
λPSI: Exact Inference for Higher-Order
Probabilistic Programs

Timon Gehr
ETH Zurich, Switzerland
timon.gehr@inf.ethz.ch

Samuel Steffen
ETH Zurich, Switzerland
samuel.steffen@inf.ethz.ch

Martin Vechev
ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

Abstract

We present λPSI, the first probabilistic programming lan-
guage and system that supports higher-order exact infer-
ence for probabilistic programs with first-class functions,
nested inference and discrete, continuous and mixed random
variables. λPSI’s solver is based on symbolic reasoning and
computes the exact distribution represented by a program.

We show that λPSI is practically effectiveÐit automatically
computes exact distributions for a number of interesting
applications, from rational agents to information theory,
many of which could so far only be handled approximately.

CCS Concepts: • Mathematics of computing → Prob-

abilistic inference problems; • Software and its engi-

neering → Language features; • Computing methodolo-

gies→ Special-purpose algebraic systems.

Keywords: Probabilistic Programming, Exact, Higher-order

ACM Reference Format:

Timon Gehr, Samuel Steffen, and Martin Vechev. 2020. λPSI: Exact
Inference for Higher-Order Probabilistic Programs. In Proceedings

of the 41st ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI ’20), June 15ś20, 2020,

London, UK. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3385412.3386006

1 Introduction

Probabilistic programming systems (PPS) provide inference
algorithms that operate on expressive models specified as
probabilistic programs. Such programs are formed using stan-
dard language primitives from deterministic languages, as
well as constructs for drawing random values and constructs
for conditioning. The key benefit of PPS is that they typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’20, June 15ś20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386006

decouple the task of specifying the (generative) model from
the task of constructing inference algorithms.

The Importance of Exact Inference Because exact proba-
bilistic inference is generally intractable and does not scale
to complex models and large datasets, most inference algo-
rithms implemented in existing PPS are approximate. How-
ever, exact inference is important for several reasons. First,
it can often outperform approximate inference for smaller
models, ones that otherwise have substantial structure, or on
queries with low-probability evidence. Second, it naturally
supports symbolic parameters, meaning it solves a possibly
infinite number of inference problems at once. Third, exact
inference guarantees that no precision is lost. Finally, better
support for exact inference in existing PPS will enable more
fruitful combinations with approximate methods.

Higher-Order PPSwith Exact Inference Unfortunately, re-
cent PPS that support exact symbolic reasoning in the pres-
ence of continuous distributions (Hakaru [14] and PSI [6])
lag behind in terms of the language features they provide. For
example, PSI does not support first-class functions. While
Hakaru’s implementation supports first-class functions (in-
cluding distributions over functions), its exact inference oper-
ators, namely normalization and disintegration (with respect
to the Lebesgue measure) are external programs that ma-
nipulate Hakaru terms and are not available as first-class
operators within these terms. In contrast, there are higher-
order PPS which do support first-class inference (e.g., Church
[22], WebPPL [8] and Anglican [4]), however, their exact in-
ference algorithms only handle discrete distributions. A key
challenge then is to provide support for both first-class in-
ference and the ability to compute the exact posterior over
discrete, continuous and mixed variables.

OurWork In this work we present λPSI, the first PPS which
addresses the above challenge.

First, we introduce the statically typed higher-order prob-
abilistic programming language (PPL) λPSI, which is based
on the PSI PPL [6] but with additional support for tuples,
arrays, higher-order functions, and nested inference. As
demonstrated in PPLs such as Church [7], WebPPL [8], Angli-
can [25] and Venture [13], higher-order constructs are useful
for specifying models where inference queries are nested
within other inference queries. This enables, for instance,
an inference to be made about agents that themselves make

883

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1145/3385412.3386006


PLDI ’20, June 15ś20, 2020, London, UK Timon Gehr, Samuel Steffen, and Martin Vechev

Pr[cookie|button a]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|b
utto

n b
]

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
li
z
e
d
 f

re
q
u
e
n
c
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
li
z
e
d
 f

re
q
u
e
n
c
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0 n
o
rm

a
li
z
e
d
 f

re
q
u
e
n
c
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|button a]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|b
utto

n b
]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y
 d

e
n
s
it

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y
 d

e
n
s
it

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr[cookie|once]

0.0

0.2

0.4

0.6

0.8

1.0

Pr[c
ookie

|tw
ice

]

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
il
it

y
 d

e
n
s
it

y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 1. Inference on łEpistemic Statesž: approximate inference in Webchurch (top) vs. exact inference in λPSI (bottom).

use of models and (incomplete) data so to infer knowledge
about the state of the world. Unlike other higher-order PPLs
(see above), which are dynamically typed, static typing en-
ables easier debugging, better error messages, and avoids
expensive dynamic checks during inference.

Second, we introduce an exact inference solver to handle
these language features while supporting mixed, discrete,
and continuous variables. λPSI’s engine further explicitly
computes the probability of error, while existing PPS crash
stochastically at run time (e.g., randomly indexing an array
may or may not cause an out-of-range error during sampling-
based inference). We believe λPSI is the first to support exact
inference for higher-order probabilistic programs with this
level of expressiveness.
Finally, we show λPSI is powerful enough to specify a

number of interesting problems ranging from information
theory to rational agents, and that its solver can compute,
for the first time, the exact posterior for many applications
that so far could only be handled approximately.

Main Contributions Our key contributions are:

• The λPSI statically typed higher-order PPL which sup-
ports higher-order functions and nested inference (ğ3).

• The λPSI solver which performs exact symbolic inference
and computes the posterior distribution over discrete,
continuous, and mixed random variables (ğ4śğ6).

• An extensive evaluation of higher-order exact inference
with λPSI across various applications (ğ7).

2 Motivation and Overview

We now provide a motivating example for nested inference,
followed by an overview of λPSI.

Nested Inference Example To reason about rational agent
behavior, we can build probabilistic models where multiple
rational agents interact and each has a model about how
the other agents model the interaction. Such models can
be easily built in languages where probabilistic inference
is a first-class expression which is allowed to occur inside
another probabilistic inference query. For instance, Goodman
and Tenenbaum [9] describe a number of (Church/WebPPL)
models of this kind in Chapter 15 (łSocial cognitionž). In
order to evaluate our exact inference approach, we have
specified all of those models in λPSI (see also ğ7).
To illustrate the results of exact inference, let’s consider

some examples of section łEpistemic Statesž of that chapter.

884



λPSI: Exact Inference for Higher-Order Probabilistic Programs PLDI ’20, June 15ś20, 2020, London, UK

These examples model an observer of a rational agent oper-
ating a vending machine that probabilistically yields either
a cookie or a bagel, depending on which one of two buttons
a or b is pressed. In the first model (Fig. 1, left), the agent is
observed to press button b. The observer assumes a uniform
prior over the agent’s actions and knows that the agent’s
goal is to obtain a cookie. The result is the posterior on the
probability that the machine yields a cookie when pressing
a given button. In the second and third model (Fig. 1, mid-
dle and right), the vending machine has only one button a,
which may be pressed multiple times. The prior belief over
the agent’s actions is biased towards pressing the button
fewer times, and the agent is observed to press button a

twice. While the observer knows that the agent’s goal is to
obtain a cookie in the second model, the goal is unknown in
the third model. Such models are interesting because they
involve a mixture of continuous and discrete distributions
as well as nested inference queries. We show the results
comparing approximate vs. exact joint posteriors for these
examples in Fig. 1. The plots in the top row are normalized
histograms of 106 samples each with a resolution of 100×100,
computed by the Church implementation łWebchurchž. The
bottom row shows plots of the exact posteriors computed
by λPSI. We note that our engine evaluates all posteriors
within a few seconds, while random sampling takes up to 10
minutes. To the best of our knowledge, this is the first time
that those posterior distributions have been evaluated to this
precision. We discuss other interesting applications in ğ7.

λPSI Language and Inference The λPSI program in Fig. 2
illustrates some of λPSI’s core language features. Fig. 2 also
visualizes the exact inference result computed by λPSI.

First, the program creates a tuple a of two random real
numbers. One of them is drawn from a continuous uniform
distribution, whereas the other is drawn from a discrete
uniform distribution. In addition to tuples, λPSI supports
arrays of both fixed and random length.

Next, variable x is initialized to a random entry of the tuple.
The subsequent assignment stores the result of a nested in-
ference query in the variable p of type Distribution[R]. The
infer expression accepts an (anonymous) function represent-
ing the query, which uses a uniform prior for the variable y.
This variable is conditioned on the observed evidence y <= x

to produce the nested posterior. Note that the function we
pass to infer is itself random, as it depends on the external
random variable x. infer itself is a deterministic function
without side effects (in particular, the nested inference query
does not influence our knowledge of x), but because the input
is random, the returned distribution p is also random.

Finally, we return the expectation of p and a value drawn
from p, instructing λPSI to compute a joint probability distri-
bution for those two values. As p is random, so is its expec-
tation. Therefore, the program produces a joint distribution
of two dependent real random variables.

1 def main(){

2 a := (uniform(0,2),

3 uniformInt(1,3)/3);

4 x := a[flip(1/2)];

5 p := infer((){

6 y := uniform(0,1);

7 observe(y <= x);

8 return y;

9 });

10 return (expectation(p),

11 sample(p));

12 }
ex
pe
cta

tio
n

0.0
0.2

0.4
0.6

0.8
1.0

sam
ple

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.A λPSI program (left) and its exact joint probability
distribution (right) computed by λPSI.

The system computes this distribution by combining sym-
bolic expressions for subprograms and then simplifying them.
For example, the joint distribution of variables a and x is rep-
resented by the following symbolic expression in λPSI:

∫

dv
∫

dz

(a)
︷                         ︸︸                         ︷

1
2 [0 ≤ v] · [v ≤ 2] · λJvK ·

(b)
︷                   ︸︸                   ︷
( 1
3

∑3
k=1 δ(k/3)JzK

)

· δ((v, z))JaK
︸       ︷︷       ︸

(c)

· 12 (δ(a0)JxK + δ(a1)JxK)
︸                        ︷︷                        ︸

(d)

.

The expression uses integrals to marginalize the temporary
valuesv and z of the first, resp. second entry of a. Part (a) rep-
resents the uniform distribution on the interval [0, 2]. Here,
λJvK represents the Lebesgue measure, which is a continuous
measure with density 1 at each real number. Part (b) uses
Dirac deltas of the form δ(e)JzK, which can be interpreted as
point-mass distributions on e for z, to represent the discrete
uniform distribution on { 13 ,

2
3 , 1}. Part (c) assigns the tuple

(v, z) to a, and part (d) assigns the first or second entry of a
to x , each with probability 1

2 . At this point, it is sufficient for
the reader to understand the basic ideas. In ğ4, we provide
all details required to understand this expression in depth.
The above is an example of an intermediate result com-

puted during the symbolic analysis λPSI performs. A plot
of the cumulative distribution function of the final result
computed by λPSI is shown in Fig. 2. We provide the full
symbolic expression for the final result in App. A.1.

3 The λPSI PPL

We next describe the higher-order probabilistic program-
ming language λPSI, which extends the PSI language [6] by
(i) higher-order functions, (ii) a first-class probabilistic infer-
ence operator, (iii) conditioning on probability-zero events,
and (iv) a dependent static type system. Fig. 3 presents a sim-
plified core syntax of λPSI, which is sufficiently expressive
to highlight the key insights of this work. We provide details
about the full language in App. A.2.

885



PLDI ’20, June 15ś20, 2020, London, UK Timon Gehr, Samuel Steffen, and Martin Vechev

Func ::= def x (x: Type, . . . ,x: Type) Body
Body ::= { Stmt∗ } | ⇒ Ex;
Ex ::= n | x | BuiltIn | uop Ex | Ex bop Ex |

(Ex, . . . ,Ex) | Ex[Ex] |
(x: Type, . . . ,x: Type) Body | Ex(Ex)

Stmt ::= x := Ex; | Ex = Ex; | return Ex; |
observe(Ex); | cobserve(Ex,Ex); |
if Ex { Stmt∗ } else { Stmt∗ } | for x in [n..n){ Stmt∗ }

Type ::= Type × · · · × Type | Type → Type | Distribution[Type] |
N | Z | R | · · ·

BuiltIn ∈ {Flip, Gauss, Uniform, UniformInt, Categorical, Exponential, . . .} ∪ {infer, sample, expectation} ∪ {exp, log, . . .}

Figure 3. Core syntax of λPSI (n, x , uop, and bop denote constants, variables, unary, and binary operations, respectively).

Types Our language features a static type system. In addition
to standard numeral, tuple, and function types, λPSI supports
dedicated distribution types. For example, Distribution[R]
describes distributions over a real variable.

Programs and Functions A λPSI program consists of a se-
quence of function declarations, whose bodies can be either
single expressions (e.g., the function def succ(x:R) ⇒ x+1;)
or sequences of imperative statements (e.g., the function
def succ(x:R) { y:=x; y=y+1; return y; }). The main func-
tion, which may take parameters, forms the entry-point of a
λPSI program.

Expressions Our language supports standard unary and bi-
nary operations on boolean and numeric types. Also, it sup-
ports tuples with the usual syntax. For example, the expres-
sion (3,4) is a two-element tuple, whose first entry 3 can be
accessed by (3,4)[0].
λPSI supports multiple built-in expressions. These include

constructors for built-in distributions, such as Flip and Gauss,
whose lower-case variants (i.e., flip and gauss) draw a sam-
ple from the respective distribution. For example, Flip(1/2)
is the uniform distribution on {0, 1} (whereas flip(1/2) is
a sample), and Gauss(0,1) is the standard normal distribu-
tion parameterized by mean and variance. We can sample
from an expression d representing a distribution via the ex-
pression sample(d). For example, flip(1/2) is equivalent to
sample(Flip(1/2)). Similarly, expectation(d) computes the
expected value of a random variable drawn from d.

Finally, λPSI supports lambda expressions denoting anony-
mous functions, such as (x:R){ y:=x; y=y+1; return y; }.
The syntax for function application is standard (e.g., succ(1)).

Statements Our language distinguishes variable declara-
tions (e.g., x:=3) and assignments (e.g., x=3). The observe

statement conditions the random program state on (positive-
probability) observed evidence: all program states that do not
satisfy the condition are discarded. The result of inference
on the final program is given by renormalizing the result-
ing subprobability distribution at program exit. For example,
the statement observe(x>=2); conditions the distribution on
program states on the observed fact that x is at least 2.

The cobserve (łcontinuous observationž) statement is used
to condition on a possible, but probability-zero event. In
particular, cobserve(x,y); conditions on the probability-zero
event that x is equal to y. We note that conditioning on

such events is a delicate matter and hence requires its own
statement in the language. See [19] for an in-depth discussion
of the involved issues.
Finally, λPSI supports standard if statements, and for

loops with statically-known bounds.

First-Class Inference The built-in infer function enables
us to perform nested inference. It reifies a function f with re-
turn type a to a Distribution[a], for any type a. If f does not
execute observe statements, infer can be thought of as the
inverse of sample. This is because infer(() ⇒ sample(d))

returns the distribution d and () ⇒ sample(infer(f)) yields
the function f. Otherwise, infer is more interesting (see
Fig. 2): it forms a context within which the observations
evaluated by f (see Lin. 7) take effect and returns the normal-
ized posterior of f given that evidence and all state outside
the context. The computation of infer has no side effects,
meaning that the observations do not affect the knowledge
outside the query (e.g., about x).

Further Features The presented syntax is heavily simpli-
fied. The full λPSI language extends Fig. 3 by convenient
features including arrays, dependent types, and polymor-
phic functions (see App. A.2).

4 A Symbolic Domain for Distributions

We now introduce a symbolic domain for probability distri-
butions. When performing exact inference, λPSI simplifies
representations of distributions in this domain. In ğ5, we will
see how any λPSI program is translated to this domain.

4.1 Representation

λPSI’s symbolic domain for probability distributions is shown
in Fig. 4. This grammar extends the symbolic domain used in
PSI [6] by representations of data structures (highlighted in
second line of Fig. 4) as well as higher-order functions and
distributions (highlighted in third line).

Basic Arithmetic Expressions Basic expressions (first line
in Fig. 4) are inherited from PSI, including variables (x), ra-
tional constants (q), the irrational constants e and π , as well
as standard arithmetic expressions including the floor (⌊e⌋)
and ceiling (⌈e⌉) operators. The Iverson bracket [P] is an in-
dicator for the proposition P with the usual convention [12].
Like in PSI, we write divisions a/b as a · b−1.

886



λPSI: Exact Inference for Higher-Order Probabilistic Programs PLDI ’20, June 15ś20, 2020, London, UK

e ::= x | q | e | π | − e | e1 + . . . + en | e1 · . . . · en | ee21 | log(e) | ⌊e⌋ | ⌈e⌉ | [e1 = e2] | [e1 ≤ e2] | [e1 , e2] | [e1 < e2] |

(e1, . . . , ek ) | [x 7→ e[x]](e) | e1e2 | e1e2 7→e3 | { f1 7→ e1, . . . , fk 7→ ek } | e . f | e1{ f 7→ e2} |
∑

x ∈Z e[x] |
∫

dx e[x] | (d/dx)−1[e−x 2 ] | λx . e[x] | e1(e2) | Λx .e[x] | eJxK | δ(e)JxK | λJxK | e1�e2 | ⊥ | e1?(e2)

Figure 4. Symbolic domain for expressing probability distributions. We write e[x] to denote that x is a free variable in e . The

highlighted elements are fundamental to λPSI and new compared to PSI [6].

Data Structures Our symbolic domain can directly repre-
sent data structures of λPSI’s programming language (second
line in Fig. 4). In particular, it supports tuples, arrays, and
records (the latter are used for program states, see ğ5). For
example, (1, 2) is a tuple and {f 7→ 1} is a record with one
field f, which has value 1. We represent arrays as mappings
from indices to values together with their lengths. For exam-
ple, the identity permutation of length 5 is represented as
[x 7→ x](5). The i-th value in an array or tuple a is denoted
by ai . The expression a. f is the value of field f in record a.
The expression ai 7→b (resp. a{f 7→ b}) represents a modifica-
tion of a tuple or array (resp. record) a where the i-th value
(resp. the value of field f) is replaced by b.

Distributions andHigher-Order Functions The third line
in Fig. 4 shows the most interesting expressions, which are
particular to representing probability distributions and first
class functions. The domain contains sums over Z (we write
e[x] to denote that x is a free variable in e) as well as inte-
grals, which will be discussed in detail in ğ4.2. The domain
of an integral is implicitly defined by the variable x being
integrated over. The expression (d/dx)−1[e−x 2 ] denotes the
antiderivative of the function e−x

2
, which does not have a

closed-form solution but is useful to for example express the
cumulative distribution function of a normal distribution.
To support higher-order functions and nested inference,

our domain contains lambdas in two flavours: functions
(λx .e[x]) and distributions (Λx .e[x]). For example, λx . f (x)
is the same as the function f , while Λx .pJxK is the same as
the distribution p. Note that unlike for function application
e1(e2), the argument x for distribution application eJxK must
be a variable. We discuss distributions in more detail in ğ4.2.
As we will exemplify in ğ4.3, all distributions in λPSI

are built from two primitive distributions. The Dirac delta
δ(e)JxK expresses that variable x is distributed according to
the point-mass distribution on e , where x cannot occur freely
in e . For example, δ(0)JxK is the point-mass distribution on 0.
Dirac deltas are used to express discrete distributions. The
Lebesgue measure λJxK is used to construct a continuous
distribution from a probability density function (discussed
in ğ4.3). The operator�denotes disintegration, which we will
discuss in more detail in ğ6.5. It can be loosely thought of as
a special kind of division allowing us to eliminate Lebesgue
measures by the equivalence λJxK�λJxK = 1.

Errors The expression ⊥ denotes a special error value, and
δ(⊥)JxK is used to capture the probability of an error. We
use e1?(e2) to propagate errors upon composition, i.e. e1?(e2)
is equal to e1(e2) for e2 , ⊥, while e1?(⊥) reduces to δ (⊥).

4.2 Interpretation

Before continuing our discussion, we provide an interpreta-
tion of the more advanced symbolic expressions.

Distributions Akey concept of λPSI are distributions, which
can be loosely thought of as unnormalized probability densi-
ties. Formally, a distribution f over a λPSI type τ (e.g., R) is a
bounded measure on τ (it is not necessarily normalized) and
we write D[τ ] to denote the set of all distributions over τ .
We write Λx . f JxK to clarify that f is a distribution for the
variable x . Consider the expression λa. Λb . f (a)JbK, which
takes a as input and returns a probability distribution for b.
Here, f can be thought of as taking a as input and returning
a probabilistic value for b.

Integrals A distribution Λx . f JxK over τ can be formally
interpreted as a random variable: for any S ⊆ τ , it is

Pr[f ∈ S] ∝ f (S) =
∫

τ
1S df

where the integral is the Lebesgue integral (recall that f is a
measure). The probability is proportional due to the missing
normalization.
λPSI’s symbolic domain (see Fig. 4) uses a convenient

(non-standard) notation for integrals: for any types τ , τ ′,
distribution f ∈ D[τ ], and function д ∈ τ → τ ′, it is

∫

dx д(x)f JxK defined as
∫

τ
д df .

The domain of the integral is determined by the type τ of x .
Note how the Riemann-style notation (dx) makes depen-
dencies explicit: The łoutputž of f is used as an input to д.
Notwithstanding the above definition, it often suffices to
think about integrals in the common Riemann sense.

Integrating Higher-Order Distributions Our notation al-
lows conveniently expressing integrals involving higher-
order distributions. For f ∈ D[D[τ ]] being a distribution
over distributions over some type τ , we can e.g. write:

Λr . hJrK = Λr .
∫

dx xJrK · f JxK .

887



PLDI ’20, June 15ś20, 2020, London, UK Timon Gehr, Samuel Steffen, and Martin Vechev

Here, the integration variable x and the result h are single-
order distributions. The interpretation is that for any S ⊆ τ :
Pr[h ∈ S] ∝

∫

dx x(S) · f JxK.

Dirac Delta For any value v , the Dirac delta δ (v) is a mea-
sure capturing the point mass on v . Formally, for any type τ ,
δ : τ → D[τ ] is defined as:

∀v ∈ τ , S ⊆ τ . δ (v)(S) = [v ∈ S].

The expression Λx . δ(v)JxK denotes that x is distributed
according to a point mass on v . We can loosely think of
δ(v)JxK being 0 for all x , v and ∞ for x = v . The Dirac
delta is normalized:

∫

dx δ(v)JxK = 1.

4.3 Examples

The Dirac delta is used to represent discrete probability distri-
butions. For example, the Bernoulli distribution with success
probability 1

3 (i.e., flip(1/3)) can be written as:

Λx . Bernoulli( 13 )JxK := Λx . 2
3δ(0)JxK + 1

3δ(1)JxK .

Note that as expected, the probability of value 1 is
∫

dx [x = 1] · Bernoulli( 13 )JxK = 1
3 .

Discrete distributions with infinite support can be repre-
sented using expressions of the form

∑

x ∈Z e[x]. For instance,
the geometric distribution with success probability 1

4 (i.e.,
geometric(1/4)) can be written as:

Λx .
∑

i ∈Z [i ≥ 0] ·
( 3
4

) i · 1
4 · δ(i)JxK . (1)

Intuitively, the Lebesgue measure λJxK assigns uniform
weight to all values. It can be used to define continuous
distributions: the expression Λx . p(x) · λJxK denotes the dis-
tribution of a continuous random variable with probability
density function p. For example, the exponential distribution
with rate 2 (i.e., exponential(2)) can be written as:

Λx . [0 ≤ x] · 2e−2x · λJxK .

A key property of λPSI’s symbolic domain is the fact that
it can represent distributions which are only partially contin-
uous. For example, the uniform distribution over an interval
[a,b] (i.e., uniform(a,b)) is represented by:

λa,b . Λx . [a < b] · 1
b−a · [a ≤ x] · [x ≤ b] · λJxK (2)

+ [a = b] · δ(a)JxK (3)

+ [b < a] · δ(⊥)JxK . (4)

This distribution is parametric in a and b, and it consists
of three parts. For a < b, the part (2) defines a continuous
uniform distribution between a and b. In part (3), the interval
only includes a single point and we hence place a point mass
on a. The case b < a is treated as an error and we put all the
probability mass on the error value ⊥ in part (4).

4.4 Comparison to PSI

As a core difference to PSI [6], λPSI’s symbolic domain closely
follows the measure-theoretic interpretation of its terms (see
ğ4.2). In particular, it introduces explicit Lebesgue measures
(λJxK) for continuous distributions and explicitly specifies
the random output variable of a Dirac delta.While the expres-
sion δ (x) in PSI is equivalent to δ(0)JxK in λPSI, the formal
interpretation of the PSI expression δ (x − y) is unclear. In
λPSI, this is equivalent to either δ(x)JyK or δ(y)JxK.
Note that in λPSI, the error state (⊥) is integrated in

the symbolic domain instead of being treated separately in
the program state. Also, data structures (tuples, arrays, and
records) are directly modeled by λPSI’s representation.

5 From Programs to Symbolic
Representations

We now show how λPSI translates programs to the sym-
bolic domain of ğ4. This is the first step of performing exact
inference for higher-order probabilistic programs.

5.1 Translating Programs to the Symbolic Domain

A λPSI program is translated recursively. For each statement
Stmt we represent the posterior distribution over values
of all program variables given their previous values and
any observations made within Stmt. More specifically, a
statement Stmt is translated to an expression of the form
λσ . Λσ ′

. f (σ )Jσ ′K, which takes as input a state σ before ex-
ecuting Stmt, and returns the distribution over the state σ ′

after executing Stmt in σ . A state is a record containing val-
ues for all accessible variables. Similarly, an expression Ex
is translated to a distribution of the form λσ . Λx . f (σ )JxK.
This symbolic expression takes as input a state σ and returns
the distribution over the value of Ex in the state σ .

Fig. 5 shows selected key rules of the translation, which is
defined recursively. To reduce clutter, the presented rules ig-
nore error handling and polymorphic types. We will discuss
incorporating error states in ğ5.2.

Basic Expressions Variables are translated to the pointmass
distribution on the value of the variable according to the state
(analogously for constants), see rule (5).

The rule for binary operations (6) is instantiated for ad-
dition, but works analogously for other deterministic ex-
pressions. The probability that a+b evaluates to a value x is
computed by integrating over all possible values y and z for
a and b, respectively, such that their sum y + z equals x . In
rule (6), this is expressed by recursively translating a and
b, and introducing a Dirac delta. Note that because λPSI ex-
pressions do not have side-effects, the probabilities for the
values of a and b are independent given the current state σ .

Distributions Sampling from built-in distributions (using
for example flip or exponential) is directly translated to a
symbolic representation as exemplified in ğ4.3.

888



λPSI: Exact Inference for Higher-Order Probabilistic Programs PLDI ’20, June 15ś20, 2020, London, UK

Variable read x = λσ . Λr . δ(σ .x)JrK (5)

Binary operation a + b = λσ . Λx .
∫

dy
∫

dz a (σ )JyK · b (σ )JzK · δ(y + z)JxK (6)

Assignment x = e; = λσ . Λσ ′
.

∫

dx ′ e (σ )Jx ′K · δ(σ {x 7→ x ′})Jσ ′K (7)

Seq. composition A; B; = λσ . Λσ ′′
.

∫

dσ ′ A (σ )Jσ ′K · B (σ ′)Jσ ′′K (8)

Observation observe(e); = λσ . Λσ ′
. δ(σ )Jσ ′K · p(σ ) where p(σ ) :=

∫

dx e (σ )JxK · [x , 0] (9)

Continuous obs. A; cobserve(b,c); = λσ . Λσ ′
.

∫

dy
((

A (σ )Jσ ′K · b (σ ′)JyK
)

�λJyK
)

· c (σ ′)JyK (10)

Control flow if e {A} else {B} = λσ . Λσ ′
.

∫

dx e (σ )JxK ·
(

[x , 0] · {A} (σ )Jσ ′K + [x = 0] · {B} (σ )Jσ ′K
)

(11)

Scoping {A} = λσ . Λσ ′
.

∫

dσ ′′ A (σ ′)Jσ ′′K · δ(σ ′′ \ {x : variable x introduced in A})Jσ ′K (12)

Inference infer(f) = λσ . Λx . δ
(

Λy. f ()JyK · Z−1
)

JxK where Z :=
∫

dz f ()JzK (13)

Sample sample(d) = λσ . Λz.
∫

dx d (σ )JxK · xJzK (14)

Expectation expectation(d) = λσ . Λz.
∫

dx d (σ )JxK · δ
(∫

dy xJyK · y
)

JzK (15)

Function (){ A; return e; } = λσ . Λz.
∫

dσ ′ A (σ )Jσ ′K · e (σ ′)JzK (16)

Figure 5. Key translation rules, ignoring error states. The rules are recursive and we write a to denote the translation of a.

Basic Statements For assignments x = e, we translate e to
obtain the distribution over all possible right-hand sides x ′

in state σ . The new state σ ′ is equal to σ except that the
value of variable x may be any such x ′ with the according
probability. This is expressed using an integral over x ′ in (7).
The rule for sequential composition (8) is based on the

standard chain rule for probabilities. In particular, the rule
integrates over all possible intermediate states σ ′.

Observations An observation observe(e) restricts the pos-
sible output states according to the boolean expression e.
Intuitively, this amounts to setting the probabilities of all
states violating e to zero and re-normalizing the resulting
distribution. Rule (9) first computes the probability p(σ ) of
e evaluating to a non-zero number (meaning, true) in the
current state σ . If e is deterministic, p(σ ) is either 0 or 1.
However, note that e may involve random choices such
as in observe(uniform(0,2) < 1), where p(σ ) is 1

2 . Next, the
rule rescales the probability of the current state σ using
δ(σ )Jσ ′K · p(σ ). The resulting distribution over σ ′ may not
be normalized any more, but will be re-normalized later.
The effect of observe can be better understood under se-

quential composition. Consider the code in Fig. 6. After Lin. 2,
x is uniformly distributed between 2 and 5. For Lin. 3, the
probability p(x) that x >= 3 evaluates to true is [x ≥ 3]. Ac-
cording to the rule for sequential composition (8), the distri-
bution over x after Lin. 3 is obtained by integrating over all
intermediate values of x after Lin. 2. The factor p(x) łcuts offž
the distribution below 3 and we obtain the (unnormalized)
uniform distribution between 3 and 5, as expected. In ğ6,
we will see how λPSI formally derives this in a sequence of
translation and simplification steps.

1 infer(() {

2 x := 2 + uniform(0,3);

3 observe(x >= 3);

4 return x;

5 })

Figure 6. Nested inference example.

Continuous Observations Rule (10) translates continuous
observations cobserve(b,c). For this, it incorporates all state-
ments A preceding the observation in the current statement
block (if there are none, A can be treated as an empty state-
ment). This rule takes precedence over rule (8).

First, we recursively translate A and b to obtain a distribu-
tion for σ ′ and the value y of b. For cobserve to be defined,
it must be possible to rewrite this distribution such that it
involves a Lebesgue measure factor λJyK. Next, we eliminate
this Lebesgue measure using disintegration (�) and replace
it by the distribution of c. This will become more clear once
we discuss rules for disintegration in ğ6.5.

Control Flow and Scoping For if-then-else statements, we
first translate both branches. A branch may introduce local
variables in its scope, which must not occur in the output
distribution. Hence, we use rule (12) to marginalize all vari-
ables introduced in a branch and obtain a distribution over
all variables in the outer scope. Next, rule (11) translates
the condition e and integrates over all possible values of e,
always selecting the appropriate branch. Loops in λPSI are
bounded and are unrolled during translation.

889



PLDI ’20, June 15ś20, 2020, London, UK Timon Gehr, Samuel Steffen, and Martin Vechev

Nested Inference A key insight of λPSI is that the process
of inference itself is directly expressible in λPSI’s symbolic
domain. The result is a distribution over the inferred distribu-
tion. In order to translate infer(f), rule (13) first recursively
translates the zero-argument function f and computes the
normalization constant Z . Next, the rule normalizes the dis-
tribution represented by f and returns the Dirac delta at
that position. Note that inference is deterministic and hence
translated to a point mass.
Given a distribution d, the expression sample(d) draws a

sample from d. Assume d is computed as follows (note that
Flip is a distribution, while flip is a sample):

d := Flip(1/2);

if flip(1/4) { d = Flip(1/3); }

To compute the probability of a sample z from d we need to
sum (i) the probability that flip(1/4) is false and z is gener-
ated by Flip(1/2), and (ii) the probability that flip(1/4) is
true and z is generated by Flip(1/3). In general, we need to
integrate over all possible distributions x represented by d

and compute the probability of z according to x , see rule (14).
To translate the expression expectation(d), we also inte-

grate over all possible distributions x . For each such distribu-
tion, we compute the expectation by the standard definition
(i.e.,

∫

dy xJyK ·y) and construct the point mass on that value.
The result is a distribution over the expected value of d .

Functions For simplicity, consider a function containing
only one return statement at the end, i.e. the body has the
form A; return e; (the general case is similar). In rule (16),
we first translate A to obtain a distribution over the state
σ ′, which comprises all variables in the function’s scope.
Then, we translate e to obtain a distribution over the return
value in the state σ ′. Finally, we integrate over all possible
states σ ′. Note that in general, the resulting distribution may
be parameterized by the function’s arguments (not shown).

Renormalization The entry point for a λPSI program is its
main function, which may accept parameters. This function
is translated just as any other function according to rule (16),
but λPSI renormalizes the distribution before returning the
result (similarly as in rule (13) for infer). Note that the nor-
malization constant may depend on the parameters of main.

5.2 Accounting for Error States

Statements and expressions in λPSI may lead to errors under
some states. Examples include divisions by zero and passing
non-conforming parameters to distributions such as a > b in
uniform(a,b). λPSI incorporates the probability of an error
in the computed posterior distributions: the representation
λσ . Λσ ′

. f (σ )Jσ ′K of a statement assigns to each non-error

starting state σ the distribution over the output state σ ′,
which may be the error state ⊥ (similarly for expressions).
Symbolic distributions make use of Dirac deltas δ(⊥)JxK to
capture the probability of an error (see for example Eq. (4)).

The presence of errors slightly complicates the translation
rules of Fig. 5. In particular, for all integrals of the form
∫

dσ f JσK the integration domain also includes ⊥ (as f may
cause an error) and we hence must analyze the case σ = ⊥
separately. For instance, the rule for sequential composition
needs to propagate errors caused in A through B using an
expression of the form e1?(e2):

λσ . Λσ ′′
.

∫

dσ ′
A (σ )Jσ ′K · B ?(σ ′)Jσ ′′K .

We do not further discuss error states in this paper.

6 Inference by Symbolic Simplification

We now present how the symbolic representation of a trans-
lated program is simplified to a compact representation. This
constitutes the second step of λPSI’s inference procedure.
As we discuss in ğ6.6, the presented simplifications are

an extension of the symbolic optimizations used by PSI [6].
In particular, we (i) generalize PSI’s rules to λPSI’s more
powerful symbolic domain, and (ii) improve the former’s
efficiency using various (low-level) optimizations.

Basic Algebraic Simplifications λPSI applies various ba-
sic algebraic rules, such as removing multiplications by 1
and additions with 0, and simplifying terms multiplied by
0 to 0. It further leverages commutative, associative, and
distributive laws where applicable. In general, integrals over
sums are simplified to sums of integrals, and constant factors
within integrals are moved out of the integrals.

Running Example We next describe the most important
simplification rules on a running example. Concretely, we
translate and simplify the λPSI expression in Fig. 6, while dis-
cussing a selection of interesting simplification steps (Fig. 7).
We start by translating and simplifying the expression

2 + uniform(0,3) (Lin. 2 in Fig. 6). We apply the rule for
binary operations (6) to obtain (17), see Fig. 7. Next, the
constant 2 is translated to a point mass, and uniform(0,3) is
translated according to (2).

6.1 Dirac Delta Substitution

Expression (18) contains an integral over y, which occurs
as an łoutputž of a Dirac delta (see highlighted)Ða common
structure. Intuitively, we know that δ(2)JyK is zero for all
y , 2. Hence, we can simplify the expression by removing
the integral and Dirac delta, and substituting all occurrences
of y by 2 to obtain (19). In general, integrals over the output
variable of a Dirac delta result in substituting the variable.
This key rule is shown in (29) of Fig. 8.

6.2 Dirac Delta Linearization

The structure of (19) is similar as before, but this time the inte-
gration variable z occurs in the first argument to δ . In general,
λPSI often encounters expressions of the form

∫

dx дJxK ·
δ(f (x))JyK, which can be interpreted as y depending deter-
ministically on x by y = f (x). If д is a Dirac delta, we can

890



λPSI: Exact Inference for Higher-Order Probabilistic Programs PLDI ’20, June 15ś20, 2020, London, UK

2 + uniform(0,3)
§5
= λσ . Λx .

∫

dy
∫

dz 2 (σ )JyK · uniform(0,3) (σ )JzK · δ(y + z)JxK (17)

⋆

= λσ . Λx .
∫

dy
∫

dz δ(2)JyK · 13 · [0 ≤ z] · [z ≤ 3] · λJzK · δ
(

y + z
)

JxK (18)

§6.1
= λσ . Λx .

∫

dz 1
3 · [0 ≤ z] · [z ≤ 3] · λJzK · δ(2 + z)JxK (19)

§6.2
= λσ . Λx .

∫

dz 1
3 · [0 ≤ z ] · [ z ≤ 3] · λJxK · δ(x − 2)JzK (20)

§6.1
= λσ . Λx . 13 · [2 ≤ x] · [x ≤ 5] · λJxK (21)

x := 2 + uniform(0,3);

observe(x >= 3);

§5
= λσ . Λσ ′′

.

∫

dσ ′ x := 2 + uniform(0,3) (σ )Jσ ′K · observe(x >= 3) (σ ′)Jσ ′′K (22)

⋆

= λσ . Λσ ′′
.

∫

dσ ′ ∫

dx ′ 1
3 · [2 ≤ x ′] · [x ′ ≤ 5] · λJx ′K · δ(σ {x 7→ x ′})Jσ ′K · δ

(

σ ′
)

Jσ ′′K · [ σ ′
.x ≥ 3] (23)

§6.1
= λσ . Λσ ′′

.

∫

dx ′ 1
3 · [2 ≤ x ′] · [x ′ ≥ 3] · [x ′ ≤ 5] · λJx ′K · δ(σ {x 7→ x ′})Jσ ′′K (24)

§6.3
= λσ . Λσ ′′

.

∫

dx ′ 1
3 · [3 ≤ x ′] · [x ′ ≤ 5] · λJx ′K · δ(σ {x 7→ x ′})Jσ ′′K (25)

Fig. 6
§5
= λσ . Λx . δ

(

Λy. Lin. 2ś4 in Fig. 6 ()JyK ·
(∫

dz Lin. 2ś4 in Fig. 6 ()JzK
)−1)

JxK (26)

⋆

= λσ . Λx . δ

(

Λy. 13 · [3 ≤ y] · [y ≤ 5] · λJyK ·
( ∫

dz 1
3 · [3 ≤ z] · [z ≤ 5] · λJzK

)−1)
JxK (27)

§6.4
= λσ . Λx . δ

(

Λy. 12 · [3 ≤ y] · [y ≤ 5] · λJyK
)

JxK (28)

Figure 7. Selected steps of deriving a simplified representation of the code in Fig. 6. The terms affected by substitution (ğ6.1),

linearization (ğ6.2), guard simplification (ğ6.3), and symbolic integration (ğ6.4) are highlighted. Equalities annotated with⋆

denote recursive translation and simplification.

Substitution
∫

dx f (x) · δ(v)JxK = f (v) (29)

Linearization

δ(f (x))JyK · λJxK = [f ′(x) = 0] · δ(f (x))JyK · λJxK (30)

+ [f ′(x) , 0] ·

part 2
︷                                    ︸︸                                    ︷
∑

z :f (z)=y δ(z)JxK /| f ′(z)| · λJyK
︸                      ︷︷                      ︸

part 1

Disintegration

(e · λJxK)�λJxK = e (31)

Figure 8. Simplifying Dirac deltas and Lebesgue measures.
Here, f ′ is the derivative of f .

apply (29) to substitute x in f (x). Otherwise, we would like
to express δ(f (x))JyK in terms of δ(h(y))JxK for some h such
that we can later apply substitution (29). This is achieved by
linearization, which rewrites the original Dirac delta over y
as a linear combination of Dirac deltas over x .

Linearization in a Simple Example Let us have a look at
our running example (19), where дJzK = 1

3 · [0 ≤ z] · [z ≤ 3] is
the uniform distribution on [0, 3]. Instead of first selecting z
uniformly between 0 and 3 (by д) and then setting x to 2 + z
(by the Dirac delta), we can just as well directly select x
uniformly between 2 and 5.

Intuitively, δ(2 + z)JxK is only non-zero at locations where
x = 2 + z, or equivalently z = x − 2. Hence, we can linearize
this Dirac delta (see highlighted in (19)) by expressing z in
terms of x andmoving z to the second argument of δ , see (20).
Note how thereby, λJzK changes to λJxK. Then, we can apply
substitution (29) to obtain the desired result in (21).

The General Case Rewriting δ(f (x))JyK for general f re-
quires more care. We now explain the general rule as pre-
sented in Fig. 8, Eq. (30).

To highlight a first issuewith our previous attempt, inspect
the following normalized distribution over y:

Λy.
∫

dx [0 ≤ x] · [x ≤ 1] · λJxKδ(2x)JyK .

Incorrectly linearizing λJxKδ(2x)JyK to λJyKδ(y/2)JxK gives

∫

dx [0 ≤ x]·[x ≤ 1]·λJyKδ(y/2)JxK
(29)
= [0 ≤ y]·[y ≤ 2]·λJyK

which is not normalized anymore. In fact, we would need to
introduce a factor 1

2 . As can be shown by the substitution rule
of Lebesgue integration, in general one needs to divide by
the absolute value of the derivative f ′ of f (part 1 in Fig. 8).
Second, there may be more than one value x for which

f (x) = y (i.e., f may not be invertible). For example, for
y > 0 the Dirac delta δ

(

x2
)

JyK is non-zero for both x =
√
y

and x = −√y, so the linearized expression is a sum of two
Dirac deltas at these positions (see part 2 in Fig. 8).

891



PLDI ’20, June 15ś20, 2020, London, UK Timon Gehr, Samuel Steffen, and Martin Vechev

Figure 9. The function f (x) = 1 + [−1 ≤ x]·[x ≤ 1]·(1−x2).

Because part 2 is not defined for locations where the deriv-
ative of f is zero, we need to treat such locations separately.
For this reason, (30) distinguishes f ′(x) = 0 and f ′(x) , 0.
For the first case, we can often find all solutions x of

f ′(x) = 0 and substitute these in f (x). For example, consider
the function f given in Fig. 9 whose derivative is zero at x =
0, everywhere below −1, and everywhere above 1. We can
hence rewrite [f ′(x) = 0] to [x ≤ −1]+ [x ≥ 1]+ [x = 0] and
distribute δ(f (x))JyK over these three summands. Because
we know that f (0) = 2, we can rewrite [x = 0] ·δ(f (x))JyK =
[x = 0] · δ(2)JyK. Further, because the derivative is zero, we
know that f (x) must have the same value (namely, 1) for
all x ≤ −1. Hence, we can rewrite [x ≤ −1] · δ(f (x))JyK to
[x ≤ −1] · δ(1)JyK (similarly for x ≥ 1).

6.3 Guard Simplifications

We continue our running example by translating and sim-
plifying Lin. 2 and Lin. 3 of Fig. 6. These lines are translated
to (22) using the rule for sequential composition (8), and
instantiating the simplified expressions (steps not shown
in Fig. 7) gives (23). Because the integration variable σ ′ is
the output of a Dirac delta (see highlighted), we can again
apply substitution (29). Note how the access of field x in σ ′

.x

is simplified to x ′, because σ ′ is substituted by σ {x 7→ x ′}.
In the resulting expression (24), there are multiple Iverson

bracket factors imposing constraints on x ′ (called guards). In
particular, x ′ is bounded from below by both 2 and 3 due to
the highlighted factors. As the constraint 2 ≤ x ′ is implied
by x ′ ≥ 3, we simplify the two factors to [3 ≤ x ′] in (25).

In addition to eliminating redundant guards, λPSI supports
many more guard simplifications (mostly inherited from PSI).
For example, it simplifies whole terms to 0 if the therein
contained guards are unsatisfiable (e.g., as in [x = 0] · [x ,
0]). Also, λPSI analyzes complex guard constraints (such as
quadratic polynomials) to rewrite them as a combination of
simpler, linear guard constraints (e.g., we rewrite [x2 ≥ 4]
as [x ≥ 2] + [x ≤ −2]). Guard simplifications are also used
to simplify [f ′(x) = 0] during linearization (30), see our
previous example in ğ6.2.

6.4 Symbolic Integration

We continue translating and simplifying Fig. 6, which per-
forms nested inference at the top level. Recall that nested

inference can be directly represented in λPSI’s symbolic do-
main: using rule (13), we translate infer to (26). Recursively
translating and simplifying Lin. 2ś4 gives (27).
The normalization constant (highlighted) is an integral

to be simplified. This time, the integrand does not contain
any Dirac deltas, so the simplification rules of ğ6.1 and ğ6.2
do not apply. However, the integrand is simply a constant
function between 3 and 5, hence we can simplify the integral
to 5−3

3 =
2
3 . The resulting expression (28) is fully simplified

and represents the posterior distribution over the value of
the expression from Fig. 6.

Simplifying Integrals λPSI extends PSI’s powerful engine
for symbolic integration of a wide class of functions not in-
volving Dirac deltas. To simplify such integrals, λPSI first
applies guard simplifications (ğ6.3) in order to determine
the integration bounds. Note that a single guard constraint
may be simplified to a sum of guards, hence this step may
split an integral into a sum of integrals. Next, λPSI leverages
antiderivatives of known function classes (e.g., polynomials
and logarithms) and standard integration rules (e.g., integra-
tion by parts) to find the integrand’s antiderivative. If this
succeeds, the latter is evaluated at the bounds to give the
final result.

Simplifying Sums λPSI applies similar techniques to sim-
plify absolutely convergent series, which may for example
occur when computing expectations of discrete distributions.
For example, while simplifying expectation(Geometric(

1
4))

λPSI encounters the following expression (cp. (1)):
∫

dx
∑

i ∈Z [i ≥ 0] · ( 34 )i ·
1
4 · δ(i)JxK · x .

(29)
=

1
4 ·

∑

i ∈Z [i ≥ 0] · ( 34 )i · i . (32)

λPSI identifies several convergent series with known val-
ues and heavily makes use of Abel’s lemma (summation by
parts) [1] to simplify such expressions. Using this, it can for
instance simplify (32) to the value 3.

6.5 Symbolic Disintegration

Consider the following code snippet:

x := gauss(µ,ν); cobserve(2·x, y);

The cobserve statement conditions on the possible but prob-
ability zero event that 2 · x equals an observed value y. Intu-
itively, this has two effects: (i) the current program path is
reweighted by 1

2 f (y/2; µ,ν ), where f is the Gaussian density,
and (ii) the value of 2 · x is fixed to the observed value y. We
now derive these effects from our translation and simplifica-
tion rules. After translation and some simplification steps (σ
and σ ′ omitted for brevity), the distribution of x is
∫

dz
(

(f (x ; µ,ν ) · λJxK · δ(2 · x)JzK)�λJzK
)

· δ(y)JzK
(30)
=

∫

dz
( ( 1

2 f (x ; µ,ν ) · δ(z/2)JxK · λJzK
)

� λJzK
)

· δ(y)JzK .

892



λPSI: Exact Inference for Higher-Order Probabilistic Programs PLDI ’20, June 15ś20, 2020, London, UK

We purposefully used Dirac delta linearization to write the
joint prior distribution of x and z = 2·x with an explicit factor
λJzK. Now, we use the disintegration rule (31) to eliminate
the highlighted λJzK, obtaining the desired weighted Dirac
delta:
∫

dz 1
2 f (x ; µ,ν ) · δ

(
z
2

)

JxK · δ(y)JzK = 1
2 f

(y

2 ; µ,ν
)

· δ
(y

2

)

JxK

In general, rule (31) transforms the density of the first argu-
ment of cobserve to a weight for the remaining distribution.
Note that due to its powerful Dirac delta linearizer, λPSI
can symbolically disintegrate some programs that are not
handled by Shan and Ramsey [19].

6.6 Comparison to PSI

The main differences to PSI [6] are related to adding support
for the new terms of the symbolic domain (see Fig. 4) and
are hence purely additive. Still, λPSI introduces major design
and implementation improvements. Unfortunately, a full
treatment of all simplification rules is impossible within
the scope of this paper, as they have been developed over
multiple years. Still, we list the most important differences
to PSI’s symbolic optimizations below.
While basic arithmetic simplifications and guard simpli-

fications (ğ6.3) are mostly inherited from PSI, some low-
level improvements were added (e.g., PSI can not simplify
guards involving reciprocals of polynomials). Unlike in PSI,
the Dirac delta of λPSI has an explicit łoutputž argument,
but the rules for Dirac delta substitution (ğ6.1) are analogous.
Linearization (ğ6.2) closely follows the rules already present
in PSI. However, the rewrites allowed in λPSI are more re-
stricted because Lebesgue measures are no longer implicit
and must be present. While simplification rules for inte-
grals (ğ6.4) are mainly inherited from PSI, λPSI introduces
many non-trivial simplifications of sums (e.g., to simplify
expectations). Disintegration (ğ6.5) is new, as PSI does not
support cobserve.

6.7 Limitations

λPSI’s simplifications are only best-effort, i.e., sound but not
complete. Like virtually all existing exact inference and in-
complete computer algebra systems, its limitations (what can
and can not be simplified) are hard to characterize. Gener-
ally speaking, the limitations of λPSI are related to inference
being intractable in general. In particular, not all programs
have closed-form representations in the symbolic domain of
Fig. 4, and no algorithm (efficient or not) will always be able
to decide if such representations exist.
However, in ğ7 we show that λPSI’s simplification rules

work well for a set of benchmark programs. We also show
an example which can not be simplified by λPSI.

6.8 Correctness

In this paper, we do not provide an explicit embedding of
λPSI’s symbolic representation into a systemwidely accepted

to be consistent, such as set theory. However, we note that the
correctness of λPSI is nonetheless falsifiable. For example, we
can write a program that computes a known real number or
real function. The expression produced by λPSI will often be
interpretable as a standard mathematical expression, which
can be compared to the known result. There are also less
explicit ways to falsify the correctness of λPSI: For example,
if it were to compute a negative probability or probability
density, we would know that it was incorrect.

7 Evaluation

We implemented λPSI by extending the publicly available
PSI PPL (https://psisolver.org) with the features from ğ3 and
the exact inference capabilities from ğ4śğ6.
We assembled a collection of 31 programs with higher-

order constructs such as distributions over functions and
nested inference, summarized in Tab. 1. The collection com-
prises examples from the literature (including the applica-
tions discussed in ğ2 and ğ7.1) and custom programs.

All our experiments were performed on a commodity lap-
top with 32 GB of RAM and 4 CPU cores at 2.60 GHz.

Expressiveness and Performance of λPSI We can express
all programs succinctly in λPSI, as all required language fea-
tures are supported as first-class citizens. For the FairSVM [23]
example, there is no closed-form representation of the poste-
rior in λPSI’s symbolic domain as it depends non-trivially on
properties of products of Gaussians (this is inherited from
PSI [6]). A simple example that can not be simplified by λPSI
for the same reason: def main() ⇒ gauss(0,1)*gauss(0,1)<1;

For the remaining 30 examples, λPSI successfully infers a
closed-form exact result (no integrals left) within at most
42 seconds. We conclude that λPSI is powerful enough to
express interesting applications and that its simplification
engine is effective.

7.1 Case Studies

Bayesian Regression Heunen et al. [11] motivate higher-
order probabilistic programming by expressing linear regres-
sion as a prior over first-class functions f together with
observed I/O examples. We use λPSI to compute the poste-
rior density p(y) of y = f (x) in terms of x . We show a plot
of the posterior in App. A.3.

We also encoded an example with a piecewise linear func-
tion prior [10], deriving the posterior for y at a specific x .

Conditional with Symbolic Parameters Given a probabil-
ity distribution Pr, an event A and observed evidence B, we
want to compute Pr[A | B] (shown in Fig. 10). We use Bayes’
rule directly (instead of observe). λPSI evaluates the result-
ing probability for all valid values for parameters X and Y

simultaneously; the result is shown in Fig. 10, right.

893

https://psisolver.org


PLDI ’20, June 15ś20, 2020, London, UK Timon Gehr, Samuel Steffen, and Martin Vechev

Table 1. Probabilistic programs used in evaluation (31 in total). For each program, we indicate if it involves higher-order
functions (→), nested inference (⇝), first-class expectations (E), continuous distributions ( ), continuous observations ( ), or
symbolic parameters ( a ). SocialCognition and TotalVarDist have multiple variants. Some programs are not expressible in
Hakaru (−), while others lead to errors (×), unsimplified (■) or incorrect (××) results. aNot directly expressible; rewritten as
first-order programs without function calls, multiple manual steps. bFor concrete instantiation of symbolic parameters.

Features Runtime

Program(s) Description → ⇝ E a Hakaru [19] λPSI

SocialCognition (12) [9] Multiple rational agent models (see ğ2)  × / ×× <5.5s
CondProb (Fig. 10) Compute conditional probability using expectation operator      ×ab 3s
Overview (Fig. 2) Example involving multiple language features   × 0.3s
ChannelCap Mutual information between input and output of noisy channel     - 2s
Entropy Entropy of randomly generated sequence    - 3s
GenCap [3] Generalization capacity of sorting algorithms (see Fig. 11)    - 16s
AIDE [5] KL-divergence between particle filter and exact inference on HMM    - 42s
BivariateIndep Verify that bivariate distribution has independent components    - 0.1s
SecretSanta Five people guess secret santa in turn, based on uniform prior   × 0.5s
TotalVarDist (2) [2] Total variation distance for random walk and Dynkin process (20 steps)   × < 5s
MontyHall Monty hall problem variants modeled using nested inference   × 0.1s
Variance Compute variance of given distribution    - 0.5s
CDF Compute CDF of Gaussian distribution at a point drawn from it    × 0.1s
GANLoss GAN loss for simple probabilistic model against optimal discriminator      - 0.7s
FairSVM [23] Infer weights for fair SVM classifier     × ■

BayesLinReg [11] Bayesian linear regression from 5 data points with Gaussian noise     2sab 0.2s
BayesPiecewiseLR [10] Bayesian piecewise linear regression from 7 data points    × 33s
DisintegrateLinear [19] Motivating example from [19], disintegrate linear function two ways     4sa 0.2s
DisintegrateQuadratic Disintegrate quadratic function (involves cobserve((x-1)^2,y))     ■

a 0.1s

def PrAgB(d: Distribution[R × R],
A: R × R→ B, B: R × R→ B){

prAB := expectation(infer((){

x := sample(d);

return A(x) && B(x);

}));

prB := expectation(infer((){

x := sample(d);

return B(x);

}));

return prAB / prB;

}

def main(X,Y){

joint := infer((){

x := uniform(0,1);

y := x^2 + uniform(0,1);

return (x,y);

});

A := (x,y) ⇒ x<X;

B := (x,y) ⇒ y>Y;

return PrAgB(joint,A,B);

}

X
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0

0.5

1.0

1.5

2.0

P
r(
x
<
X
|y
>
Y
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10. Conditional probability Pr[x < X | y > Y] depending on X and Y.

Entropy We can also naturally express information theo-
retical concepts such as entropy, KL-divergence and mutual

information, shown in Fig. 11 (left). Note that there exists no
(purely sampling-based) unbiased estimator for entropy or
mutual information [16]. Busse et al. [3] introduce general-
ization capacity, quantifying how much algorithms depend
on noise in noisy input data. Fig. 11 (right) shows a λPSI
encoding of this task. We compare the generalization ca-
pacity of three sorting algorithms on sequences of length 3.
AIDE [5] infers an approximate upper bound on the expected
(symmetrized) KL-divergence between the results of two in-
ference approaches. Our AIDE benchmark exactly computes
the expected KL-divergence between the results of a particle
filter and exact inference, and shows that the particle filter
gains precision as more particles are added.

7.2 Comparison to Previous Work

We compare λPSI to Hakaru [14], the only other system we
are aware of that can perform exact inference for probabilis-
tic programs with continuous distributions. Our goal is to
validate that λPSI is the first tool that can perform exact sym-
bolic inference on higher-order probabilistic programs with
continuous distributions. As Hakaru terms support first-class
functions, this is not immediately obvious.

Hakaru provides external transformations łnormalizež (for
inference with positive-probability evidence), łdisintegratež
(for inference with continuous evidence), and łsimplifyž (to
transform terms produced by the other transformations into
closed-form representations). In λPSI, infer (normalize) and
cobserve (disintegrate) are first-class operators and can there-
fore be used for higher-order inference.

894



λPSI: Exact Inference for Higher-Order Probabilistic Programs PLDI ’20, June 15ś20, 2020, London, UK

def S[a](x: a, q: Distribution[a])⇒ // surprise

-log2(expectation(infer(()⇒x == sample(q))));

// entropy and cross-entropy:

def H[a](p: Distribution[a])⇒
expectation(infer(()⇒S(sample(p), p)));

def Hcross[a](p: Distribution[a], q: Distribution[a])⇒
expectation(infer(()⇒S(sample(p), q)));

// KL-divergence and mutual information (π1, π2 project to marginals):

def KL[a](p: Distribution[a], q: Distribution[a])⇒Hcross(p,q) - H(p);

def I[a,b](p: Distribution[a×b])⇒H(π1(p)) + H(π2(p)) - H(p);

def genCap[a,b](f: a→b,p: Distribution[a],

noise: a→a) ⇒
I(infer((){

x := sample(p);

return (f(noise(x)),f(noise(x)));

}));

def sortCap[n:N](sort: B^(n×n)→ N^n){
input := RandomComparisonMatrix(n);

error := noise(0.1);

return genCap(sort, input, error);

}

Figure 11. Information-theoretic quantities associated with discrete distributions (left) and an application (right): generalization
capacity (top right); capacity of sorting algorithms (bottom right). The type parameters in square brackets enable polymorphism.
For example, a in S[a] can be instantiated with any type (see App. A.2 for details).

Without Continuous Observations Hakaru’s normalize
transformation can in principle be expressed as a Hakaru
term using the łexpectž operator to compute the total weight
of a measure. We use this strategy to encode most of our
examples without continuous observations in Hakaru (see
Tab. 1). Unfortunately, this leads to an error relating to the
łexpectž operator inHakaru’s simplification engine. Hakaru’s
łexpectž operator can only be used on functions bounded be-
tween 0 and 1, hence examples including Entropy and Vari-
ance are not encodable in Hakaru. Furthermore, as Hakaru
can not simplify function terms, some programs can not be
directly expressed in Hakaru, particularly those involving
symbolic parameters. However, we manually rewrite some
programs for which inlining functions is possible. For a fully
inlined version of CondProb with concretized symbolic pa-
rameters and where we use an unnormalized observation
instead of Bayes’ rule, simplification leads to a stack over-
flow in Maple (used by Hakaru). For some examples without
nested evidence (SocialCognition), simplify returns the zero
measure instead of the correct answer and disintegrate termi-
nates with an error unless we inline all function definitions.

With Continuous Observations While Hakaru does not
support first-class disintegration, this can sometimes be sim-
ulated by chained calls to Hakaru’s disintegration, normaliza-
tion and simplification engines. In cases where manual inlin-
ing of higher-order functions is easy (such as for BayesLin-
Reg, see Tab. 1), we can use Hakaru to compute a result.
Otherwise, Hakaru cannot easily be used to perform infer-
ence. For example, we cannot express BayesPiecewiseLR as
an inlined Hakaru term without significant manual effort.
The DisintegrateQuadratic example can be disintegrated by
λPSI, but not Hakaru.

We suspect that one could automate our manual steps by
directly using Hakaru’s Monad within a Haskell program.
Unfortunately, this mode of using Hakaru is not documented
and does not seem to be encouraged. It is also important to
note that this does not allow Hakaru to perform (non-trivial)
nested inference, as it cannot simplify function terms.

8 Related Work

The semantics of higher-order probabilistic programs has
been studied extensively [20, 21], resulting in the definition
of the category of quasi-Borel spaces [11]. Ścibior et al. [18]
formulate a framework for denotational verification of infer-
ence transformations, supporting higher-order probabilistic
programs with continuous as well as discrete distributions.
Based on this, Sato et al. [17] present a program logic.
While Hakaru [14, 19] does not currently provide exact

inference support for higher-order constructs, the system
has made other important advances, such as disintegrating
programs with symbolic arrays [15], as well as exact reason-
ing about symbolic arrays to automatically and efficiently
derive closed-form conditional distributions [24].
Tavares et al. [23] propose a new kind of higher-order

inference operator that allows certain models with nested
inference to be specified more concisely.

9 Conclusion

We presented λPSI, the first higher-order statically typed
probabilistic programming language equipped with a solver
that computes exact (symbolic) probability distributions of
programs. We showed how to express several interesting
applications (e.g., information theory, rational agents) in
λPSI and demonstrated that our solver was able to compute
their exact distributions.
This is the first time one is able to exactly analyze prob-

abilistic programs at this level of expressiveness. In the fu-
ture, we plan to investigate ways to further scale the exact
inference algorithm as well as explore combinations with
approximate inference techniques.

Acknowledgements

We thank our shepherd and the anonymous reviewers for the
constructive feedback. The research leading to these results
was partially supported by an ERC Starting Grant 680358.

895



PLDI ’20, June 15ś20, 2020, London, UK Timon Gehr, Samuel Steffen, and Martin Vechev

Prog ::= Decl∗

Decl ::= Func | VarDecl
Func ::= def x ParamList∗(:Ex)? Body
ParamList ::= (Param∗(,)?) | [Param∗(,)?]
Param ::= x: Ex
Body ::= { Stmt∗ } | ⇒ Ex;
Type ::= x | * | B | N | Z | Q | R | 1 | ExEx |

(Ex × · · · × Ex) | Ex[] | (Ex → Ex) |
(
∏

x:Ex Ex[x])
VarDecl ::= x := Ex;
Lambda ::= ParamList∗ LambdaBody
LambdaBody ::= { Stmt∗ } | ⇒ Ex

Ex ::= n | x | BuiltIn | (Ex) | (Ex:Ex) |
(uop Ex) | (Ex bop Ex) |
() | (Ex,) | (Ex,Ex(,Ex)∗(,)?) |
[] | [Ex(,Ex)∗(,)?] | Ex.length |
Ex[Ex] | Ex(Ex) | Lambda | Type

AssgnLhs ::= x | AssgnLhs[Ex] | (AssgnLhs:Ex)
(AssgnLhs, . . . ,AssgnLhs(,)?)

Stmt ::= AssgnLhs = Ex; | Decl | return Ex; |
observe(Ex); | cobserve(Ex,Ex); |
if Ex { Stmt∗ } (else { Stmt∗ })? |
for x in [n..n){ Stmt∗ } | assert(Ex);

n ∈ {0, 1, 2, 3, . . .}
x ∈ Vars

bop ∈ {+ ,- , *, %, /, ^, ~, &&, ||, ==, !=, <, >, <=, >=}
uop ∈ {+ ,- , !}

BuiltIn ∈ {Distribution, infer, sample, expectation, array, π , exp, log, floor, ceil, . . .} ∪ Dist
Dist ∈ {Flip, Gauss, Uniform, UniformInt, Categorical, Exponential, Dirac, . . . }

Figure 12. Full syntax of the higher-order probabilistic programming language λPSI (extension of Fig. 3).

A Appendix

A.1 Exact Posterior for Overview Example

The following expression is computed by λPSI for the poste-
rior distribution of the code in Fig. 2 (ignoring errors):

Λx,y. [0 ≤ y] · [y ≤ 1] · λJyK ·
( 1
2 · [y ≤ 1

3 ] · δ
( 1
6

)

JxK

+
1
4 · [0 ≤ x] · [x < 1

2 ] · [y ≤ 2x] · 1
x
· λJxK

+
1
4 · [y ≤ 2

3 ] · δ
( 1
3

)

JxK + 5
12 · δ

( 1
2

)

JxK
)

.

A.2 λPSI Language Details

Fig. 12 presents the full syntax of λPSI.

Expressions In addition to tuples, λPSI supports arrays. The
expression () (resp. []) is the empty tuple (resp. array) and
(Ex,) is a single-element tuple.

Subexpressions may be annotated with their types, as in
((1:N)+(2:N):N,[-1,2]):N × Z[].

Types We support dependent types ExEx for fixed-length
arrays, which are compatible to tuple types (e.g., Z2 is equiv-
alent to Z × Z). Subtype relations are standard (e.g., N ⊆ Q
and R → N ⊆ Z → Q). We do not distinguish types
and other expressions in our grammar. Types are compared
modulo partial evaluation of numerical expressions.

Functions Any function in λPSI can have multiple param-
eter lists, which defines a curried function. For example,
def const(x:R)(_:R) ⇒ x is shorthand for def const(x:R) ⇒
(_:R) ⇒ x. It is possible to optionally specify a return type:
def id(x:R):R⇒ x.

Parameter lists can also be declared with square brackets,
usually used for dependent types and polymorphic functions:
The function def foo[n:N](x:R^n):R^(2 ·n) ⇒ x~x; concate-
nates a fixed-length array x with itself to yield an array of
double length. Further, consider the following identity func-
tion: def id[a:*](x:a) ⇒ x;. The type of this function is

x
-10

-5

0

5

10

15

20

y

-10

-5

0

5

10

15

20

p
(y
|x
)

0.0
0.2
0.4
0.6
0.8
1.0

1.2

1.4

1.6

Figure 13. Posterior of y = f (x) after 5 samples.

∏

x:*
(x → x), which can be read as łfor any type x , this

provides a function from x to xž. Square-bracket parameters
can be provided explicitly at the call site, as for example in
id[R[]]([1,2,3]), or inferred automatically from a regular
function call, which will happen twice when type-checking
the example expression id(id)([1,2,3]).

A.3 Plot for Bayesian Linear Regression

For Bayesian linear regression, we show a plot of the poste-
rior probabilities after conditioning on 5 samples in Fig. 13.

896



λPSI: Exact Inference for Higher-Order Probabilistic Programs PLDI ’20, June 15ś20, 2020, London, UK

References
[1] Niels Henrik Abel. 1826. Untersuchungen über die Reihe: 1 + (m/1)x +

m·(m - 1)/(1·2)·x2+ m·(m - 1)·(m - 2)/(1·2·3)·x3+ ... In Reine und ange-

wandte Mathematik. Vol. 1. 311ś339.
[2] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub.

2017. Coupling Proofs Are Probabilistic Product Programs. In Pro-

ceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-

gramming Languages (POPL 2017). ACM, New York, NY, USA, 161ś174.
https://doi.org/10.1145/3009837.3009896

[3] Ludwig M. Busse, Morteza Haghir Chehreghani, and Joachim M. Buh-
mann. 2012. The information content in sorting algorithms. In Pro-

ceedings of the 2012 IEEE International Symposium on Information

Theory, ISIT 2012, Cambridge, MA, USA, July 1-6, 2012. 2746ś2750.
https://doi.org/10.1109/ISIT.2012.6284021

[4] Robert Cornish, FrankWood, and Hongseok Yang. 2017. Efficient exact
inference in discrete Anglican programs. Workshop on Probabilitic

Programming Semantics, colocated with ACM POPL’17 (2017). http:

//www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17b.pdf

[5] Marco Cusumano-Towner and Vikash K Mansinghka. 2017. AIDE:
An algorithm for measuring the accuracy of probabilistic infer-
ence algorithms. In Advances in Neural Information Processing Sys-

tems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc.,
3000ś3010. http://papers.nips.cc/paper/6893-aide-an-algorithm-for-

measuring-the-accuracy-of-probabilistic-inference-algorithms.pdf

[6] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Ex-
act symbolic inference for probabilistic programs. In International

Conference on Computer Aided Verification. Springer, 62ś83. https:

//doi.org/10.1007/978-3-319-41528-4_4

[7] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. 2008. Church: A Language for Generative
Models. In Proceedings of the Twenty-Fourth Conference on Uncertainty

in Artificial Intelligence (UAI’08). AUAI Press, Arlington, Virginia, USA,
220ś229.

[8] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and
Implementation of Probabilistic Programming Languages. http://dippl.
org. Accessed: 2017-5-15.

[9] Noah D Goodman and Joshua B. Tenenbaum. 2016. Probabilistic
Models of Cognition. http://probmods.org. Accessed: 2019-11-18.

[10] Chris Heunen, Ohad Kammar, SeanMoss, Adam Ścibior, and Hongseok
Yang. 2018. The semantic structure of quasi-Borel spaces. In PPS’18.

[11] Chris Heunen, Ohad Kammar, Sam Staton, andHongseok Yang. 2017. A
Convenient Category for Higher-order Probability Theory. In Proceed-

ings of the 32Nd Annual ACM/IEEE Symposium on Logic in Computer

Science (LICS ’17). IEEE Press, Piscataway, NJ, USA, Article 77, 12 pages.
http://dl.acm.org/citation.cfm?id=3329995.3330072

[12] Donald E. Knuth. 1992. Two notes on notation. Technical Report.
http://arxiv.org/abs/math/9205211

[13] V. Mansinghka, D. Selsam, and Y. Perov. 2014. Venture: a higher-order
probabilistic programming platform with programmable inference.
ArXiv e-prints (March 2014). arXiv:cs.AI/1404.0099

[14] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh
Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program
Transformation in Hakaru (System Description). In Functional and

Logic Programming. Springer International Publishing, Cham, 62ś79.
https://doi.org/10.1007/978-3-319-29604-3_5

[15] Praveen Narayanan and Chung-chieh Shan. 2017. Symbolic Condition-
ing of Arrays in Probabilistic Programs. Proc. ACM Program. Lang. 1,
ICFP, Article 11 (Aug. 2017), 25 pages. https://doi.org/10.1145/3110255

[16] Liam Paninski. 2003. Estimation of Entropy and Mutual Information.
Neural Computation 15, 6 (2003), 1191ś1253. https://doi.org/10.1162/

089976603321780272

[17] Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi,
Deepak Garg, and Justin Hsu. 2019. Formal Verification of Higher-
order Probabilistic Programs: Reasoning About Approximation, Con-
vergence, Bayesian Inference, and Optimization. Proc. ACM Program.

Lang. 3, POPL, Article 38 (Jan. 2019), 30 pages. https://doi.org/10.1145/

3290351

[18] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok
Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, and
Zoubin Ghahramani. 2017. Denotational Validation of Higher-order
Bayesian Inference. Proc. ACM Program. Lang. 2, POPL, Article 60
(Dec. 2017), 29 pages. https://doi.org/10.1145/3158148

[19] Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian in-
ference by symbolic disintegration. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL

2017, Paris, France, January 18-20, 2017. 130ś144. http://dl.acm.org/

citation.cfm?id=3009852

[20] Sam Staton. 2017. Commutative semantics for probabilistic program-
ming. In European Symposium on Programming. Springer, 855ś879.
https://doi.org/10.1007/978-3-662-54434-1_32

[21] Sam Staton, Hongseok Yang, Frank Wood, Chris Heunen, and Ohad
Kammar. 2016. Semantics for Probabilistic Programming: Higher-
order Functions, Continuous Distributions, and Soft Constraints. In
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS ’16). ACM, New York, NY, USA, 525ś534.
https://doi.org/10.1145/2933575.2935313

[22] Andreas Stuhlmüller and Noah D. Goodman. 2012. A Dynamic Pro-
grammingAlgorithm for Inference in Recursive Probabilistic Programs.
CoRR abs/1206.3555 (2012). arXiv:1206.3555 http://arxiv.org/abs/1206.

3555

[23] Zenna Tavares, Xin Zhang, Edgar Minaysan, Javier Burroni, Ra-
jesh Ranganath, and Armando Solar Lezama. 2019. The Random
Conditional Distribution for Higher-Order Probabilistic Inference.
arXiv:cs.PL/1903.10556

[24] Rajan Walia, Praveen Narayanan, Jacques Carette, Sam Tobin-
Hochstadt, and Chung-chieh Shan. 2019. From High-level Inference
Algorithms to Efficient Code. Proc. ACM Program. Lang. 3, ICFP, Article
98 (July 2019), 30 pages. https://doi.org/10.1145/3341702

[25] Frank Wood, Jan-Willem van de Meent, and Vikash Mansinghka. 2015.
A New Approach to Probabilistic Programming Inference. CoRR

abs/1507.00996 (2015). http://arxiv.org/abs/1507.00996

897

https://doi.org/10.1145/3009837.3009896
https://doi.org/10.1109/ISIT.2012.6284021
http://www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17b.pdf
http://www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17b.pdf
http://papers.nips.cc/paper/6893-aide-an-algorithm-for-measuring-the-accuracy-of-probabilistic-inference-algorithms.pdf
http://papers.nips.cc/paper/6893-aide-an-algorithm-for-measuring-the-accuracy-of-probabilistic-inference-algorithms.pdf
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/978-3-319-41528-4_4
http://dippl.org
http://dippl.org
http://probmods.org
http://dl.acm.org/citation.cfm?id=3329995.3330072
http://arxiv.org/abs/math/9205211
http://arxiv.org/abs/cs.AI/1404.0099
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1145/3110255
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1145/3290351
https://doi.org/10.1145/3290351
https://doi.org/10.1145/3158148
http://dl.acm.org/citation.cfm?id=3009852
http://dl.acm.org/citation.cfm?id=3009852
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1145/2933575.2935313
http://arxiv.org/abs/1206.3555
http://arxiv.org/abs/1206.3555
http://arxiv.org/abs/1206.3555
http://arxiv.org/abs/cs.PL/1903.10556
https://doi.org/10.1145/3341702
http://arxiv.org/abs/1507.00996

	Abstract
	1 Introduction
	2 Motivation and Overview
	3 The PSI PPL
	4 A Symbolic Domain for Distributions
	4.1 Representation
	4.2 Interpretation
	4.3 Examples
	4.4 Comparison to PSI

	5 From Programs to Symbolic Representations
	5.1 Translating Programs to the Symbolic Domain
	5.2 Accounting for Error States

	6 Inference by Symbolic Simplification
	6.1 Dirac Delta Substitution
	6.2 Dirac Delta Linearization
	6.3 Guard Simplifications
	6.4 Symbolic Integration
	6.5 Symbolic Disintegration
	6.6 Comparison to PSI
	6.7 Limitations
	6.8 Correctness

	7 Evaluation
	7.1 Case Studies
	7.2 Comparison to Previous Work

	8 Related Work
	9 Conclusion
	A Appendix
	A.1 Exact Posterior for Overview Example
	A.2 PSI Language Details
	A.3 Plot for Bayesian Linear Regression

	References

