Learning Fast and Precise Numerical Analysis

Jingxuan He
Department of Computer Science
ETH Zurich, Switzerland
jingxuan.he@inf.ethz.ch

Markus Püschel
Department of Computer Science
ETH Zurich, Switzerland
pueschel@inf.ethz.ch

Gagandeep Singh
Department of Computer Science
ETH Zurich, Switzerland
gsingh@inf.ethz.ch

Martin Vechev
Department of Computer Science
ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

Abstract
Numerical abstract domains are a key component of modern static analyzers. Despite recent advances, precise analysis with highly expressive domains remains too costly for many real-world programs. To address this challenge, we introduce a new data-driven method, called Lait, that produces a faster and more scalable numerical analysis without significant loss of precision. Our approach is based on the key insight that sequences of abstract elements produced by the analyzer contain redundancy which can be exploited to increase performance without compromising precision significantly. Concretely, we present an iterative learning algorithm that learns a neural policy that identifies and removes redundant constraints at various points in the sequence. We believe that our method is generic and can be applied to various numerical domains.

We instantiate Lait for the widely used Polyhedra and Octagon domains. Our evaluation of Lait on a range of real-world applications with both domains shows that while the approach is designed to be generic, it is orders of magnitude faster on the most costly benchmarks than a state-of-the-art numerical library while maintaining close-to-original analysis precision. Further, Lait outperforms hand-crafted heuristics and a domain-specific learning approach in terms of both precision and speed.

CCS Concepts: • Theory of computation → Program analysis; Program verification; Abstraction; • Computing methodologies → Neural networks.

Keywords: Abstract interpretation, Numerical domains, Machine learning, Performance optimization

ACM Reference Format:

1 Introduction
In modern static analysis, numerical abstract domains are typically used to automatically infer numerical invariants for proving critical safety properties of various applications including standard imperative programs [7, 22, 46], untrusted kernels [19], and machine learning classifiers [18]. Developing a practically useful abstract domain is very challenging as one needs to carefully balance a fundamental tradeoff between domain expressivity and complexity. For example, Polyhedra [14] is the most expressive linear relational domain. However, it also comes with a worst-case exponential asymptotic time and space complexity. Over the years, various works introduced relational domains with weaker expressivity to boost analysis speed. Examples include Octahedron [11], TVPI [41], Octagon [34], Zones [33], and Zonotope [20].

Recently, there has been an increased interest in techniques that speed up existing numerical domains without losing precision (i.e., the strength of inferred invariants) [9, 10, 16, 28, 32, 45, 48]. Among these, online decomposition [13, 45] provides a general solution for multiple domains.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7613-6/20/06... $15.00
https://doi.org/10.1145/3385412.3386016
Lait: generic learning-based approximations. In this work, we present a new generic learning-based method, called Lait (Learning-based Abstract Interpretation Transformers). The basic idea is to consider a generic approximation of abstract transformers based on removing constraints from the formula, and to then learn a neural classifier that identifies constraints to remove from the output of certain abstract transformers (we consider joins). The key insight enabling Lait to achieve close-to-original analysis precision is that sequences of abstract elements produced by a numerical static analyzer can contain substantial redundancy in the form of constraints not needed for computing the final invariants. This means that a classifier can learn how to selectively reduce this intermediate redundancy to boost analysis speed significantly, while still producing the same final result as that of the original sequence.

We instantiate Lait for speeding up analysis with the popular and expensive Polyhedra and Octagon domains. Note that Lait is also applicable to other domains such as Zones. We evaluated the performance and precision of Lait on a large number of challenging real-world benchmarks including Linux device drivers. Our results demonstrate that Lait can indeed boost analysis speed without significant loss of precision. Moreover, although Lait employs a generic method for losing precision, it produces better results than existing solutions including hand-made heuristics and a domain-specific learning method based on a state-of-the-art numerical library Elina [1].

Main contributions. Our contributions are:

- A generic approach for removing redundancy based on approximating the join transformer that can be instantiated for existing numerical domains. (Section 5.2)
- A learning framework for generating approximate transformers, called Lait. Our framework constructs a neural policy that employs graph-based structured prediction for removing redundant constraints. (Section 5.3)
- An instantiation and a complete implementation\(^1\) of Lait on the Polyhedra and Octagon domains based on online decomposition. The instantiation includes the definition of features and weighted dependency graphs that enable structured prediction. (Section 6)
- An evaluation showing the effectiveness of Lait for speeding up both Polyhedra and Octagon analysis on a large set of real-world programs. For Polyhedra, Lait achieves orders of magnitude speedup while maintaining a mean precision of 98% w.r.t. Elina, the state-of-the-art library for numerical domains. For Octagon (which has lower complexity), Lait yields a mean speedup of 1.3x and a mean precision of 99%. Despite its generality, Lait is also faster and more precise than a prior learning-based method and hand-crafted heuristics. (Section 7)

\(^1\)We include the learned Lait transformers in a new version of Elina [1].

2 Overview

In this section, we provide an overview of Lait on a small illustrative example. Figure 1(a) shows the control flow graph (CFG) of a program with variables \(x, y, m, n\). The program assumes that \(y \geq 0\) and \(x = n\) initially. Then it executes a while loop containing an if-else branch and an assignment statement. We consider the task of computing a loop invariant for the example program using the Polyhedra domain. We demonstrate that approximate analysis with Lait produces the same invariant as the precise analysis.

2.1 Precise Analysis

The analysis associates a polyhedron, represented by a conjunction of linear constraints, with each edge in Figure 1(a). The polyhedron over-approximates the concrete values of the program variables before executing the statement in the successor node of the edge. Initially, the analysis sets the polyhedron \(I_0\) to \(\top\) and the rest to \(\bot\). For the polyhedra inside the loop, we use superscripts to distinguish between the polyhedra produced at different loop iterations.

First iteration. Now we execute the precise analysis step by step until the end of the first iteration of the loop:

1. It propagates \(I_0\) to the \texttt{assume} statement and intersects the constraints \(y \geq 0\) and \(x = n\) with \(I_0\), resulting in \(I_1 = \{y \geq 0, x = n\}\).
2. At the loop head, it considers the polyhedra from the entry \((I_1)\) and exit \((I_0)\) of the while loop. It applies the join (\(\cup\)) transformer: \(I_2 = I_1 \cup I_0 = I_1 \cup \bot = I_1\).
3. It enters the loop and sets \(I_1 = \{y \geq 0, x = n, y \geq x\}\) by intersecting \(I_2\) with the loop condition \(y \geq x\).
4. It propagates \(I_1\) to the two branches of the if-else. In the if-branch, the analysis intersects \(I_1\) with the branch condition \(m \geq 0\) and computes \(I_4 = \{y \geq 0, x = n, y \geq x, m \geq 0\}\). Next, it applies the assignment transformer for \(y := y + 1\) on \(I_4\) and obtains \(I_5 = \{y \geq 0, x = n + m + 1, y \geq x, m \geq 0\}\). The analysis handles the else branch similarly and outputs \(I_7 = \{y \geq 0, x = n + 2, y \geq x, m \leq 0\}\).
5. It exits the if-else branches and joins the branch outputs to compute \(I_8 = \{y \geq 0, x \geq n + m + 1, x \geq 0, y \geq x\}\).
6. It applies the assignment transformer for \(y := y - 1\) on \(I_8\) and gets \(I_6 = \{y \geq -1, x \geq n + m + 1, x \geq n + 1, y \geq n + 1\}\). \(I_6\) represents an over-approximation of the concrete values of the program variables at the loop exit after executing one iteration of the loop.

Second iteration. The analysis starts from the loop head again with the updated polyhedra from the first iteration. It computes \(I_2 = I_6 \cup I_8 = \{y \geq -1, x \geq n + x + y \geq n\}\). Then the widening (\(\lor\)) transformer is applied on \(I_6\) and \(I_8\) for faster convergence towards a fixed point. This yields the polyhedron \(I^\text{precise} = I_6 \lor I_8 = \{x \geq n, x + y \geq n\}\). This polyhedron is then propagated through the while loop again.
The analysis then checks if the new polyhedron I_3 is included in I_{precise} using the inclusion (\subseteq) transformer. Here, the \subseteq transformer returns true and the analysis terminates yielding the loop invariant $\{x \geq n, x + y \geq n\}$. Note that this invariant cannot be computed with weaker domains such as Interval, Octagon, or TVPI, since the constraint $x + y \geq n$ cannot be represented in these domains.

2.2 Analysis with LAIT

Now we explain the analysis with our learned LAIT-enabled approximate join transformer on the same program.

Key insight: learning to remove redundant constraints. Our key insight is that the join transformer may create a large number of redundant constraints, which can be removed without affecting the computed loop invariant. Since the complexity of Polyhedra transformers is exponential in the number of constraints, this removal can yield considerable speedups without precision loss. The main challenge is to identify which constraints can be removed. If the removed constraints are relevant for the resulting fixed point, imprecision is introduced and will carry over for the subsequent program statements. The policy for constraint removal should be adaptive as the redundancy of a given constraint is determined by the dynamic state of the analysis.

In this work, we adopt a data-driven approach, implemented in LAIT, which is based on a neural classifier. The learning algorithm drives LAIT to identify redundant constraints to be removed based on the semantic, structural information of the analysis state. Next, we describe how LAIT works on the example program.

Approximate analysis with LAIT. We compare the precise analysis and our approximate analysis in Figure 1(b) (we use green for the approximate analysis). The approximate analysis computes the same polyhedra as the precise analysis until the join of I_3 and I_4 where it invokes LAIT.

LAIT first calls the precise join and obtains $I_8 = I_5 \cup I_7$. Then, it removes constraints from I_8. We show the steps in Figure 1(c). First, LAIT extracts a feature vector for each constraint in I_8 and weighted edges between constraints, yielding a weighted dependency graph (top of Figure 1(c)). Defined in Section 6.1, the features capture polyhedron and constraint shape, and the edges indicate relationships between constraints (the number of shared variables in our case). Second, the graph is passed to a pre-trained structured prediction based classifier (in our case a graph convolutional neural network, depicted in the middle of Figure 1(c)). The classifier makes a binary decision for each constraint: whether to keep or remove it. To learn such a classifier, we propose a specialized algorithm in Section 5.3. In our example, the predictor decides to remove the constraint $x \geq n + 1$ and obtains the approximation $I_8^{\text{approx}} = \{y \geq 0, x \geq n + 1, y \geq n\}$ of I_8 (bottom of Figure 1(c)).

The approximate analysis continues with the assignment transformer for $y := y - 1$ and I_8^{approx} to produce $I_9 = \{y \geq 0, x \geq n + 1, y \geq n - 1\}$. The join transformer is then applied to compute $I_9 = I_6 \cup I_7 = \{y \geq 0, x \geq n + 1, y \geq n\}$. For this join, LAIT decides not to remove any constraints. Note that this is the same result as in the precise analysis, i.e., the
removed constraint had no effect on the precision. However, the inputs of these two transformers in the approximate analysis have fewer constraints and so the analysis runs faster. In real-world benchmarks, a large number of transformers can benefit from such constraint removal.

The subsequent widening produces the same loop invariant \(I^{\text{Lait}}_1 = I^*_1 \cup I^*_2 = \{x \geq n, x + y \geq n\} \) as the precise analysis \(I^{\text{precise}} = I^{\text{precise}} \). After obtaining \(I^{\text{Lait}}_1 \), we run the precise analysis for one iteration to generate precise invariants for all program points. Any assertions dischargeable by the precise analysis can also be discharged by our approximate analysis since they produce the same invariants.

3 Background

We provide the necessary background on numerical abstract domains, online decomposition for fast numerical analysis, and the graph neural network model.

3.1 Numerical Abstract Domains

A numerical abstract domain \(D \) consists of abstract elements \(I \) defined over the set of variables \(X = \{x_1, x_2, \ldots, x_n\} \) and a set of abstract transformers. An abstract element describes the abstract state, which over-approximates the possible concrete states obtained by assigning numerical values to the variables in \(X \). The abstract transformers operate on abstract elements to compute over-approximations of concrete state changes due to program statements.

In this paper, we focus on sub-polyhedra domains where an abstract element is represented by a conjunction of a finite number of linear constraints \(C = \{c_1, c_2, \ldots, c_m\} \) relating the variables in \(X \). We describe in greater detail two example domains considered in this paper: the Polyhedra [14] and the Octagon [34] domains, both of which are widely used in modern program analysis and can be expensive in practice.

Polyhedra. Each constraint \(c \) in the Polyhedra abstract domain is in the following form:

\[
\sum_{i=1}^{n} a_i x_i \leq b, \quad a_i \in \mathbb{Z}, x_i \in X, \quad \circ \in \{=, \leq, \geq\}, \quad \text{and} \quad b \in \mathbb{Q}.
\]

It is the most expressive linear relational domain but also the most expensive with a worst-case exponential time and space complexity.

Octagon. Each constraint \(c \) in the Octagon domain is restricted to contain at most two variables with the coefficients taken from the set \(K = \{-1, 0, 1\} \). Formally, \(c \) takes the form:

\[
a_1 x_i + a_2 x_j \leq b, \quad a_1, a_2 \in K, x_i, x_j \in X, \quad \text{and} \quad b \in \mathbb{R} \cup \{\infty\}.
\]

The restriction reduces the time and space complexity of the Octagon domain to cubic and quadratic respectively.

Join. The join transformer (\(\sqcup \)) over-approximates the union of abstract elements originating from program branches. It is usually the most expensive transformer among about 40 transformers required for analyzing programs in modern languages. For example, the join transformer of the Polyhedra domain has worst-case exponential time complexity in terms of both the number of input constraints and the number of variables. It is also the most expensive transformer in the Octagon domain as it requires a closure operation with cubic time complexity. In practice, the join transformer may introduce a large number of (potentially redundant) constraints to the analysis causing a performance bottleneck.

3.2 Online Decomposition

Online decomposition [13, 23, 43–45] is based on the observation that the variable set \(X \) can often be decomposed w.r.t. an abstract element \(I \) into multiple small, non-related blocks on which transformers can operate independently. Formally, it constructs a partition \(\pi_I = \{X_1, X_2, \ldots, X_r\} \) of \(X \), where each \(X_i \subseteq X \) is a block. \(\pi_I \) requires that every constraint in \(I \) only relates variables in the same block. Accordingly, \(I = I(X) \) can be decomposed into smaller factors \(I(X_i) \) on which transformers operate much faster. Online decomposition has enabled orders of magnitude speedup for sub-polyhedra domains [45] including Polyhedra [23, 44] and Octagon[43].

The main challenge in online decomposition is to maintain partitions that keep the precision of a non-decomposed analysis. We note that static partitioning [7, 25, 35] is imprecise as the partition changes dynamically during analysis.

Decomposed join. Now we introduce the decomposed join transformer. Let \(I_P \) and \(I_Q \) be inputs to the join in the domain \(D \) with the associated partitions \(\pi_{I_P} \) and \(\pi_{I_Q} \) respectively. We compute the partition \(\pi = \pi_{I_P} \cup \pi_{I_Q} \) for the inputs where \(\sqcup \) is the least upper bound operator in the partition lattice. Next, consider \(N = \bigcup \{A \in \pi \mid I_P(A) \neq I_Q(A)\} \) as the union of all blocks \(A \in \pi \) such that the corresponding factors in \(I_P \) and \(I_Q \) are not equal, and \(U = \{A \in \pi \mid I_P(A) = I_Q(A)\} \) be the set of blocks for which the factors are equal. Then the decomposed output and an associated partition can be computed [44] as:

\[
\pi_{I_P \sqcup I_Q} = N \cup U
\]

\[
I_P \sqcup I_Q = \bigcup \{I_P(A) \cup I_Q(A) \mid A \in \pi_{I_P \sqcup I_Q}\}.
\]

The output is computed by refactoring \(I_P \) and \(I_Q \) so that the factors in both correspond to the partition \(\pi_{I_P \sqcup I_Q} \) and then applying the join transformer on the new factors separately.

3.3 Graph Neural Network Model

We now explain the graph neural network model used to represent the Lait transformer discussed in Section 5.

Graph convolutional network. Consider a graph \(G = (V, E) \) where \(V \) is the set of nodes and \(E \) is the set of weighted edges. A Graph Convolutional Network (GCN) [31] transforms feature vectors associated with each node in \(V \)
according to the graph structure. Formally, it consists of multiple graph convolutional layers. Each layer \(C^i : \mathbb{R}^{|V| \times d_i} \rightarrow \mathbb{R}^{|V| \times d_{i+1}} \) performs the following computation:

\[
C^i(H) = \sigma(AH W^i),
\]

where \(H \in \mathbb{R}^{|V| \times d_i} \) is the input feature matrix to the layer, \(A \in \mathbb{R}^{|V| \times |V|} \) is the adjacency matrix of \(G \), \(W^i \in \mathbb{R}^{d_i \times d_{i+1}} \) is the learned weight matrix, and \(\sigma \) is a activation function. Intuitively, at each layer, each node propagates its feature vector to its neighbors and updates it according to the received feature vectors. After multiple layers, a feature matrix associated with \(V \) is computed that takes the graph structure of \(G \) into account. Fully connected networks can be added after GCNs, enabling the network to perform classification.

4 Redundancy in Abstract Sequences

Our high-level goal is to speed up numerical analysis by exploiting the redundancy found in a sequence of abstract elements generated when computing the fixed point of the loop. The key observation is that it is possible to lose precision in some abstract elements in the sequence without affecting the final result computed by that sequence (Section 7). By losing the appropriate amount of precision, one can speed up the computation in the sequence as well as the overall analysis. Determining such abstract elements and how to lose precision is the challenging problem that we address in this paper. Concretely, we will focus on losing precision in the sequence of outputs produced by the join operations. We consider the join transformer as it is usually the most expensive transformer [43, 44] and can introduce many redundant constraints causing a performance bottleneck. To formalize our problem statement, we first introduce the abstract sequence of join outputs induced by analyzing the loop, define redundancy in these sequences, and finally state our objective for removing redundant constraints.

Abstract sequence. For a given loop, we capture the join outputs in each of its \(l \) iterations, \(\mathcal{T} = ([I_{H}^{i}, L_{i}])_{i=1}^{l} \). For each loop iteration \(i \), \(I_{H}^{i} \) is the current abstract element at the head of the loop, and \(L_{i} = ([I_{P}^{(i,j)} , I_{Q}^{(i,j)} , L_{j}^{(i,j)}])_{j=1}^{s} \) is a sequence of \(s \) join operations during the analysis of the loop body, with \(I_{H}^{(i,j)} = I_{L_{j}^{(i,j)}} \). Loop analysis reaches a fixed point when \(I_{H}^{l+1} \subseteq I_{H}^{l} \), i.e., \(I_{H}^{l} \) is a loop invariant.

Redundancy in a sequence. A join transformer \(\sqcup \) approximates \(\sqcup \) when for any \(I_{P} \) and \(I_{Q} \), we have that \(I_{P} \sqcup I_{Q} = I_{\sqcup} \subseteq I_{P} \sqcup I_{Q} \). For a given loop, analysis with \(\sqcup \) generates the loop invariant \(I_{H}^{l} \) with iteration sequence \(\mathcal{T'} = ([I_{H}^{i} , L_{i}])_{i=1}^{l} \) where \(L_{i} = ([I_{P}^{(i,j)} , I_{Q}^{(i,j)} , L_{j}^{(i,j)}])_{j=1}^{s} \). We say that the sequence of join outputs \(\mathcal{T} \) contains redundancy if \(\mathcal{T'} \) yields a loop invariant of equal or better precision, that is, \(I_{H}^{l} \subseteq I_{H}^{l} \). Note that better precision could happen as a less precise abstraction could lead to more precise analysis results [38]. An example of redundancy was shown in Section 2. We note that a simpler and more approximate \(\sqcup \) can significantly improve the performance of all abstract transformers applied downstream (but may compromise overall analysis precision). Note that, for simplicity in our formalization, we assume \(\mathcal{T} \) and \(\mathcal{T'} \) have the same length \(l \). If this is not the case, then we pad the shorter one.

Objective for redundancy removal. We assume the existence of an auxiliary function \(\text{Diff}(\mathcal{T}, \mathcal{T'}) \) which measures the degree of approximation an abstract element \(I' \) induces over an abstract element \(I \). Given a sequence \(\mathcal{T} \), our objective is to find an approximate transformer \(\sqcup \) that generates a sequence \(\mathcal{T'} \) satisfying the following objective:

\[
\begin{align*}
\arg \max \quad & \sum_{i,j} \text{Diff}(I_{H_{i}}^{(i,j)}, I_{H_{i}}^{(i,j)}), \\
\text{subject to:} & \quad I_{H_{i}}^{l} \subseteq I_{H_{i}}^{l}.
\end{align*}
\]

That is, we aim to maximize the degree of approximation induced by \(\sqcup \) while preserving loop analysis precision.

5 Learning an Approximate Join

We now describe how we solve the optimization problem (2) to obtain an approximate join \(\sqcup \). Our method is generic and can be applied to various numerical domains to benefit from the removal of the underlying redundancy. Before presenting the method, we first describe a hand-crafted approximate join transformer, which will serve as one of the baselines.

5.1 Hand-crafted Approximate Join

As a first attempt, we propose a reasonable heuristic for approximating \(\sqcup \) based on online decomposition described in Section 3.2. The decomposed join transformer in (1) merges all blocks \(\mathcal{A} \in \pi_{I_{P}} \sqcup \pi_{I_{Q}} \) for which the corresponding input factors \(I_{P}(\mathcal{A}) \) and \(I_{Q}(\mathcal{A}) \) are not equal and applies join on the factor corresponding to the merged block \(\mathcal{N} \). This creates constraints between variables not related by any constraint in the inputs. We observed that many of these new constraints are often redundant w.r.t. the abstract sequence.

Therefore, we design a hand-crafted approximate join transformer (HC) that avoids creating such constraints by not merging blocks into \(\mathcal{N} \). Formally, given join inputs \(I_{P} \) and \(I_{Q} \), our hand-crafted approximate join transformer HC\((I_{P}, I_{Q})\) computes the output as follows:

\[
\begin{align*}
\pi_{\text{HC}}(I_{P}, I_{Q}) & = \pi_{I_{P}} \sqcup \pi_{I_{Q}}, \\
\text{HC}(I_{P}, I_{Q}) & = \bigcup \{I_{P}(\mathcal{A}) \sqcup I_{Q}(\mathcal{A}) \mid \mathcal{A} \in \pi_{\text{HC}}(I_{P}, I_{Q})\}.
\end{align*}
\]

Similar to \(\pi_{I_{P} \sqcup I_{Q}} \) in (1), the partition \(\pi_{\text{HC}}(I_{P}, I_{Q}) \) is dynamically computed based on the partitions of the join inputs. The difference is that \(\pi_{\text{HC}}(I_{P}, I_{Q}) \) is finer, which can speed up both the current join and the downstream analysis, but with
potential loss of precision. HC is applicable to all numerical domain implementations based on online decomposition.

We evaluate HC in Section 7 showing that it can accelerate analysis for many benchmarks. However, it is based on a fixed policy that never creates constraints between variables not related by any constraint in the inputs. This can introduce significant imprecision as some of those constraints might be necessary for computing the invariant at the fixed point. Moreover, since it does not remove existing constraints, many redundant constraints can remain to cause the analysis to get stuck and time out. These observations motivate the design of an adaptive redundancy removal policy that takes the inputs into account.

5.2 Lait: A Learned Approximate Join Transformer

We adopt a data-driven approach to learn an approximate abstract transformer whose output is adaptive w.r.t. the input constraints. Our proposed transformer Lait is fairly generic as it approximates \(\sqcup \) by dropping constraints from the output \(I_1 = I_P \cup I_Q \) of the precise join \(\sqcup \) (\(I_P \) and \(I_Q \) are join inputs).

The core part of Lait is a learned constraint removal policy \(\psi \), represented by a neural classifier which takes the structure of constraints into account when making decisions. In Algorithm 1, we show the procedure Lait for computing the approximate join output \(I_\| = \text{Lait}(I_P, I_Q, I_\|) \). We explain it step by step:

Line 2: Apply the feature extraction \(\text{Feat}(I_P, I_Q, I_\|) \) which outputs a feature matrix \(F \in \mathbb{R}^{\|I_\| \times k} \). Each row is a \(k \)-dimensional vector for each constraint in \(I_\| \).

Line 3: Extract a structured relationship between the constraints in \(I_\| \) as a set \(E \) of edges. Each edge \(e = (c, c', w) \in E \) connects constraints \(c \) and \(c' \) with weight \(w \). We represent \(E \) by its adjacency matrix \(A \), which is obtained by calling \(\text{Edge}(I_\|) \).

Line 4: Invoke \(\psi(F, A) \) to obtain a boolean vector \(B \in \{0, 1\}^{\|I_\|} \), where each value \(B_i \) indicates whether the constraint \(c_i \) should be removed (\(B_i = 1 \)) or not (\(B_i = 0 \)).

Line 5: Drop constraints from \(I_\| \) based on \(B \) to produce the output abstract element \(I_\\| \).

We note that \(I_\\| \) contains only a subset of \(I_\| \)’s constraints, hence Lait is sound. We show how to instantiate the required functions \(\text{Feat} \) and \(\text{Edge} \) for both Polyhedra and Octagon numerical domains in Section 6.

Benefits of constraint removal. The benefits of constraint removal by Lait are two-fold. First, the time complexity of the abstract transformers depends on the number of constraints [43, 44]. Lait reduces the number of constraints in the join output which speeds up the downstream analysis. We show such a case in Section 7.2. Second, constraint removal is a general method for approximation which can potentially be applied to speed up any constraint-based numerical domain. Our experimental results demonstrate that Lait is effective in practice (Section 7).

5.3 Learning a Constraint Removal Policy

The main challenge which Lait must address is to decide on the set of constraints to remove so that the overall analysis precision is maintained, while the analysis speed is improved. The search space for an optimal removal policy is large as the abstract sequences can contain many joins and each join output in the sequence contains many candidate constraints for removal. Next, we describe an iterative training algorithm that aims to learn a policy \(\psi \) addressing this challenge.

Generate a dataset of precise abstract sequences. Given a set of programs used for training, we first generate a dataset of abstract sequences \(S = \{T_1, T_2, \ldots, T_h\} \) containing potential redundancy. Each \(T_i \in S \) in this dataset corresponds to one abstract sequence of a particular loop \(k \) in a program. The sequences are built by analyzing each program with a precise analysis. We will use \(S \) as the ground truth for measuring the precision of the (currently computed) approximate analysis during training.

Produce a classification dataset for training \(\psi \). To learn the classification policy \(\psi \), we first produce a classification dataset \(D \). This is accomplished via procedure \(\text{GenClassifData} \), shown in Algorithm 2. The procedure shows how to process a single loop abstract sequence \(\mathcal{T} \in S \) in order to produce \(D \). It takes as input the current policy \(\psi \) (initially set to not drop constraints), a precise training abstract sequence \(\mathcal{T} \in S \), and an exploration parameter \(\epsilon \) (not shown in Algorithm 2 but assumed globally). We use \(I_\|^\| \) to denote the abstract element at the loop head at iteration \(k \) in the precise training abstract sequence \(\mathcal{T} \) as well as \(\hat{I}_H^\| \) to denote the abstract element at the loop head of the approximate analysis at iteration \(k \).

The procedure first sets the starting point of the approximate analysis to be the same as the precise analysis (\(\hat{I}_H^\| = I_H^\| \) at Line 2). It then performs approximate analysis of the given loop (at Line 3) until a fixed point is reached (Line 11). For each of the \(s \) joins inside the loop, it invokes an approximate abstract transformer (Line 5). To simplify presentation we assume the same set of \(s \) joins taking place in each iteration, in both the precise and approximate analysis.

Algorithm 1: Applying Lait with a learned \(\psi \).

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Procedure Lait ((I_P, I_Q, I_|))</td>
</tr>
<tr>
<td>2</td>
<td>(F = \text{Feat}(I_P, I_Q, I_|)) // feature extraction</td>
</tr>
<tr>
<td>3</td>
<td>(A = \text{Edge}(I_|)) // edge extraction</td>
</tr>
<tr>
<td>4</td>
<td>(B = \psi(F, A)) // invoke removal policy</td>
</tr>
<tr>
<td>5</td>
<td>(I_| = \text{DropCons}(I_|, B)) // drop constraints</td>
</tr>
<tr>
<td>6</td>
<td>return (I_|)</td>
</tr>
</tbody>
</table>
Algorithm 2: Producing classification dataset.

1 Procedure GenClassifData(ψ, T)
 Input: ψ, a classifier for constraints removal. T, a precise abstract sequence.
 Output: D, a dataset for supervised learning.

 i = 0; \(\tilde{I}_H^i = I_H^1 \)
 repeat // approximate analysis
 i ← i + 1; \(D_i \leftarrow \emptyset \)
 for j ← 1 to s do // s joins per loop iteration
 perform analysis, obtain join inputs \(I_H^p, I_Q \)
 \(I_U = I_H^p \cup I_Q \)
 \((I_U, F, A, B) = \text{LaitTrain}(I_H^p, I_Q, I_U) \) // with ψ
 add \{\((F_B, A_B) \)\} to \(D_i \)
 continue analysis and compute \(\tilde{I}_H^{i+1} \)
 until \(\tilde{I}_H^{i+1} \subseteq \tilde{I}_H^i \)
 \(D \leftarrow \emptyset; \ pos = \arg\ max_i \tilde{I}_H^k \subseteq I_H^k \)
 for i ← 1 to pos − 1 do // positive labeling
 for \((F, A) \) in \(D_i \) do
 add \{\((F, A, 1) \)\} to \(D \)
 for \((F, A) \) in \(D_{pos} \) do // negative labeling
 add \{\((F, A, 0) \)\} to \(D \)
 return \(D \)

Algorithm 3: Iterative learning of a policy ψ.

1 Procedure Learn(S, N)
 Input: \(S = \{T_1, T_2, \ldots, T_k\} \), the generated training abstract sequences.
 \(N \), the number of training iterations.
 Output: ψ, a classifier for removing constraints.

 \(D \leftarrow \emptyset; \ Initialize(\psi) \)
 for \(j \leftarrow 1 \) to \(N \) do
 for \(T \) in \(S \) do
 \(D \leftarrow D \cup \text{GenClassifData}(\psi, T) \)
 \(\psi = \text{SupervisedLearning}(D) \)
 return \(\psi \)

Importantly, the procedure invokes LaitTrain for approximating join outputs. LaitTrain is a variant of Algorithm 1, specifically used for training. It employs an exploration-exploitation mechanism to obtain the boolean vector \(B \) (different from Line 4 of Algorithm 1):

\[
B = \begin{cases}
\text{EXPLORE}(I_U) & \text{with probability } \epsilon, \\
\psi(F, A) & \text{otherwise.}
\end{cases}
\]

This means that with probability \(\epsilon \) it calls an exploration policy EXPLORE that randomly samples a portion \(\gamma \) of constraints to be removed from \(I_U \) (we set \(\epsilon \) and \(\gamma \) both to 0.1 in our experiments); otherwise, it invokes \(\psi \) to make the decision. LaitTrain returns a tuple: the approximate join output \(I_U^p \), and intermediate variables \(F, A \), and \(B \) (Line 8). Next, features \(F_B \) and edges \(A_B \) of the removed constraints (determined by \(B \)) are added to the set \(D_i \) (Line 9). After finishing all joins, the analysis proceeds to compute the loop head element \(\tilde{I}_H^{i+1} \) (Line 10), checks for convergence (Line 11), and enters the next loop iteration if it does not converge.

When the approximate analysis completes, we label the data points in \(D_i \). For this we first calculate \(pos \), the maximal loop iteration number where the precision is preserved (Line 12). We then assign positive labels to all data points before the loop iteration \(pos \) (Line 15). Intuitively, we do that because dropping constraints at these iterations did not affect the precision of the abstract element at the loop head at iteration \(pos \). For data points at loop iteration \(pos \), we assign negative labels (0) as these resulted in precision loss (Line 17). This labeling scheme drives \(\psi \) to drop as many constraints as possible while keeping precision (a proxy for our objective (2)). The data points after iteration \(pos \) are ignored since we cannot determine whether they keep precision or not.

Figure 2 visualizes an example run of GenClassifData. On the left, we run the approximate analysis with two loop iterations each containing two joins. The analysis decides to drop three constraints (depicted as green lines) to obtain \(I_H^{(1,2)} \) and two constraints (depicted as red lines) to obtain \(I_H^{(2,1)} \). This produces the precise result \(\tilde{I}_H^2 \subseteq I_H^2 \) and the imprecise result \(\tilde{I}_H^2 \subseteq \tilde{I}_H^2 \). The imprecision propagates downstream in the analysis (not shown in Figure 2). The dataset \(D \) is depicted on the right of Figure 2. The algorithm labels the three removed constraints at iteration one with 1 because the analysis precision is preserved even after removing them (\(\tilde{I}_H^2 \subseteq \tilde{I}_H^2 \)). In contrast, it labels the two removed constraints at iteration two with 0 because removing them results in imprecision (\(\tilde{I}_H^2 \subseteq \tilde{I}_H^2 \)).
Table 1. Features for approximating Polyhedra join.

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of variables in the block X_c^I</td>
<td>$</td>
</tr>
<tr>
<td>2</td>
<td>Number of constraints in the factor X_c^I</td>
<td>$</td>
</tr>
<tr>
<td>3</td>
<td>Number of generators in the factor X_c^I</td>
<td>$</td>
</tr>
<tr>
<td>4</td>
<td>Number of loop head variables in c</td>
<td>$</td>
</tr>
<tr>
<td>5</td>
<td>Boolean, true if X_c^c is a subset of X_c^H</td>
<td>$X_c^c \subseteq X_c^H$</td>
</tr>
<tr>
<td>6</td>
<td>Boolean, true if c is in I_H</td>
<td>$c \in I_H$</td>
</tr>
<tr>
<td>7</td>
<td>Number of variables in constraint c</td>
<td>$</td>
</tr>
<tr>
<td>8</td>
<td>Number of large coefficients in c</td>
<td>$\sum_l(</td>
</tr>
<tr>
<td>9</td>
<td>Sum of scores for variables in c</td>
<td>$\sum_i \text{Score}(x_i)$</td>
</tr>
<tr>
<td>10</td>
<td>Boolean, true if c is in join inputs</td>
<td>$c \in I_P \land c \in I_Q$</td>
</tr>
<tr>
<td>11</td>
<td>Boolean, true if c coarsens partition</td>
<td>$\text{Coarse}(\mathcal{X}_c^I, \pi_P, \pi_Q)$</td>
</tr>
<tr>
<td>12</td>
<td>Boolean, true if c is an equality</td>
<td>$\circ is =$</td>
</tr>
</tbody>
</table>

Final iterative learning algorithm. Given the size of the search space, a large classification dataset is necessary for learning a suitable ψ. Moreover, since the dataset and the policy are mutually dependent, they should be improved iteratively. Towards that we adopt a DAGGER-style learning scheme [37] which alternates dataset generation with policy learning, illustrated in Algorithm 3.

The algorithm first initializes the dataset D to \varnothing and ψ to a policy which does not remove constraints (Line 2). It then performs N training iterations. Each iteration calls the procedure GenClassifData on a precise abstract sequence $T \in S$ (Line 5) returning a newly constructed dataset, which is then added to D. An improved policy ψ is trained on D through a supervised learning classification algorithm (Line 6), which depends on the used classifier (in our case, the classifier is a GCN followed by a fully connected network as instantiated in Section 6.2). The procedure can repeat a number of times, gradually improving the quality of the learned policy ψ.

6 Instantiation of Lait

We now describe our instantiation of the Lait approximate join transformer for the Polyhedra and Octagon domains. Our instantiation is based on a precise analysis with online decomposition [45]. We do not approximate other transformers used in the analysis. Next, we first define our features (i.e., FEAT in Section 5) and edges (i.e., EDGE in Section 5) for representing the set of constraints as a graph and then discuss our instantiation of the constraint removal policy ψ.

6.1 Features and Edges for Constraints

As discussed in Section 5.2, we extract features for each constraint $c \in I_c$ by calling FEAT(I_P, I_Q, I_c) where $I_c = I_P \cup I_Q$. The features distill domain-specific information critical for identifying redundant constraints. These include features that are (a) specific to the constraint, (b) dependent on both the constraint and the abstract state, and (c) dependent on both the constraint and the context information about the loop. We denote the set of variables in the constraint c by X_c^c and the block containing the variables in c in the partition of I_c by X_c^I. Note that $X_c^c \subseteq X_c^I$. $I_c(X_c^c)$ is the subset of constraints over the variables in X_c^c. We define this information analogously for I_P and I_Q. Moreover, we record global information about the loop by tracking the current loop head element I_H, the set of variables X_H which appears in at least one constraint in I_H, and the iteration number $iter$.

Features for Polyhedra constraints. The extracted features for constraints in the Polyhedra domain are shown in Table 1. The implementation of the Polyhedra domain used in our instantiation keeps both the generator and the constraint representation [44]. The cost of the join in the factor representation of the constraint c is characterized by the number of variables in the block X_c^I and the number of generators and constraints in the factor [44]. The first three features in Table 1 record this information.

Features 4–6 record information for predicting whether the constraint c affects the abstract element at the loop head I_H. Feature 4 records the number of variables that are both in c and I_H. Boolean features 5 and 6, respectively, record whether all variables in c are in X_H and whether I_H has constraint c. The constraints that link with I_H are likely to be non-redundant.

Features 7 and 8 record the number of variables and the number of large coefficients (with absolute value ≥ 100) in c. We use a function $\text{Score}(x)$ that computes the number of constraints containing the variables x in I_c. Feature 9 then records the sum of $\text{Score}(x)$ for all $x \in X_c^c$. A constraint with large values for these three features is likely to be redundant.

Boolean features 10–11 characterize the relationship of c w.r.t. the two join inputs I_P and I_Q. Feature 10 checks whether c appears in both inputs. If yes, then c should likely be kept. Feature 11 checks whether c coarsens the partition,
i.e., \(\forall X_j \in \mathcal{P}_r, X'_c \subseteq X_j \cap \forall X_k \in \mathcal{P}_Q, X'_c \subseteq X_k \), by calling the function \(\text{Coarse} \). Such constraints are likely to be redundant. The last feature checks whether \(c \) is an equality constraint.

Features for Octagon constraints. Table 2 shows features extracted from an Octagon constraint \(c := a_i x_i + a_j x_j \leq b \). The first four coincide with features 1, 2, 4 and 6 for Polyhedra in Table 1. Features 5 and 6 calculate the \text{Score} of the two variables \(x_i \) and \(x_j \) in \(c \), respectively. A large value of these features indicates that \(c \) has more interaction with other constraints. Features 7 and 8 compute the number of finite bounds for the variables \(x_i \) and \(x_j \), respectively. For \(x_i \in [l_i, u_i] \), we assign to the 7th feature the value 2 if both \(l_i \) and \(u_i \) are finite, 1 if exactly one of them is finite, and 0 otherwise. Feature 8 for \(x_j \) is analogous. Constraints with bounded variables should likely be kept to transitively bound other variables. Feature 9 records the upper bound \(b \) of the constraint. Feature 10 tests if the bound \(b' \) in the constraint \(c' := -a_i x_i - a_j x_j \leq b' \) is finite.

Feature 11 calculates the number of constraints in the octagon element that coarsens the partition (computed by the function \(\text{Coarse} \) as described earlier). If the value of this feature is large, there may be more redundancy so more constraints should be dropped. The last feature is the current loop iteration \textit{iter} to capture loop progress.

Edges for relating constraints. The extraction function \(\text{Edg}(I_{ij}) \) extracts weighted edges connecting the constraints in \(I_{ij} \) (associated with the feature vectors). \(\text{Edg} \) inspects all pairs of constraints \(c \) and \(c' \) in \(I_{ij} \), and adds an edge \((c, c', \omega)\) iff \(|X^c \cap X^{c'}| > 0\), i.e., if \(c \) and \(c' \) share variables. For Polyhedra, the edge weight \(\omega = |X^c \cap X^{c'}| \) is the number of variables that \(c \) and \(c' \) share. We chose this metric since it characterizes the relationship between two constraints. For the Octagon domain where each constraint involves at most two variables, we always set \(\omega = 1 \). The obtained (weighted) edges, represented by the adjacency matrix \(A \), enable structured prediction with GCNs.

6.2 Instantiating Constraint Removal

We represent \(\psi \) by a 3-layer GCN followed by a 4-layer fully connected network with all hidden dimensions set to 128. The features \(F \) and the adjacency matrix \(A \) are first fed to the GCN to obtain structured feature embeddings. Then, the feature embeddings are fed to the fully connected network to produce the output boolean vector \(B \).

Pruning the search space. As described earlier, the search space for finding the right constraints to drop is large since both the number of joins in the abstract sequences and the number of constraints in the join outputs can be large. We incorporate domain-specific knowledge to prune the search space. For Polyhedra, we only consider removing a constraint \(c \) when \(|X^c| > 20\) and \(|E_c(X^c)| > 20\). Such constraints usually cause a performance bottleneck. For Octagon, we consider a constraint \(c \) as a candidate for removal when it coarsens the partition (i.e., \(\text{Coarse}(X^c, \mathcal{P}_r, \mathcal{P}_Q) \) returns 1). Removing such constraints helps in refining the partition which, in turn, boosts speed.

7 Experimental Evaluation

We now present our extensive evaluation of \(\text{Lait} \), focusing on the following two questions:

- **Effectiveness:** How effective is \(\text{Lait} \) for redundancy removal in terms of both speed and precision?
- **Interpretability:** How to interpret \(\text{Lait} \)? What types of constraints are most likely to be removed by \(\text{Lait} \)?

We discuss our results for the Polyhedra analysis in Sections 7.1 and 7.2 and for the Octagon analysis in Section 7.3.

Analyzer and platforms. We used the cram-llvm analyzer, which is part of the Seahorn verification framework [22]. The analysis is intra-procedural with function inlining. By default, widening is applied after the second loop iteration. The analysis runs to obtain abstract sequences for training and testing were performed on a machine with four 2.13 GHz Intel Xeon E7-4830 CPUs and 256 GB RAM. All analysis libraries were compiled with gcc 5.4.0 using the flags -O3 -m64 -march=native.

The neural networks were implemented in PyTorch [2] and trained with the data from analysis runs (i.e., \text{SupervisedLearning} in Algorithm 3) on a machine with one 3.30 GHz Intel Core i9-7900X CPU, three GTX 1080 GPUs, and 128 GB RAM. We used only one GPU for training.

Baselines. We consider the following three baselines:

- **ELINA:** a state-of-the-art library supporting multiple domains including Polyhedra and Octagon [45]. It leverages online decomposition and we use its invariants as ground-truth for measuring precision. We use the version released when we write the paper.
- **HC:** the hand-crafted fixed policy discussed in Section 5.1. It applies to both Polyhedra and Octagon.
- **POLY-Rl:** an approximate Polyhedra analysis based on reinforcement learning [42]. It learns a policy to select among a set of hand-crafted approximate join transformers during analysis based on the join inputs.

As discussed in Section 5.3, our learning algorithm requires an analysis to generate abstract loop sequences for training. In our work, we use the analysis with ELINA, i.e., our goal is to remove redundancy from abstract elements obtained via the analysis with ELINA. However, our approach can be used with other numerical analysis libraries, e.g., APRON [27] or PPL [3]. We use ELINA because it is significantly faster on the considered domains [43–45].

We used the transformers and the learned models from the paper artifact in https://www.sri.inf.ethz.ch/cav2018-paper259.
We evaluate the precision and speed of Lait whether the approximate analysis can prove at least all the LDD categories known for being suitable and challenging shown in Figure 3 and Figure 4, addressing two questions:

7.1 Effectiveness of Lait

We evaluate the precision and speed of Lait. The results are shown in Figure 3 and Figure 4, addressing two questions:

- Can Lait effectively remove redundancy? i.e., can Lait achieve speedup over Elina while preserving precision?
- How does Lait compare to HC and POLY-Rl [42] in terms of both precision and speed?

Training and testing. We chose 30 LDD benchmarks for training. The training procedure ran for about 20 iterations (Algorithm 3), which took about 8 hours. For testing, we selected from the LDD categories all remaining 354 benchmarks for which the analysis with Elina took > 30s. Of these Elina finished 147 (Test set 1) and timed out at 2h on 207 (Test set 2). For Test set 1 (blue x marker), we report the speed and the precision of Lait, HC, and POLY-Rl. For Test set 2 (red o marker), we report only speed since precision cannot be measured as Elina did not finish.

Lait vs. Elina. Figure 3(a) plots Lait’s precision vs. its speedup over Elina on Test set 1. Lait achieves > 2x speedup on 19 benchmarks and 100% precision on 12 of these with a mean precision of 95%. The remaining 128 benchmarks where Lait achieved ≤ 2x speedup usually have little redundancy in the abstract sequences and Lait maintains a median precision of 100% (mean 99%).

In Figure 3(b) we show the speedup of Lait vs. the runtime of Elina on Test set 1 and the 125/207 benchmarks from Test set 2 for which Elina timed out but Lait finished. The red circles thus show lower bounds for the speedup. We see that Lait gains most when Elina is slow. For example, for the 16 benchmarks where Elina finished in > 10m (in Test set 1), Lait achieved a median of 29x speedup (mean 138x). For Test set 2, the median speedup is at least 554x (mean at least 722x). The overall median speedup on all benchmarks (Test set 1 and Test set 2) is at least 20x (mean at least 118x). The large speedups for time consuming Elina analyses in Test set 1 tend to incur little loss in precision, as shown in Figure 3(c).

Based on these results, we conclude that Lait is effective in redundancy removal: it achieves significant speedups and preserves ≈ 100% precision on benchmarks where the analysis with Elina becomes time-consuming or even impractical due to the complexity in the abstract sequences.
Learning Fast and Precise Numerical Analysis

Table 3. Speed and precision for different Polyhedra analyses on 10 benchmarks.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Elina [42]</th>
<th>HC</th>
<th>POLY-RL</th>
<th>LAIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed</td>
<td>Prec.</td>
<td>Speed</td>
<td>Prec.</td>
</tr>
<tr>
<td>qlogic_qlge</td>
<td>3474</td>
<td>49x</td>
<td>99</td>
<td>4.2x</td>
</tr>
<tr>
<td>peak_usb</td>
<td>1919</td>
<td>325x</td>
<td>81</td>
<td>1.3x</td>
</tr>
<tr>
<td>stv090x</td>
<td>3401</td>
<td>4.6x</td>
<td>95</td>
<td>MO</td>
</tr>
<tr>
<td>acenic</td>
<td>3290</td>
<td>TO</td>
<td>65</td>
<td>1.1x</td>
</tr>
<tr>
<td>qla3xxx</td>
<td>2085</td>
<td>163x</td>
<td>95</td>
<td>210x</td>
</tr>
<tr>
<td>cx25840</td>
<td>56</td>
<td>8.8x</td>
<td>83</td>
<td>0.7x</td>
</tr>
<tr>
<td>mlx4_en</td>
<td>46</td>
<td>1.2x</td>
<td>91</td>
<td>1.2x</td>
</tr>
<tr>
<td>advansys</td>
<td>109</td>
<td>1.7x</td>
<td>92</td>
<td>Crash</td>
</tr>
<tr>
<td>i7300_edac</td>
<td>36</td>
<td>2.6x</td>
<td>83</td>
<td>1.2x</td>
</tr>
<tr>
<td>oss_sound</td>
<td>2428</td>
<td>245x</td>
<td>80</td>
<td>1.2x</td>
</tr>
</tbody>
</table>

Figure 4. Comparison of LAIT with HC and POLY-RL on the Polyhedra analysis.

Table 4. Statistics on m_{max} for different Polyhedra analyses on 10 benchmarks.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>m_{max}</th>
<th>m_{max}</th>
<th>m_{max}</th>
<th>m_{max}</th>
<th>m_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LaIT</td>
<td>HC</td>
<td>POLY-RL</td>
<td>Elina [42]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>avg</td>
<td>max</td>
<td>avg</td>
<td>max</td>
</tr>
<tr>
<td>qlogic_qlge</td>
<td>267</td>
<td>6</td>
<td>19</td>
<td>4</td>
<td>205</td>
</tr>
<tr>
<td>peak_usb</td>
<td>48</td>
<td>7</td>
<td>17</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>stv090x</td>
<td>74</td>
<td>12</td>
<td>32</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>acenic</td>
<td>98</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>98</td>
</tr>
<tr>
<td>qla3xxx</td>
<td>284</td>
<td>17</td>
<td>30</td>
<td>9</td>
<td>218</td>
</tr>
<tr>
<td>cx25840</td>
<td>26</td>
<td>10</td>
<td>17</td>
<td>7</td>
<td>26</td>
</tr>
<tr>
<td>mlx4_en</td>
<td>56</td>
<td>4</td>
<td>53</td>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>advansys</td>
<td>38</td>
<td>9</td>
<td>37</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>i7300_edac</td>
<td>41</td>
<td>14</td>
<td>20</td>
<td>9</td>
<td>41</td>
</tr>
<tr>
<td>oss_sound</td>
<td>47</td>
<td>9</td>
<td>38</td>
<td>7</td>
<td>47</td>
</tr>
</tbody>
</table>

LAIT vs. HC. We next compare the runtime and precision of LAIT and HC. Figure 4(a) shows that LAIT and HC achieve overall a similar runtime on Test set 1 (except that HC timed out on 3 benchmarks). However, on Test set 2, LAIT does better than HC: it finished 22 more benchmarks and tends to be faster on those where both finished.

In precision, LAIT clearly outperforms HC as shown in Figure 4(b) on Test set 1. LAIT achieves 100% precision in most cases as already mentioned above, whereas HC often loses precision and is more precise than LAIT on only 11/147 benchmarks.

LAIT vs. POLY-RL. Figure 4(c) shows that LAIT gains significantly over POLY-RL in speed: for Test set 1, LAIT is faster than POLY-RL on a significant portion of the benchmarks and finished 75 more benchmarks from Test set 2 than POLY-RL.

LAIT gains in precision overall compared to POLY-RL on most benchmarks in Test set 1 as shown in Figure 4(d). On the majority of benchmarks, the precision of LAIT is $\approx 100\%$. LAIT loses on 7 benchmarks where it has $< 95\%$ precision but gains on 24 benchmarks where HC achieves $< 95\%$ precision.

Finally, we note that POLY-RL ran out of memory or crashed on 6 benchmarks because of too many constraints. These are not shown in Figure 4.

7.2 Interpretability of LAIT on Polyhedra Analysis

To better understand how LAIT is able to achieve significant speedup and maintain precision, we analyze 10 benchmarks from Test set 1. They are collected in Table 3 together with the speedup and precision achieved by HC, POLY-RL, and LAIT. For ELINA. In the table, POLY-RL did not finish on...
two benchmarks whereas HC timed out on one. Program 17300_edac has 309 program points and the rest each has > 1k program points.

Statistics. The time complexity of the Polyhedra analysis with online decomposition is exponential in the number of constraints in the largest block m_{max} [44]. We gathered statistics on m_{max} after each join in the loop and report its maximum and average value in Table 4. As can be seen, the speedups in the table are strongly correlated with the reduction in m_{max}. For example, for the benchmark qlogieqlge where Lait is 53x faster, the maximum of $m_{\text{Lait}}^{\text{max}}$ is $\approx 8x$ smaller than the maximum of $m_{\text{Elina}}^{\text{max}}$. POLY-Rl is not much faster than Elina in many cases because the maximum of $m_{\text{POLY-Rl}}^{\text{max}}$ stays close to the maximum of $m_{\text{Elina}}^{\text{max}}$ for most of the benchmarks shown.

Lait analysis trace visualization. To investigate the previous reasoning in greater detail, we visualize in Figure 5 $m_{\text{max}}^{\text{Lait}}$ for joins when analyzing the bottleneck loop of benchmark qla3xxx (Elina spent 99% of its analysis time analyzing this loop). The loop consists of four analysis iterations and, for each iteration, we show the value of $m_{\text{max}}^{\text{Lait}}$ and $m_{\text{max}}^{\text{Elina}}$ (y-axis) of each join (indexed by the x-axis). In iterations 2–4, the value of $m_{\text{Elina}}^{\text{max}}$ starts exploding from join index 60 and drops after join index 90. Indeed, Elina spent most of the analysis time in this portion of the program. Lait, in contrast, can keep $m_{\text{max}}^{\text{Lait}}$ always reasonably small by occasionally removing constraints (vertical lines denote joins where Lait removes constraints). Despite the constraint removal, the precision at the loop heads after iteration 2–4 are the same for both Lait and Elina in this case.

Feature dependency of Lait’s decisions. To identify important features, we compute mutual information scores, over all constraints, between the distribution of Lait’s decisions (keep or discard) on Test set 1 and the distribution of each feature listed in Table 1. We plot the scores in Figure 6. We found that Lait’s predictions have the highest dependency with features 1 and 3. Higher values of these features lead to a higher likelihood of constraint removal as it means that the corresponding block has more variables and generators and thus dominates the cost of the overall join. The same holds for feature 2. Further, features 9 and 10 also appear important. A higher value for feature 9 or feature 10 being false for a constraint indicates potential redundancy. Feature 4 and feature 12 are also closely related to Lait’s decisions. The former indicates whether the constraint is likely to be involved in the fixed point computation. As for the latter, Lait tends to remove inequalities more often.

From Figure 6, we can see that Lait made its decision based on various features. A possible direction for more refined interpretability of the constraint removal policy learned by Lait is to jointly consider features and edges. This is an ongoing research area [47].

7.3 Results of Lait on Octagon Analysis

We present results on applying Lait for the Octagon domain.

Training and testing. We selected 10 benchmarks (8 from the LDD categories and 2 from the product-lines category) for training and another 10 LDD benchmarks where Elina took > 10s for finishing the analysis for testing. The training took about 2h for around 20 iterations. We note that for Octagon, Elina is a harder baseline as it is already very fast on most of the LDD benchmarks. Further, the complexity is cubic instead of exponential and thus inherently less amenable for dramatic improvements. We also compare Lait against HC for the Octagon domain.

Lait vs. Elina. The results are presented in Table 5. We first compare Lait to Elina. Lait can speed up analysis (median 1.32x) without losing much precision (median 99.4%).
The highest speedup is 28x on the md_mod benchmark because approximation makes the analysis converge faster in fewer loop iterations.

Lait vs. HC. Lait outperforms HC in terms of both speed and precision. Lait was faster than HC for 8 benchmarks (HC has 2 TOs), and is equally or more precise than HC on 9 benchmarks. Specifically, the precision of HC can drop to < 60% while the precision of Lait stays > 95% on all benchmarks.

Statistics. In Table 6, we show $m_{\text{ELINA}}^\text{max}$, m_{HC}^max and $m_{\text{Lait}}^\text{max}$ for the Octagon domain. $m_{\text{max}}^{\text{Lait}}$ is significantly lower than $m_{\text{max}}^{\text{ELINA}}$, which speeds up the transformers in the Octagon domain implemented using sparse algorithms [43]. HC has a smaller speedup as m_{max}^HC remains large.

Feature dependency of Lait’s decisions. As for the Polyhedra domain, we computed mutual information scores between Lait’s decisions and the features for the Octagon domain in Table 2. Our results show that features 1, 2 and 11 are most important with scores of 0.32, 0.38 and 0.35, respectively. These features capture the complexity of the join output. Feature 5 and 6 are also closely correlated with Lait’s predictions, with scores of 0.19 and 0.18. A high score for these features means that the constraint relates variables that are related to many other variables and thus the constraint is needed for maintaining precision.

7.4 Discussion

Balancing the tradeoff between precision and speed for numerical analysis with highly expressive numerical domains is known to be a challenging problem. For the Polyhedra analysis, we show in Section 7.1 that HC is often fast but can be imprecise whereas Poly-Rl is more precise than HC but only gets modest speedups over Elina. In contrast, Lait effectively identifies and removes redundancy in abstract sequences and achieves significant speedup, of sometimes orders of magnitude, while maintaining precision. Importantly, it accomplishes this with a generic strategy of removing constraints, rather than the heavily domain-specific approach used in Poly-Rl. Therefore, Lait also performs well on the Octagon analysis, as demonstrated in Section 7.5.

Different choices of the classifier. To investigate the necessity of structured prediction in Lait, we replace GCN with a decision tree (DT), or a 4-layer fully connected network (FCN) with hidden dimension 128, resulting in two additional baselines Lait_{DT} and Lait_{FCN}. We re-trained Lait_{DT} and Lait_{FCN} on the same training set as in the previous experiments for both Polyhedra and Octagon domains. The testing results for the benchmarks in Table 3 and Table 5 are shown in Table 7 and Table 8, respectively.

As shown in Table 7 and Table 8, Lait_{DT}, Lait_{FCN}, and Lait have similar precision and speed on most benchmarks. This indicates that our constraint removal framework is effective in reducing redundancy regardless of the choice of the classifier. For six benchmarks (marked with a red font in Table 7 and Table 8), Lait has significantly better speed or precision (or both) than Lait_{DT} or Lait_{FCN}. Lait_{DT} and Lait_{FCN} never exhibit significantly better results than Lait in neither precision nor speed. This suggests that structured prediction with a GCN is necessary to achieve best results.

8 Related Work

We discuss research on using machine learning to improve various aspects of program analysis. Related work in other directions was already discussed in the previous sections.

Numerical static analysis. The authors of [25, 35] learn a static partition strategy for the Octagon domain aiming to boost analysis speed while aiming to prove most of the assertions that the original analysis proves. Lait, however,
is based on dynamic online decomposition, which is significantly more precise than static partitioning [43, 44]. Another direction is to determine with Bayesian optimization [36] or reinforcement learning [26], a subset of variables to be tracked in a flow sensitive manner to speed up analysis [36], with little loss of precision. These works focus on the non-relational Interval domain while our work targets the relational Polyhedra and Octagon domains. POLY-Rt [42] designs a set of hand-crafted approximate Polyhedra join transformers and learns an adaptive policy via reinforcement learning to selectively apply the designed join transformers to balance precision and speed. Our experimental results show that LAIT outperforms POLY-Rt. Moreover, our work is generic and does not require hand-crafted join approximations.

Numerical solvers. Machine learning methods have been extensively applied for optimizing different solvers. The work of [4, 29] learns branching rules via empirical risk minimization for solving mixed integer linear programming problems. The work of [30] learns to solve combinatorial optimization problems over graphs via reinforcement learning. fastSMT [5] learns a policy to apply appropriate tactics to speed up numerical SMT solving.

Inferring invariants. Recent research has investigated the problem of inferring numerical program invariants with machine learning. The works of [17, 40, 49] use machine learning for inferring inductive loop invariants for program verification. The learning algorithms in these works require specifications in the form of pre/post conditions. Our work speeds up numerical abstract interpretation which can be used to infer program invariants without pre/post conditions.

Testing. In recent years, there has been emerging interest in learning to produce test inputs for finding program bugs or vulnerabilities. AFLFast [8] models program branching behavior with Markov Chain, which guides the input generation. Several works train neural networks to generated new test inputs, where the training set can be obtained from existing test corpus [15, 21], inputs generated earlier in the testing process [39], or inputs generated by symbolic execution [24].

9 Conclusion

We proposed a data-driven approach for boosting the speed of existing numerical program analysis without significant precision loss. Our key insight is to leverage structured prediction for identifying and reducing redundancy in the sequence of abstract states produced by a static analyzer. Concretely, we showed how to learn an adaptive neural policy for redundancy removal that makes decisions based on the abstract states created during analysis.

Our experimental results on challenging real-world benchmarks demonstrate that our approach is indeed effective in enabling fast and precise numerical analysis: it achieves orders of magnitude speedups over state-of-the-art methods with only a small loss of precision.

References

