
)]sj=1. We

say that the sequence of join outputs T contains redundancy
if T̂ yields a loop invariant of equal or better precision, that
is, Il

Ĥ
⊑ IlH . Note that better precision could happen as a

less precise abstraction could lead to more precise analy-
sis results [38]. An example of redundancy was shown in
Section 2. We note that a simpler and more approximate
I
(i , j)
⊔̂

can significantly improve the performance of all ab-
stract transformers applied downstream (but may compro-
mise overall analysis precision). Note that, for simplicity in
our formalization, we assume T and T̂ have the same length
l . If this is not the case, then we pad the shorter one.

Objective for redundancy removal. We assume the exis-
tence of an auxiliary function Diff(I, I ′) which measures
the degree of approximation an abstract element I ′ induces
over an abstract element I. Given a sequence T , our objec-
tive is to find an approximate transformer ⊔̂ that generates
a sequence T̂ satisfying the following objective:

argmax
⊔̂

∑
i , j

Diff(I(i , j)⊔ ,I
(i , j)
⊔̂
),

subject to: Il
Ĥ
⊑ IlH .

(2)

That is, we aim to maximize the degree of approximation
induced by ⊔̂ while preserving loop analysis precision.

5 Learning an Approximate Join

We now describe how we solve the optimization problem (2)
to obtain an approximate join ⊔̂. Our method is generic and
can be applied to various numerical domains to benefit from
the removal of the underlying redundancy. Before presenting
the method, we first describe a hand-crafted approximate
join transformer, which will serve as one of the baselines.

5.1 Hand-crafted Approximate Join

As a first attempt, we propose a reasonable heuristic for
approximating⊔ based on online decomposition described in
Section 3.2. The decomposed join transformer in (1) merges
all blocks A ∈ π IP ⊔ π IQ for which the corresponding
input factors IP (A) and IQ (A) are not equal and applies
join on the factor corresponding to the merged block N .
This creates constraints between variables not related by any
constraint in the inputs. We observed that many of these new
constraints are often redundant w.r.t. the abstract sequence.
Therefore, we design a hand-crafted approximate join

transformer (HC) that avoids creating such constraints by not
merging blocks intoN . Formally, given join inputsIP andIQ ,
our hand-crafted approximate join transformer HC(IP ,IQ)
computes the output as follows:

πHC(IP ,IQ) = π IP ⊔ π IQ ,

HC(IP ,IQ) =
⋃
{IP (A) ⊔ IQ (A) | A ∈ πHC(IP ,IQ)}.

Similar to π IP⊔IQ in (1), the partition πHC(IP ,IQ) is dynam-
ically computed based on the partitions of the join inputs.
The difference is that πHC(IP ,IQ) is finer, which can speed up
both the current join and the downstream analysis, but with

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

potential loss of precision. HC is applicable to all numerical
domain implementations based on online decomposition.
We evaluate HC in Section 7 showing that it can accel-

erate analysis for many benchmarks. However, it is based
on a fixed policy that never creates constraints between
variables not related by any constraint in the inputs. This
can introduce significant imprecision as some of those con-
straints might be necessary for computing the invariant at
the fixed point. Moreover, since it does not remove exist-
ing constraints, many redundant constraints can remain to
cause the analysis to get stuck and time out. These observa-
tions motivate the design of an adaptive redundancy removal
policy that takes the inputs into account.

5.2 Lait: A Learned Approximate Join Transformer

We adopt a data-driven approach to learn an approximate
abstract transformer whose output is adaptive w.r.t. the input
constraints. Our proposed transformer Lait is fairly generic
as it approximates⊔ by dropping constraints from the output
I⊔ = IP ⊔IQ of the precise join ⊔ (IP and IQ are join inputs).
The core part of Lait is a learned constraint removal

policyψ , represented by a neural classifier which takes the
structure of constraints into account when making decisions.
In Algorithm 1, we show the procedure Lait for comput-
ing the approximate join output Î⊔ = Lait(IP ,IQ ,I⊔). We
explain it step by step:
Line 2: Apply the feature extraction Feat(IP ,IQ ,I⊔) which

outputs a feature matrix F ∈ Z |I⊔ |×k . Each row is a
k-dimensional vector for each constraint in I⊔.

Line 3: Extract a structured relationship between the con-
straints in I⊔ as a set E of edges. Each edge e =
(c, c ′,w) ∈ E connects constraints c and c ′ with
weightw . We represent E by its adjacency matrix A,
which is obtained by calling Edge(I⊔).

Line 4: Invokeψ (F,A) to obtain a boolean vectorB ∈ {0, 1} |I⊔ | ,
where each value Bi indicates whether the constraint
ci should be removed (Bi = 1) or not (Bi = 0).

Line 5: Drop constraints from I⊔ based on B to produce the
output abstract element Î⊔.

We note that Î⊔ contains only a subset of I⊔’s constraints,
hence Lait is sound.We showhow to instantiate the required
functions Feat and Edge for both Polyhedra and Octagon
numerical domains in Section 6.

Benefits of constraint removal. The benefits of constraint
removal by Lait are two-fold. First, the time complexity of
the abstract transformers depends on the number of con-
straints [43, 44]. Lait reduces the number of constraints
in the join output which speeds up the downstream analy-
sis. We show such a case in Section 7.2. Second, constraint
removal is a general method for approximation which can
potentially be applied to speed up any constraint-based nu-
merical domain. Our experimental results demonstrate that
Lait is effective in practice (Section 7).

Algorithm 1: Applying Lait with a learnedψ .

1 Procedure Lait (IP , IQ , I⊔)
Input :I⊔ = IP ⊔ IQ .
Output : Î⊔, the approximate join output.

2 F = Feat(IP , IQ , I⊔) // feature extraction

3 A = Edge(I⊔) // edge extraction

4 B = ψ (F,A) // invoke removal policy

5 Î⊔ = DropCons(I⊔,B) // drop constraints

6 return Î⊔

5.3 Learning a Constraint Removal Policy

The main challenge which Lait must address is to decide on
the set of constraints to remove so that the overall analysis
precision is maintained, while the analysis speed is improved.
The search space for an optimal removal policy is large as
the abstract sequences can contain many joins and each join
output in the sequence contains many candidate constraints
for removal. Next, we describe an iterative training algorithm
that aims to learn a policyψ addressing this challenge.

Generate a dataset of precise abstract sequences. Given
a set of programs used for training, we first generate a dataset
of abstract sequences S = {T1,T2, . . . ,Th} containing poten-
tial redundancy. Each Tk ∈ S in this dataset corresponds to
one abstract sequence of a particular loop k in a program.
The sequences are built by analyzing each program with a
precise analysis. We will use S as the ground truth for mea-
suring the precision of the (currently computed) approximate
analysis during training.

Produce a classification dataset for trainingψ . To learn
the classification policyψ , we first produce a classification
dataset D. This is accomplished via procedure GenClassif-
Data, shown in Algorithm 2. The procedure shows how to
process a single loop abstract sequence T ∈ S in order to
produce D. It takes as input the current policy ψ (initially
set to not drop constraints), a precise training abstract se-
quence T ∈ S, and an exploration parameter ϵ (not shown
in Algorithm 2 but assumed globally). We use IkH to denote
the abstract element at the loop head at iteration k in the
precise training abstract sequence T as well as ÎkH to denote
the abstract element at the loop head of the approximate
analysis at iteration k .

The procedure first sets the starting point of the approxi-
mate analysis to be the same as the precise analysis (Î1H = I

1
H

at Line 2). It then performs approximate analysis of the given
loop (at Line 3) until a fixed point is reached (Line 11). For
each of the s joins inside the loop, it invokes an approximate
abstract transformer (Line 5). To simplify presentation we
assume the same set of s joins taking place in each iteration,
in both the precise and approximate analysis.

Learning Fast and Precise Numerical Analysis PLDI ’20, June 15–20, 2020, London, UK

Algorithm 2: Producing classification dataset.

1 Procedure GenClassifData(ψ , T)
Input :ψ , a classifier for constraints removal.

T , a precise abstract sequence.
Output :D, a dataset for supervised learning.

2 i = 0; Î1H = I
1
H

3 repeat // approximate analysis

4 i ← i + 1; Di ← �

5 for j ← 1 to s do // s joins per loop iteration

6 perform analysis, obtain join inputs ÎP , IQ̂
7 I⊔ = ÎP ⊔ IQ̂

8 (Î⊔, F, A, B) = LaitTrain(ÎP ,IQ̂ ,I⊔) // with ψ

9 add {(FB, AB)} to Di

10 continue analysis and compute Îi+1H

11 until Îi+1H ⊑ ÎiH

12 D ← �; pos = argmaxk ÎkH ⊑ I
k
H

13 for i ← 1 to pos − 1 do // positive labeling

14 for (F, A) in Di do

15 add {((F, A), 1)} to D

16 for (F, A) in Dpos do // negative labeling

17 add {((F, A), 0)} to D

18 return D

Importantly, the procedure invokes LaitTrain for approx-
imating join outputs. LaitTrain is a variant of Algorithm 1,
specifically used for training. It employs an exploration-
exploitation mechanism to obtain the boolean vector B (dif-
ferent from Line 4 of Algorithm 1):

B =

{
Explore(I⊔) with probability ϵ,
ψ (F,A) otherwise.

This means that with probability ϵ it calls an exploration pol-
icy Explore that randomly samples a portionγ of constraints
to be removed from I⊔ (we set ϵ and γ both to 0.1 in our
experiments); otherwise, it invokesψ to make the decision.
LaitTrain returns a tuple: the approximate join output Î⊔,
and intermediate variables F, A and B (Line 8). Next, features
FB and edges AB of the removed constraints (determined by
B) are added to the set Di (Line 9). After finishing all joins,
the analysis proceeds to compute the loop head element Îi+1H
(Line 10), checks for convergence (Line 11), and enters the
next loop iteration if it does not converge.
When the approximate analysis completes, we label the

data points in Di . For this we first calculate pos , the maxi-
mal loop iteration number where the precision is preserved
(Line 12). We then assign positive labels to all data points

Î1H I
(1,1)
⊔̂ I

(1,2)
⊔̂

Î2H I
(2,1)
⊔̂

I
(2,2)
⊔̂

Î3H

1

0

Dataset D

Approximate Loop Analysis

Figure 2. Visualizing an example run of GenClassifData.

Algorithm 3: Iterative learning of a policyψ .

1 Procedure Learn(S, N)
Input :S = {T1,T2, . . . ,Th}, the generated training

abstract sequences.
N , the number of training iterations.

Output :ψ : a classifier for removing constraints.
2 D ← �; Initialize(ψ)
3 for j ← 1 to N do

4 for T in S do

5 D ← D ∪ GenClassifData(ψ , T)

6 ψ = SupervisedLearning(D)

7 returnψ

before the loop iteration pos (Line 15). Intuitively, we do that
because dropping constraints at these iterations did not af-
fect the precision of the abstract element at the loop head at
iteration pos . For data points at loop iteration pos , we assign
negative labels (0) as these resulted in precision loss (Line 17).
This labeling scheme drivesψ to drop as many constraints as
possible while keeping precision (a proxy for our objective
(2)). The data points after iteration pos are ignored since we
cannot determine whether they keep precision or not.
Figure 2 visualizes an example run of GenClassifData.

On the left, we run the approximate analysis with two loop
iterations each containing two joins. The analysis decides
to drop three constraints (depicted as green lines) to obtain
I
(1,2)
⊔̂

and two constraints (depicted as red lines) to obtain
I
(2,1)
⊔̂

. This produces the precise result Î2H ⊑ I
2
H and the im-

precise result I3H ⊏ Î
3
H . The imprecision propagates down-

stream in the analysis (not shown in Figure 2). The dataset D
is depicted on the right of Figure 2. The algorithm labels the
three removed constraints at iteration one with 1 because
the analysis precision is preserved even after removing them
(Î2H ⊑ I

2
H). In contrast, it labels the two removed constraints

at iteration two with 0 because removing them results in
imprecision (I3H ⊏ Î

3
H).

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

Table 1. Features for approximating Polyhedra join.

Description Calculation

1 Number of variables in the block Xc⊔ |Xc⊔ |

2 Number of constraints in the factor Xc⊔ |I⊔(X
c
⊔)|

3 Number of generators in the factor Xc⊔ |G⊔(X
c
⊔)|

4 Number of loop head variables in c |Xc ∩ XH |

5 Boolean, true if Xc is a subset of XH Xc ⊆ XH

6 Boolean, true if c is in IH c ∈ IH

7 Number of variables in constraint c |Xc |.
8 Number of large coefficients in c

∑
i (|ai | >= 100)

9 Sum of scores for variables in c
∑
i Score(xi).

10 Boolean, true if c is in join inputs c ∈ IP ∧ c ∈ IQ

11 Boolean, true if c coarsens partition Coarse(Xc
⊔, πP, πQ)

12 Boolean, true if c is an equality ◦ is =

Table 2. Features for approximating Octagon join.

Description Calculation

1 Number of variables in the block Xc⊔ |Xc⊔ |

2 Number of constraints in the factor for Xc⊔ |I⊔(X
c
⊔)|

3 Number of loop head variables in c |Xc ∩ XH |

4 Boolean, true if c is in IH c ∈ IH

5 Score of variable xi Score(xi)
6 Score of variable x j Score(x j)
7 Number of finite bounds for variable xi See text
8 Number of finite bounds for variable x j See text
9 Absolute value of constraint upper bound b |b |

10 Boolean, true if upper bound b ′ is∞ See text
11 Number of constraints coarsening partition See text
12 Loop iteration number iter

Final iterative learning algorithm. Given the size of the
search space, a large classification dataset is necessary for
learning a suitable ψ . Moreover, since the dataset and the
policy are mutually dependent, they should be improved
iteratively. Towards that we adopt a Dagger-style learning
scheme [37] which alternates dataset generation with policy
learning, illustrated in Algorithm 3.

The algorithm first initializes the dataset D to � andψ to
a policy which does not remove constraints (Line 2). It then
performs N training iterations. Each iteration calls the proce-
dureGenClassifData on a precise abstract sequence T ∈ S
(Line 5) returning a newly constructed dataset, which is then
added to D. An improved policyψ is trained on D through a
supervised learning classification algorithm (Line 6), which
depends on the used classifier (in our case, the classifier is a
GCN followed by a fully connected network as instantiated
in Section 6.2). The procedure can repeat a number of times,
gradually improving the quality of the learned policyψ .

6 Instantiation of Lait

We now describe our instantiation of the Lait approximate
join transformer for the Polyhedra and Octagon domains.
Our instantiation is based on a precise analysis with online
decomposition [45]. We do not approximate other transform-
ers used in the analysis. Next, we first define our features
(i.e., Feat in Section 5) and edges (i.e., Edge in Section 5)
for representing the set of constraints as a graph and then
discuss our instantiation of the constraint removal policyψ .

6.1 Features and Edges for Constraints

As discussed in Section 5.2, we extract features for each con-
straint c ∈ I⊔ by calling Feat(IP ,IQ ,I⊔) whereI⊔ = IP ⊔IQ .
The features distill domain-specific information critical for
identifying redundant constraints. These include features
that are (a) specific to the constraint, (b) dependent on both
the constraint and the abstract state, and (c) dependent on

both the constraint and the context information about the
loop. We denote the set of variables in the constraint c byXc

and the block containing the variables in c in the partition
of I⊔ by Xc

⊔. Note that Xc ⊆ Xc
⊔. I⊔(Xc

⊔) is the subset of
constraints over the variables in Xc

⊔. We define this informa-
tion analogously for IP and IQ . Moreover, we record global
information about the loop by tracking the current loop head
element IH , the set of variables XH which appears in at least
one constraint in IH , and the iteration number iter .

Features for Polyhedra constraints. The extracted fea-
tures for constraints in the Polyhedra domain are shown in
Table 1. The implementation of the Polyhedra domain used
in our instantiation keeps both the generator and the con-
straint representation [44]. The cost of the join in the factor
containing the constraint c is characterized by the number
of variables in the block Xc

⊔ and the number of generators
and constraints in the factor [44]. The first three features in
Table 1 record this information.

Features 4–6 record information for predicting whether
the constraint c affects the abstract element at the loop head
IH . Feature 4 records the number of variables that are both
in c and IH . Boolean features 5 and 6, respectively, record
whether all variables in c are in XH and whether IH has
constraint c . The constraints that link with IH are likely to
be non-redundant.
Features 7 and 8 record the number of variables and the

number of large coefficients (with absolute value ≥ 100) in
c . We use a function Score(x) that computes the number of
constraints containing the variables x in I⊔. Feature 9 then
records the sum of Score(x) for all x ∈ Xc . A constraint with
large values for these three features is likely to be redundant.
Boolean features 10–11 characterize the relationship of

c w.r.t. the two join inputs IP and IQ . Feature 10 checks
whether c appears in both inputs. If yes, then c should likely
be kept. Feature 11 checks whether c coarsens the partition,

Learning Fast and Precise Numerical Analysis PLDI ’20, June 15–20, 2020, London, UK

i.e., ∀Xj ∈ π P ,X
c ⫋ Xj ∧∀Xk ∈ πQ ,X

c ⫋ Xk , by calling the
function Coarse. Such constraints are likely to be redundant.
The last feature checks whether c is an equality constraint.

Features for Octagon constraints. Table 2 shows features
extracted from an Octagon constraint c := aixi + ajx j ≤ b.
The first four coincide with features 1, 2, 4 and 6 for Poly-
hedra in Table 1. Features 5 and 6 calculate the Score of
the two variables xi and x j in c , respectively. A large value
of these features indicates that c has more interaction with
other constraints. Features 7 and 8 compute the number of
finite bounds for the variables xi and x j , respectively. For
xi ∈ [li ,ui], we assign to the 7th feature the value 2 if both
li and ui are finite, 1 if exactly one of them is finite, and 0
otherwise. Feature 8 for x j is analogous. Constraints with
bounded variables should likely be kept to transitively bound
other variables. Feature 9 records the upper bound b of the
constraint. Feature 10 tests if the bound b ′ in the constraint
c ′ := −aixi − ajx j ≤ b ′ is finite.

Feature 11 calculates the number of constraints in the
octagon element that coarsens the partition (computed by
the function Coarse as described earlier). If the value of
this feature is large, there may be more redundancy so more
constraints should be dropped. The last feature is the current
loop iteration iter to capture loop progress.

Edges for relating constraints. The extraction function
Edge(I⊔) extracts weighted edges connecting the constraints
in I⊔ (associated with the feature vectors). Edge inspects
all pairs of constraints c and c ′ in I⊔, and adds an edge
(c, c ′,w) iff |X c ∩X c ′ | > 0, i.e., if c and c ′ share variables. For
Polyhedra, the edge weight w = |X c ∩ X c ′ | is the number
of variables that c and c ′ share. We chose this metric since
it characterizes the relationship between two constraints.
For the Octagon domain where each constraint involves at
most two variables, we always set w = 1. The obtained
(weighted) edges, represented by the adjacency matrix A,
enable structured prediction with GCNs.

6.2 Instantiating Constraint Removal

We representψ by a 3-layer GCN followed by a 4-layer fully
connected network with all hidden dimensions set to 128.
The features F and the adjacency matrix A are first fed to
the GCN to obtain structured feature embeddings. Then, the
feature embeddings are fed to the fully connected network
to produce the output boolean vector B.

Pruning the search space. As described earlier, the search
space for finding the right constraints to drop is large since
both the number of joins in the abstract sequences and the
number of constraints in the join outputs can be large. We
incorporate domain-specific knowledge to prune the search
space. For Polyhedra, we only consider removing a constraint
c when |Xc | > 2 and |I⊔(Xc

⊔)| > 20. Such constraints usually
cause a performance bottleneck. For Octagon, we consider

a constraint c as a candidate for removal when it coarsens
the partition (i.e., Coarse(Xc

⊔, πP, πQ) returns 1). Removing
such constraints helps in refining the partition which, in
turn, boosts speed.

7 Experimental Evaluation

We now present our extensive evaluation of Lait, focusing
on the following two questions:

• Effectiveness: How effective is Lait for redundancy re-
moval in terms of both speed and precision?
• Interpretability: How to interpret Lait? What types of
constraints are most likely to be removed by Lait?

We discuss our results for the Polyhedra analysis in Sec-
tions 7.1 and 7.2 and for the Octagon analysis in Section 7.3.

Analyzer and platforms. We used the cram-llvm analyzer,
which is part of the Seahorn verification framework [22].
The analysis is intra-procedural with function inlining. By
default, widening is applied after the second loop iteration.
The analysis runs to obtain abstract sequences for training
and testing were performed on a machine with four 2.13
GHz Intel Xeon E7-4830 CPUs and 256 GB RAM. All analysis
libraries were compiled with gcc 5.4.0 using the flags -O3
-m64 -march=native.

The neural networks were implemented in PyTorch [2]
and trained with the data from analysis runs (i.e., Supervis-
edLearning in Algorithm 3) on a machine with one 3.30
GHz Intel Core i9-7900X CPU, three GTX 1080 GPUs, and
128 GB RAM. We used only one GPU for training.

Baselines. We consider the following three baselines:

• Elina: a state-of-the-art library supporting multiple do-
mains including Polyhedra and Octagon [45]. It leverages
online decomposition and we use its invariants as ground-
truth for measuring precision. We use the version released
when we write the paper.
• HC: the hand-crafted fixed policy discussed in Section 5.1.
It applies to both Polyhedra and Octagon.
• Poly-Rl2: an approximate Polyhedra analysis based on
reinforcement learning [42]. It learns a policy to select
among a set of hand-crafted approximate join transformers
during analysis based on the join inputs.

As discussed in Section 5.3, our learning algorithm requires
an analysis to generate abstract loop sequences for training.
In our work, we use the analysis with Elina, i.e., our goal is
to remove redundancy from abstract elements obtained via
the analysis with Elina. However, our approach can be used
with other numerical analysis libraries, e.g., APRON [27] or
PPL [3]. We use Elina because it is significantly faster on
the considered domains [43–45].

2We used the transformers and the learned models from the paper artifact
in https://www.sri.inf.ethz.ch/cav2018-paper259.

https://www.sri.inf.ethz.ch/cav2018-paper259

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

2−4 1 24 28 212
20

40

60

80

100

2

Lait Speedup (over Elina)

La
it

Pr
ec
is
io
n
(%
)

(a) Lait: precision vs. speedup

24 26 28 210 212 TO2−4

1

24

28

212

600

125

Elina Runtime (s)

La
it

Sp
ee
du

p
(o
ve
rE

li
na

)
(b) Lait speedup vs. ELINA runtime

24 26 28 210 212 TO
20

40

60

80

100

600

Elina Runtime (s)

La
it

Pr
ec
is
io
n
(%
)

(c) Lait precision vs. ELINA runtime

Figure 3. Precision and speedup of Lait with the Polyhedra analysis.

Benchmarks. The benchmarks were taken from the popu-
lar software verification competition sv-comp [6]. It contains
multiple categories for different analyses, e.g., pointer and
numerical. We mainly focus on the Linux device drivers
(LDD) categories known for being suitable and challenging
for numerical analysis [16, 42, 45]. We report training and
testing programs for Polyhedra and Octagon in Sections 7.1
and 7.3, respectively. For testing, we set a time limit of 2h
and a memory limit of 50 GB.

Metric. We measure analysis speed by the runtime in sec-
onds and speedup over Elina. We provide a lower bound on
the speedup when Elina timed out (i.e., we divide the time
limit 2h by the runtime of the analysis).
The precision is measured as the fraction of program

points at which the invariants generated by the approxi-
mate analysis are semantically the same or stronger than
the ones generated by Elina. If the approximate analysis
does not finish and thus does not generate invariants at cer-
tain program points, we set the invariants at those program
points to ⊤. This precision metric is used in [42] and is more
challenging than the number of verified assertions [25, 36] as
the latter is sensitive to the choice of assertions. If the asser-
tions are already provable with the weaker Interval analysis
then one may get the same precision with this metric by
simply switching to the faster Interval transformers. Further,
it has been shown that program analysis is a harder prob-
lem than verification [12]. In contrast, our metric measures
whether the approximate analysis can prove at least all the
assertions that the precise analysis can.
We also report mean and median value of precision and

speed. We refer mean to arithmetic mean in the paper.

7.1 Effectiveness of Lait on Polyhedra Analysis

We evaluate the precision and speed of Lait. The results are
shown in Figure 3 and Figure 4, addressing two questions:

• Can Lait effectively remove redundancy? i.e., can Lait
achieve speedup over Elina while preserving precision?

• How does Lait compare to HC and Poly-Rl [42] in terms
of both precision and speed?

Training and testing. We chose 30 LDD benchmarks for
training. The training procedure ran for about 20 iterations
(Algorithm 3), which took about 8 hours. For testing, we
selected from the LDD categories all remaining 354 bench-
marks for which the analysis with Elina took > 30s. Of these
Elina finished 147 (Test set 1) and timed out at 2h on 207
(Test set 2). For Test set 1 (blue x marker), we report the speed
and the precision of Lait, HC, and Poly-Rl. For Test set 2
(red o marker), we report only speed since precision cannot
be measured as Elina did not finish.

Lait vs. Elina. Figure 3(a) plots Lait’s precision vs. its
speedup over Elina on Test set 1. Lait achieves> 2x speedup
on 19 benchmarks and 100% precision on 12 of these with
a mean precision of 95%. The remaining 128 benchmarks
where Lait achieved ≤ 2x speedup usually have little re-
dundancy in the abstract sequences and Lait maintains a
median precision of 100% (mean 99%).

In Figure 3 (b) we show the speedup of Lait vs. the runtime
of Elina on Test set 1 and the 125/207 benchmarks from
Test set 2 for which Elina timed out but Lait finished. The
red circles thus show lower bounds for the speedup. We
see that Lait gains most when Elina is slow. For example,
for the 16 benchmarks where Elina finished in > 10m (in
Test set 1), Lait achieved a median of 29x speedup (mean
138x). For Test set 2, the median speedup is at least 554x
(mean at least 722x). The overall median speedup on all
benchmarks (Test set 1 and Test set 2) is at least 20x (mean
at least 118x). The large speedups for time consuming Elina
analyses in Test set 1 tend to incur little loss in precision, as
shown in Figure 3(c).

Based on these results, we conclude that Lait is effective
in redundancy removal: it achieves significant speedups and
preserves ≈ 100% precision on benchmarks where the analy-
sis with Elina becomes time-consuming or even unpractical
due to the complexity in the abstract sequences.

Learning Fast and Precise Numerical Analysis PLDI ’20, June 15–20, 2020, London, UK

1 24 28 212 TO
1

24

28

212
TO

Lait faster

HC faster15
37

HC Runtime (s)

La
it

Ru
nt
im

e
(s
)

(a) Lait vs. HC: runtime

0 20 40 60 80 1000

20

40

60

80

100

Lait more precise

HC more precise

HC Precision (%)

La
it

Pr
ec
is
io
n
(%
)

(b) Lait vs. HC: precision

1 24 28 212 TO
1

24

28

212
TO

Lait faster

Poly-Rl faster8

83

Poly-Rl Runtime (s)

La
it

Ru
nt
im

e
(s
)

(c) Lait vs. Poly-Rl: runtime

0 20 40 60 80 1000

20

40

60

80

100

Lait more precise

Poly-Rl more precise

Poly-Rl Precision (%)

La
it

Pr
ec
is
io
n
(%
)

(d) Lait vs. Poly-Rl: precision

Figure 4. Comparison of Lait with HC and Poly-Rl on the Polyhedra analysis.

Table 3. Speed and precision for different Polyhedra analyses
on 10 benchmarks.

Benchmark
Elina
Time

HC Poly-Rl [42] Lait

Speed Prec. Speed Prec. Speed Prec.

qlogic_qlge 3474 49x 99 4.2x 83 53x 100
peak_usb 1919 325x 81 1.3x 100 315x 100
stv090x 3401 4.6x 95 MO 54 6.3x 97
acenic 3290 TO 65 1.1x 100 223x 100
qla3xxx 2085 163x 95 210x 79 169x 100
cx25840 56 8.8x 83 0.7x 100 9.9x 83
mlx4_en 46 1.2x 91 1.2x 32 1.0x 100
advansys 109 1.7x 92 Crash 30 1.4x 99.7
i7300_edac 36 2.6x 83 1.2x 100 1.4x 99
oss_sound 2428 245x 80 1.2x 100 229x 80

Table 4. Statistics onmmax for different Polyhedra analyses
on 10 benchmarks.

Benchmark
mElina

max mHC
max mPoly-Rl

max mLait
max

max avg max avg max avg max avg

qlogic_qlge 267 6 19 4 205 5 33 4
peak_usb 48 7 17 5 48 7 24 7
stv090x 74 12 32 14 - - 35 13
acenic 98 9 - - 98 8 28 5
qla3xxx 284 17 30 9 218 15 19 8
cx25840 26 10 17 7 26 9 17 8
mlx4_en 56 4 53 4 54 4 56 4
advansys 38 9 37 9 - - 38 8
i7300_edac 41 14 20 9 41 14 28 11
oss_sound 47 9 38 7 47 8 23 7

Lait vs. HC. We next compare the runtime and precision
of Lait andHC. Figure 4 (a) shows that Lait andHC achieve
overall a similar runtime on Test set 1 (except that HC timed
out on 3 benchmarks). However, on Test set 2, Lait does
better than HC: it finished 22 more benchmarks and tends
to be faster on those where both finished.
In precision, Lait clearly outperforms HC as shown in

Figure 4(b) on Test set 1. Lait achieves 100% precision in
most cases as already mentioned above, whereas HC often
loses precision and is more precise than Lait on only 11/147
benchmarks.

Lait vs. Poly-Rl. Figure 4(c) shows that Lait gains sig-
nificantly over Poly-Rl in speed: for Test set 1, Lait is faster
than Poly-Rl on a significant portion of the benchmarks and
finished 75 more benchmarks from Test set 2 than Poly-Rl.
Lait gains in precision overall compared to Poly-Rl on

most benchmarks in Test set 1 as shown in Figure 4(d). On
the majority of benchmarks, the precision of Lait is ≈ 100%.
Lait loses on 7 benchmarks where it has < 95% precision but
gains on 24 benchmarks whereHC achieves < 95% precision.

Finally, we note that Poly-Rl ran out ofmemory or crashed
on 6 benchmarks because of too many constraints. These
are not shown in Figure 4.

Testing benchmarks from other categories. To investi-
gate how Lait generalizes across different types of bench-
marks, we also tested benchmarks from two other categories
in sv-comp, focusing on the subset for which Elina timed out
at 2h. For the seq-mthreaded category, this subset contained
39 benchmarks of which Lait could finish 20within 2h, with
a median of at least 36x speedup (mean at least 174x). HC
and Poly-Rl could finish none. For the product-lines cate-
gory, Elina timed out on 65 of which Lait could handle 64
within 2h, with a median of at least 2229x speedup (mean at
least 2155x). HC finished none and Poly-Rl finished 9. This
shows that the constraint removal policy learned by Lait is
able to speedup Polyhedra analysis for benchmark types not
present in the training set. We note that even though we can-
not report the precision as Elina timed out, the invariants
produced by Lait are not expressible in weaker domains

7.2 Interpretability of Lait on Polyhedra Analysis

To better understand how Lait is able to achieve signifi-
cant speedup and maintain precision, we analyze 10 bench-
marks from Test set 1. They are collected in Table 3 together
with the speedup and precision achieved by HC, Poly-Rl,
and Laitw.r.t. Elina. In the table, Poly-Rl did not finish on

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

1 20 40 60 77
0

100

200

300

Iteration 1

Elina

Lait

1 20 40 60 80 93
0

100

200

300

Iteration 2

1 20 40 60 80 95
0

100

200

300

Iteration 3

1 20 40 60 80 95
0

100

200

300

Iteration 4

Figure 5. Join traces for one loop of the qla3xxx benchmark
which is the performance bottleneck in the analysis. Shown
ismmax (y-axis) vs. join index (x-axis).

two benchmarks whereas HC timed out on one. Program
i7300_edac has 309 program points and the rest each has
> 1k program points.

Statistics. The time complexity of the Polyhedra analy-
sis with online decomposition is exponential in the number
of constraints in the largest blockmmax [44]. We gathered
statistics onmmax after each join in the loop and report its
maximum and average value in Table 4. As can be seen, the
speedups in the table are strongly correlated with the reduc-
tion inmmax. For example, for the benchmark qlogic_qlge
where Lait is 53x faster, the maximum of mLait

max is ≈ 8x
smaller than the maximum ofmElina

max . Poly-Rl is not much
faster than Elina in many cases because the maximum of
mPoly-Rl

max stays close to the maximum ofmElina
max for most of

the benchmarks shown.

Lait analysis trace visualization. To investigate the pre-
vious reasoning in greater detail, we visualize in Figure 5
mLait

max for joins when analyzing the bottleneck loop of bench-
mark qla3xxx (Elina spent 99% of its analysis time analyzing
this loop). The loop consists of four analysis iterations and,
for each iteration, we show the value of mLait

max and mElina
max

(y-axis) of each join (indexed by the x-axis). In iterations 2–4,
the value ofmElina

max starts exploding from join index 60 and
drops after join index 90. Indeed, Elina spent most of the
analysis time in this portion of the program. Lait, in contrast,
can keepmLait

max always reasonably small by occasionally re-
moving constraints (vertical lines denote joins where Lait
removes constraints). Despite the constraint removal, the
precision at the loop heads after iteration 2–4 are the same
for both Lait and Elina in this case.

Feature dependency of Lait’s decisions. To identify im-
portant features, we compute mutual information scores,
over all constraints, between the distribution of Lait’s de-
cisions (keep or discard) on Test set 1 and the distribution

1 2 3 4 5 6 7 8 9 10 11 12
0

0.05

0.10

0.15

0.20

Feature Index

Mutual Information

Figure 6. Dependency (measured by mutual information)
between the features listed in Table 1 and Lait’s decisions
for approximating Polyhedra analysis.

of each feature listed in Table 1. We plot the scores in Fig-
ure 6. We found that Lait’s predictions have the highest
dependency with features 1 and 3. Higher values of these
features lead to a higher likelihood of constraint removal as
it means that the corresponding block has more variables
and generators and thus dominates the cost of the overall
join. The same holds for feature 2. Further, features 9 and 10
also appear important. A higher value for feature 9 or feature
10 being false for a constraint indicates potential redundancy.
Feature 4 and feature 12 are also closely related to Lait’s
decisions. The former indicates whether the constraint is
likely to be involved in the fixed point computation. As for
the latter, Lait tends to remove inequalities more often.
From Figure 6, we can see that Lait made its decision

based on various features. A possible direction for more re-
fined interpretability of the constraint removal policy learned
by Lait is to jointly consider features and edges. This is an
ongoing research area [47].

7.3 Results of Lait on Octagon Analysis

We present results on applying Lait for the Octagon domain.

Training and testing. We selected 10 benchmarks (8 from
the LDD categories and 2 from the product-lines category) for
training and another 10 LDD benchmarks where Elina took
> 10s for finishing the analysis for testing. The training took
about 4h for around 20 iterations. We note that for Octagon,
Elina is a harder baseline as it is already very fast on most
of the LDD benchmarks. Further, the complexity is cubic
instead of exponential and thus inherently less amenable for
dramatic improvements. We also compare Lait against HC
for the Octagon domain.

Lait vs. Elina. The results are presented in Table 5. We
first compare Lait to Elina. Lait can speed up analysis (me-
dian 1.32x) without losing much precision (median 99.4%).

Learning Fast and Precise Numerical Analysis PLDI ’20, June 15–20, 2020, London, UK

Table 5. Speed and precision for different Octagon analyses
on 10 benchmarks.

Benchmark #Points
Elina
Time

HC Lait

Speed Prec. Speed Prec.

advansys 3408 34 1.22x 99.4 1.15x 98.8
net_unix 2037 13 TO 52.5 1.45x 95.1
vmwgfx 7065 45 1.08x 100 1.24x 100
phoenix 644 26 1.55x 96.9 1.31x 100
mwl8k 4206 27 1.05x 64.2 1.55x 99.8
saa7164 6565 117 1.00x 57.8 1.54x 97.9
md_mod 8222 1309 TO 68.1 28x 98.9
block_rsxx 2426 14 1.11x 73.9 1.26x 98.8
ath_ath9k 3771 26 1.07x 65.7 1.33x 99.8
synclink_gt 2324 44 1.28x 100 1.23x 100

Table 6. Statistics onmmax for different Octagon analyses
on 10 benchmarks.

Benchmark
mElina

max mHC
max mLait

max

max avg max avg max avg

advansys 968 58 882 47 968 48
net_unix 118 32 - - 58 10
vmwgfx 1736 385 1568 358 420 44
phoenix 933 175 310 100 648 131
mwl8k 1862 567 1800 527 72 22
saa7164 1486 264 1352 244 128 41
md_mod 314 149 - - 128 10
block_rsxx 790 106 648 93 243 6
ath_ath9k 2382 1145 2312 889 800 218
synclink_gt 98 7 98 7 98 6

The highest speedup is 28x on the md_mod benchmark be-
cause approximation makes the analysis converge faster in
fewer loop iterations.

Lait vs. HC. Lait outperforms HC in terms of both speed
and precision. Lait was faster than HC for 8 benchmarks
(HC has 2 TOs), and is equally or more precise than HC on
9 benchmarks. Specifically, the precision of HC can drop
to < 60% while the precision of Lait stays > 95% on all
benchmarks.

Statistics. In Table 6, we showmElina
max ,mHC

max andmLait
max for

the Octagon domain.mLait
max is significantly lower thanmElina

max ,
which speeds up the transformers in the Octagon domain
implemented using sparse algorithms [43]. HC has a smaller
speedup asmHC

max remains large.

Feature dependency of Lait’s decisions. As for the Poly-
hedra domain, we computed mutual information scores be-
tween Lait’s decisions and the features for the Octagon
domain in Table 2. Our results show that features 1, 2 and
11 are most important with scores of 0.32, 0.38 and 0.35, re-
spectively. These features capture the complexity of the join
output. Feature 5 and 6 are also closely correlated with Lait’s
predictions, with scores of 0.19 and 0.18. A high score for
these features means that the constraint relates variables that
are related to many other variables and thus the constraint
is needed for maintaining precision.

7.4 Discussion

Balancing the tradeoff between precision and speed for nu-
merical analysis with highly expressive numerical domains
is known to be a challenging problem. For the Polyhedra
analysis, we show in Section 7.1 that HC is often fast but
can be imprecise whereas Poly-Rl is more precise than HC
but only gets modest speedups over Elina. In contrast, Lait
effectively identifies and removes redundancy in abstract

sequences and achieves significant speedup, of sometimes or-
ders of magnitude, while maintaining precision. Importantly,
it accomplishes this with a generic strategy of removing con-
straints, rather than the heavily domain-specific approach
used in Poly-Rl. Therefore, Lait also performs well on the
Octagon analysis, as demonstrated in Section 7.3.

Different choices of the classifier. To investigate the ne-
cessity of structured prediction in Lait, we replace GCNwith
a decision tree (DT), or a 4-layer fully connected network
(FCN) with hidden dimension 128, resulting in two addi-
tional baselines LaitDT and LaitFCN. We re-trained LaitDT
and LaitFCN on the same training set as in the previous ex-
periments for both Polyhedra and Octagon domains. The
testing results for the benchmarks in Table 3 and Table 5 are
shown in Table 7 and Table 8, respectively.
As shown in Table 7 and Table 8, LaitDT, LaitFCN, and

Lait have similar precision and speed on most benchmarks.
This indicates that our constraint removal framework is ef-
fective in reducing redundancy regardless of the choice of
the classifier. For six benchmarks (marked with a red font
in Table 7 and Table 8), Lait has significantly better speed
or precision (or both) than LaitDT or LaitFCN. LaitDT and
LaitFCN never exhibit significantly better results than Lait
in neither precision nor speed. This suggests that structured
prediction with a GCN is necessary to achieve best results.

8 Related Work

We discuss research on using machine learning to improve
various aspects of program analysis. Related work in other
directions was already discussed in the previous sections.

Numerical static analysis. The authors of [25, 35] learn
a static partition strategy for the Octagon domain aiming
to boost analysis speed while aiming to prove most of the
assertions that the original analysis proves. Lait, however,

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

Table 7. Speed and precision of using different classifiers
for the Polyhedra analysis on 10 benchmarks.

Benchmark
Elina
Time

LaitDT LaitFCN Lait

Speed Prec. Speed Prec. Speed Prec.

qlogic_qlge 3474 56x 100 59x 100 53x 100
peak_usb 1919 333x 100 325x 100 315x 100
stv090x 3401 5.6x 97 5.3x 96 6.3x 97
acenic 3290 227x 100 0.5x 65 223x 100
qla3xxx 2085 191x 100 189x 100 169x 100
cx25840 56 10x 83 8.7x 83 9.9x 83
mlx4_en 46 1.0x 100 1.1x 98 1.0x 100
advansys 109 0.2x 99.4 1.3x 99.3 1.4x 99.7
i7300_edac 36 2.0x 61 1.7x 99 1.4x 99
oss_sound 2428 247x 80 260x 80 229x 80

Table 8. Speed and precision of using different classifiers
for the Octagon analysis on 10 benchmarks.

Benchmark
Elina
Time

LaitDT LaitFCN Lait

Speed Prec. Speed Prec. Speed Prec.

advansys 34 1.20x 98.9 1.13x 99.4 1.15x 98.8
net_unix 13 0.54x 78.2 1.41x 78.2 1.45x 95.1
vmwgfx 45 1.18x 100 1.19x 100 1.24x 100
phoenix 26 1.23x 100 1.58x 96.9 1.31x 100
mwl8k 27 1.50x 64.4 1.30x 64.4 1.55x 99.8
saa7164 117 1.35x 97.9 1.38x 99.4 1.54x 97.9
md_mod 1309 28x 99.3 28x 98.9 28x 98.9
block_rsxx 14 1.28x 98.8 1.25x 98.8 1.26x 98.8
ath_ath9k 26 1.21x 67.6 1.25x 99.7 1.33x 99.8
synclink_gt 44 1.25x 100 1.30x 100 1.23x 100

is based on dynamic online decomposition, which is signifi-
cantly more precise than static partitioning [43, 44]. Another
direction is to determine with Bayesian optimization [36]
or reinforcement learning [26], a subset of variables to be
tracked in a flow sensitive manner to speed up analysis [36]
or increase utilization of the memory budget [26], with little
loss of precision. These works focus on the non-relational
Interval domain while our work targets the relational Poly-
hedra and Octagon domains. Poly-Rl [42] designs a set of
hand-crafted approximate Polyhedra join transformers and
learns an adaptive policy via reinforcement learning to se-
lectively apply the designed join transformers to balance
precision and speed. Our experimental results show that
Lait outperforms Poly-Rl. Moreover, our work is generic
and does not require hand-crafted join approximations.

Numerical solvers. Machine learning methods have been
extensively applied for optimizing different solvers. The
work of [4, 29] learns branching rules via empirical risk
minimization for solving mixed integer linear programming
problems. The work of [30] learns to solve combinatorial op-
timization problems over graphs via reinforcement learning.
fastSMT [5] learns a policy to apply appropriate tactics to
speed up numerical SMT solving.

Inferring invariants. Recent research has investigated
the problem of inferring numerical program invariants with
machine learning. The works of [17, 40, 49] use machine
learning for inferring inductive loop invariants for program
verification. The learning algorithms in these works require
specifications in the form of pre/post conditions. Our work
speeds up numerical abstract interpretation which can be
used to infer program invariants without pre/post conditions.

Testing. In recent years, there has been emerging inter-
est in learning to produce test inputs for finding program

bugs or vulnerabilities. AFLFast [8] models program branch-
ing behavior with Markov Chain, which guides the input
generation. Several works train neural networks to gener-
ated new test inputs, where the training set can be obtained
from existing test corpus [15, 21], inputs generated earlier
in the testing process [39], or inputs generated by symbolic
execution [24].

9 Conclusion

We proposed a data-driven approach for boosting the speed
of existing numerical program analysis without significant
precision loss. Our key insight is to leverage structured pre-
diction for identifying and reducing redundancy in the se-
quence of abstract states produced by a static analyzer. Con-
cretely, we showed how to learn an adaptive neural policy
for redundancy removal that makes decisions based on the
abstract states created during analysis.

Our experimental results on challenging real-world bench-
marks demonstrate that our approach is indeed effective in
enabling fast and precise numerical analysis: it achieves or-
ders of magnitude speedups over state-of-the-art methods
with only a small loss of precision.

References

[1] 2019. ELINA. http://elina.ethz.ch/
[2] 2019. Pytorch. https://pytorch.org/
[3] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. 2008. The

Parma Polyhedra Library: Toward a Complete Set of Numerical Ab-
stractions for the Analysis and Verification of Hardware and Soft-
ware Systems. Sci. Comput. Program. 72, 1-2 (2008), 3–21. https:
//doi.org/10.1016/j.scico.2007.08.001

[4] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Viter-
cik. 2018. Learning to Branch. In ICML 2018. http://proceedings.mlr.
press/v80/balcan18a.html

[5] Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. 2018. Learning
to Solve SMT Formulas. In NeurIPS 2018. http://papers.nips.cc/paper/
8233-learning-to-solve-smt-formulas

http://elina.ethz.ch/
https://pytorch.org/
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
http://proceedings.mlr.press/v80/balcan18a.html
http://proceedings.mlr.press/v80/balcan18a.html
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas

Learning Fast and Precise Numerical Analysis PLDI ’20, June 15–20, 2020, London, UK

[6] Dirk Beyer. 2016. Reliable and Reproducible Competition Results with
BenchExec and Witnesses (Report on SV-COMP 2016). In TACAS 2016.
https://doi.org/10.1007/978-3-662-49674-9_55

[7] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003.
A Static Analyzer for Large Safety-Critical Software. In PLDI 2003.
https://doi.org/10.1145/781131.781153

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016.
Coverage-based Greybox Fuzzing as Markov Chain. In CCS 2016. https:
//doi.org/10.1145/2976749.2978428

[9] Aziem Chawdhary and Andy King. 2018. Closing the Performance
Gap Between Doubles and Rationals for Octagons. In SAS 2018. https:
//doi.org/10.1007/978-3-319-99725-4_13

[10] Aziem Chawdhary, Edward Robbins, and Andy King. 2019. Incremen-
tally Closing Octagons. Formal Methods Syst. Des. 54, 2 (2019), 232–277.
https://doi.org/10.1007/s10703-017-0314-7

[11] Robert Clarisó and Jordi Cortadella. 2004. The Octahedron Abstract
Domain. In SAS 2004. https://doi.org/10.1007/978-3-540-27864-1_23

[12] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2018.
Program Analysis Is Harder Than Verification: A Computability Per-
spective. In CAV 2018. https://doi.org/10.1007/978-3-319-96142-2_8

[13] Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2019.
A2I: Abstract2 Interpretation. PACMPL 3, POPL (2019), 42:1–42:31.
https://doi.org/10.1145/3290355

[14] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery
of Linear Restraints Among Variables of a Program. In POPL 1978.
https://doi.org/10.1145/512760.512770

[15] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh
Leather. 2018. Compiler Fuzzing through Deep Learning. In ISSTA
2018. https://doi.org/10.1145/3213846.3213848

[16] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard,
and Peter J. Stuckey. 2016. Exploiting Sparsity in Difference-Bound
Matrices. In SAS 2016. https://doi.org/10.1007/978-3-662-53413-7_10

[17] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016.
Learning Invariants using Decision Trees and Implication Counterex-
amples. In POPL 2016. https://doi.org/10.1145/2837614.2837664

[18] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin T. Vechev. 2018. AI2: Safety and Robust-
ness Certification of Neural Networks with Abstract Interpretation. In
S&P 2018. https://doi.org/10.1109/SP.2018.00058

[19] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska,
Jorge A. Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv.
2019. Simple and Precise Static Analysis of Untrusted Linux Kernel
Extensions. In PLDI 2019. https://doi.org/10.1145/3314221.3314590

[20] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The Zonotope
Abstract Domain Taylor1+. In CAV 2009. https://doi.org/10.1007/978-
3-642-02658-4_47

[21] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz:
Machine Learning for Input Fuzzing. In ASE 2017. https://doi.org/10.
1109/ASE.2017.8115618

[22] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.
Navas. 2015. The SeaHorn Verification Framework. In CAV 2015. https:
//doi.org/10.1007/978-3-319-21690-4_20

[23] Nicolas Halbwachs, David Merchat, and Catherine Parent-Vigouroux.
2003. Cartesian Factoring of Polyhedra in Linear Relation Analysis,
Vol. 2694. https://doi.org/10.1007/3-540-44898-5_20

[24] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov,
and Martin T. Vechev. 2019. Learning to Fuzz from Symbolic Execution
with Application to Smart Contracts. In CCS 2019. https://doi.org/10.
1145/3319535.3363230

[25] Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2016. Learning a
Variable-Clustering Strategy for Octagon from Labeled Data Gen-
erated by a Static Analysis. In SAS 2016. https://doi.org/10.1007/978-
3-662-53413-7_12

[26] Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2019. Resource-aware
Program Analysis via Online Abstraction Coarsening. In ICSE 2019.
https://doi.org/10.1109/ICSE.2019.00027

[27] Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Nu-
merical Abstract Domains for Static Analysis. In CAV 2009. https:
//doi.org/10.1007/978-3-642-02658-4_52

[28] Jacques-Henri Jourdan. 2017. Sparsity Preserving Algorithms for
Octagons. Electr. Notes Theor. Comput. Sci. 331 (2017), 57–70. https:
//doi.org/10.1016/j.entcs.2017.02.004

[29] Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser,
and Bistra Dilkina. 2016. Learning to Branch in Mixed Integer Pro-
gramming. In AAAI 2016. http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12514

[30] Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le
Song. 2017. Learning Combinatorial Optimization Algorithms over
Graphs. In NIPS 2017. http://papers.nips.cc/paper/7214-learning-
combinatorial-optimization-algorithms-over-graphs

[31] Thomas N. Kipf andMaxWelling. 2017. Semi-Supervised Classification
with Graph Convolutional Networks. In ICLR 2017. https://openreview.
net/forum?id=SJU4ayYgl

[32] Alexandre Maréchal, David Monniaux, and Michaël Périn. 2017. Scal-
able Minimizing-Operators on Polyhedra via Parametric Linear Pro-
gramming. In SAS 2017. https://doi.org/10.1007/978-3-319-66706-5_11

[33] Antoine Miné. 2002. A Few Graph-Based Relational Numerical Ab-
stract Domains. In SAS 2002. https://doi.org/10.1007/3-540-45789-5_11

[34] Antoine Miné. 2006. The octagon abstract domain. Higher-Order and
Symbolic Computation 19, 1 (2006). https://doi.org/10.1007/s10990-
006-8609-1

[35] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and
Kwangkeun Yi. 2014. Selective Context-Sensitivity Guided by Impact
Pre-Analysis. In PLDI 2014. https://doi.org/10.1145/2594291.2594318

[36] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a
Strategy for Adapting a Program Analysis via Bayesian Optimisation.
In OOPSLA 2015. https://doi.org/10.1145/2814270.2814309

[37] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. 2011. A Re-
duction of Imitation Learning and Structured Prediction to No-Regret
Online Learning. In AISTATS 2011. http://proceedings.mlr.press/v15/
ross11a/ross11a.pdf

[38] Rahul Sharma, Aditya V. Nori, and Alex Aiken. [n. d.]. Bias-variance
Tradeoffs in Program Analysis. In POPL 2014. https://doi.org/10.1145/
2535838.2535853

[39] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray,
and Suman Jana. 2019. NEUZZ: Efficient Fuzzing with Neural Program
Smoothing. In S&P 2019. https://doi.org/10.1109/SP.2019.00052

[40] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song.
2018. Learning Loop Invariants for Program Verification. In NeurIPS
2018. http://papers.nips.cc/paper/8001-learning-loop-invariants-for-
program-verification

[41] Axel Simon and Andy King. 2010. The Two Variable per Inequality
Abstract Domain. Higher-Order and Symbolic Computation 23, 1 (2010),
87–143. https://doi.org/10.1007/s10990-010-9062-8

[42] Gagandeep Singh, Markus Püschel, and Martin Vechev. 2018. Fast
Numerical Program Analysis with Reinforcement Learning. In CAV
2018. https://doi.org/10.1007/978-3-319-96145-3_12

[43] Gagandeep Singh,Markus Püschel, andMartin T. Vechev. 2015. Making
Numerical Program Analysis Fast. In PLDI 2015. https://doi.org/10.
1145/2737924.2738000

[44] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast
Polyhedra Abstract Domain. In POPL 2017. http://dl.acm.org/citation.
cfm?id=3009885

[45] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2018. A
Practical Construction for Decomposing Numerical Abstract Domains.
PACMPL 2, POPL (2018), 55:1–55:28. https://doi.org/10.1145/3158143

https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1007/978-3-319-99725-4_13
https://doi.org/10.1007/978-3-319-99725-4_13
https://doi.org/10.1007/s10703-017-0314-7
https://doi.org/10.1007/978-3-540-27864-1_23
https://doi.org/10.1007/978-3-319-96142-2_8
https://doi.org/10.1145/3290355
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/3213846.3213848
https://doi.org/10.1007/978-3-662-53413-7_10
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1007/978-3-642-02658-4_47
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/3-540-44898-5_20
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1007/978-3-662-53413-7_12
https://doi.org/10.1007/978-3-662-53413-7_12
https://doi.org/10.1109/ICSE.2019.00027
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1016/j.entcs.2017.02.004
https://doi.org/10.1016/j.entcs.2017.02.004
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12514
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12514
http://papers.nips.cc/paper/7214-learning-combinatorial-optimization-algorithms-over-graphs
http://papers.nips.cc/paper/7214-learning-combinatorial-optimization-algorithms-over-graphs
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1007/978-3-319-66706-5_11
https://doi.org/10.1007/3-540-45789-5_11
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2814270.2814309
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
https://doi.org/10.1145/2535838.2535853
https://doi.org/10.1145/2535838.2535853
https://doi.org/10.1109/SP.2019.00052
http://papers.nips.cc/paper/8001-learning-loop-invariants-for-program-verification
http://papers.nips.cc/paper/8001-learning-loop-invariants-for-program-verification
https://doi.org/10.1007/s10990-010-9062-8
https://doi.org/10.1007/978-3-319-96145-3_12
https://doi.org/10.1145/2737924.2738000
https://doi.org/10.1145/2737924.2738000
http://dl.acm.org/citation.cfm?id=3009885
http://dl.acm.org/citation.cfm?id=3009885
https://doi.org/10.1145/3158143

PLDI ’20, June 15–20, 2020, London, UK Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev

[46] Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster, and Michael
Hicks. 2018. Evaluating Design Tradeoffs in Numeric Static Analysis
for Java. In ESOP 2018. https://doi.org/10.1007/978-3-319-89884-1_23

[47] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. 2019. GNNExplainer: Generating Explanations for Graph
Neural Networks. In NeurIPS 2019. http://papers.nips.cc/paper/9123-

gnnexplainer-generating-explanations-for-graph-neural-networks
[48] Hang Yu and David Monniaux. 2019. An Efficient Parametric Linear

Programming Solver and Application to Polyhedral Projection. In SAS
2019. https://doi.org/10.1007/978-3-030-32304-2_11

[49] He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A Data-Driven
CHC Solver. In PLDI 2018. https://doi.org/10.1145/3192366.3192416

https://doi.org/10.1007/978-3-319-89884-1_23
http://papers.nips.cc/paper/9123-gnnexplainer-generating-explanations-for-graph-neural-networks
http://papers.nips.cc/paper/9123-gnnexplainer-generating-explanations-for-graph-neural-networks
https://doi.org/10.1007/978-3-030-32304-2_11
https://doi.org/10.1145/3192366.3192416

	Abstract
	1 Introduction
	2 Overview
	2.1 Precise Analysis
	2.2 Analysis with Lait

	3 Background
	3.1 Numerical Abstract Domains
	3.2 Online Decomposition
	3.3 Graph Neural Network Model

	4 Redundancy in Abstract Sequences
	5 Learning an Approximate Join
	5.1 Hand-crafted Approximate Join
	5.2 Lait: A Learned Approximate Join Transformer
	5.3 Learning a Constraint Removal Policy

	6 Instantiation of Lait
	6.1 Features and Edges for Constraints
	6.2 Instantiating Constraint Removal

	7 Experimental Evaluation
	7.1 Effectiveness of Lait on Polyhedra Analysis
	7.2 Interpretability of Lait on Polyhedra Analysis
	7.3 Results of Lait on Octagon Analysis
	7.4 Discussion

	8 Related Work
	9 Conclusion
	References

