
Silq: A High-Level Quantum Language with
Safe Uncomputation and Intuitive Semantics

Benjamin Bichsel
ETH Zurich, Switzerland

benjamin.bichsel@inf.ethz.ch

Maximilian Baader
ETH Zurich, Switzerland
mbaader@inf.ethz.ch

Timon Gehr
ETH Zurich, Switzerland
timon.gehr@inf.ethz.ch

Martin Vechev
ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

Abstract
Existing quantum languages force the programmer to work
at a low level of abstraction leading to unintuitive and clut-
tered code. A fundamental reason is that dropping temporary
values from the program state requires explicitly applying
quantum operations that safely uncompute these values.

We present Silq, the first quantum language that addresses
this challenge by supporting safe, automatic uncomputation.
This enables an intuitive semantics that implicitly drops
temporary values, as in classical computation. To ensure
physicality of Silq’s semantics, its type system leverages
novel annotations to reject unphysical programs.
Our experimental evaluation demonstrates that Silq pro-

grams are not only easier to read and write, but also signifi-
cantly shorter than equivalent programs in other quantum
languages (on average -46% for Q#, -38% for Quipper), while
using only half the number of quantum primitives.

CCS Concepts: • Software and its engineering → For-
mal language definitions; Language features; • Computer
systems organization → Quantum computing.

Keywords: Quantum Language, Uncomputation, Semantics
ACM Reference Format:
Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin
Vechev. 2020. Silq: A High-Level Quantum Language with Safe
Uncomputation and Intuitive Semantics. In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’20), June 15–20, 2020, London,
UK. ACM, New York, NY, USA, 36 pages. https://doi.org/10.1145/
3385412.3386007

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386007

1 Introduction
Quantum algorithms leverage the principles of quantum me-
chanics to achieve an advantage over classical algorithms. In
recent years, researchers have continued proposing increas-
ingly complex quantum algorithms [5, 9, 12, 13, 24, 33], driv-
ing the need for expressive, high-level quantum languages.

The Need for Uncomputation. Analogously to the clas-
sical setting, quantum computations often produce tempo-
rary values. However, as a key challenge specific to quantum
computation, removing such values from consideration in-
duces an implicit measurement collapsing the state [21, §4.4].
In turn, collapsing can result in unintended side-effects on
the state due to the phenomenon of entanglement. Surpris-
ingly, due to the quantum principle of deferred measure-
ment [21, §4.4], preserving values until computation ends is
equivalent to measuring them immediately after their last
use, and hence cannot prevent this problem.

To remove temporary values from consideration without
inducing an implicit measurement, algorithms in existing
languages must explicitly uncompute all temporary values,
i.e., modify their state to enable ignoring them without side-
effects. This results in a significant gap from quantum to
classical languages, where discarding temporary values typi-
cally requires no action (except for heap values not garbage-
collected). This gap is a major roadblock preventing the adop-
tion of quantum languages as the implicit side-effects result-
ing from uncomputation mistakes, such as silently dropping
temporary values, are highly unintuitive.

This Work. We present Silq, a high-level quantum lan-
guage which bridges this gap by automatically uncomputing
temporary values. To this end, Silq’s type system exploits a
fundamental pattern in quantum algorithms, stating that un-
computation can be done safely if (i) the original evaluation
of the uncomputed value can be described classically, and
(ii) the variables used to evaluate it are preserved and can
thus be leveraged for uncomputation.
As uncomputation happens behind the scenes and is al-

ways safe, Silq is the first quantum language to provide in-
tuitive semantics: if a program type-checks, its semantics

https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

1 d := a || b || c; Silq 1 using(t=Qubit()){

2 OR(a,b,t);

3 OR(t,c,d);

4 Adjoint OR(a,b,t);

5 } Q#
1 with_computed (OR a b) $

2 \t -> OR t c Quipper

Figure 1. Benefit of Silq’s automatic uncomputation.

1 cTri := 0:int[rrbar];

2 for j in [0..rrbar) {

3 for k in [j+1..rrbar) {

4 if ee[tau[j]][tau[k]]

5 && eew[j] && eew[k]{

6 cTri += 1;

7 } } } Silq

cTri <- foldM (\cTri j -> do

let tau_j = tau ! j

eed <- qinit (intMap_replicate rr False)

-- computing eed = ee[tau[j]]

(taub,ee,eed) <- a11_FetchE tau_j ee eed

cTri <- foldM (\cTri k -> do

let tau_k = tau ! k

eedd_k <- qinit False

-- eedd_k=eed[tau[k]]=ee[tau[j]][tau[k]]

(tauc, eed, eedd_k) <- qram_fetch qram

tau_k eed eedd_k

-- using eedd_k as ctrl

cTri <- increment cTri `controlled` eedd_k

.&&. (eew ! j) .&&. (eew ! k)

-- uncomputing eedd_k

(tauc, eed, eedd_k) <- qram_fetch qram

tau_k eed eedd_k

qterm False eedd_k

return cTri)

cTri [j+1..rrbar-1]

-- uncomputing eed

(taub,ee,eed) <- a11_FetchE tau_j ee eed

qterm (intMap_replicate rr False) eed

return cTri)

cTri [0..rrbar-1]

Quipper

index :
∏
(n:Nat,i:Nat) . CIRC(t[n] ,t[n]⊗ t) = ...

qindex :
∏
(n:Nat,m:Nat) . CIRC(t[n]⊗qubit[m],t[n]⊗qubit[m]⊗t) = ...

controlledInc :
∏
(n:Nat). CIRC(qubit[n]⊗qubit,qubit[n]⊗qubit) = ...

EvalCondition :
∏
(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar],...⊗qubit

) = box(ee,tau,eew) =>

(tau,tauj) <- unbox (index rrbar j) tau; -- tauj=tau[j]

(tau,tauk) <- unbox (index rrbar k) tau; -- tauk=tau[k]

(ee, tauj, eed) <- unbox (qindex rrbar r) ee tauj; -- eed=ee[tauj]

(eed,tauk,eedd_k) <- unbox (qindex rrbar r) eed tauk; -- eedk=eed[tauk]

(eew,eewj) <- unbox (index rrbar j) eew; -- eewj=eew[j]

(eew,eewk) <- unbox (index rrbar k) eew; -- eewk=eew[k]

(eedd_k,eewj,eewk,c) <- unbox and eedd_k eewj eewk; -- condition

output (ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) --output

LoopBody :
∏
(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar],

qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar]

) = box (ee,tau,eew,cTri) =>

(ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) <- unbox (EvalCondition r

rrbar j k) ee tau eew; -- evaluate condition

(cTri,c) <- unbox (controlledInc rrbar) cTri c; -- controlled increment

(ee,tau,eew) <- unbox (reverseIsometric EvalCondition r rrbar j k) ee tau

eew tauj tauk eed eedd_k eewj eewk c -- uncompute

output (ee,tau,eew,cTri) -- output

QWire, 4–6

Figure 2. Comparing Silq to Quipper and QWire code, more
readable version in App. A.

follows an intuitive recipe that simply drops temporary val-
ues. Importantly, Silq’s semantics is physical, i.e., can be
realized on a quantum random access machine (QRAM) [11].

Overall, Silq allows expressing quantum algorithms more
safely and concisely than existing quantum programming
languages, while typically using only half the number of
quantum primitives. In our evaluation (§8), we show that
across 28 challenges from recent coding contests [15, 16],
Silq programs require on average 46% less code than Q# [30].
Similarly, expressing the triangle finding algorithm [26] in
Silq requires 38% less code than Quipper [7].

Main Contributions. Our main contributions are:
• Silq1, a high-level quantum language enabling safe,
automatic uncomputation (§4).

• A full formalization of Silq’s key language fragment
Silq-core (§5), including its type system (§6) and seman-
tics (§7), whose physicality relies on its type system.

• An implemented type-checker2, proof-of-concept sim-
ulator2, and development environment3 for Silq.

• An evaluation, showing that Silq code is more concise
and readable than code in existing languages (§8).

Future Benefits. We expect Silq to advance various tools
central to programming quantum computers. First, Silq com-
pilers may require fewer qubits, e.g., by more flexibly picking
the time of uncomputation. Second, static analyzers for Silq
can safely assume (instead of explicitly proving) temporary
values are discarded safely. Third, Silq simulators may im-
prove performance by dropping temporary values instead
of explicitly simulating uncomputation. Finally, Silq’s key
language features are relevant beyond Silq, as they can be
incorporated into existing languages such as QWire or Q#.
1http://silq.ethz.ch/
2https://github.com/eth-sri/silq/tree/pldi2020
3https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-
silq

2 Benefit of Automatic Uncomputation
Next, we show the benefit of automatic uncomputation com-
pared to explicit uncomputation in existing languages, in-
cluding Q# [30], Quipper [7], and QWire [22].

Explicit Uncomputation. Fig. 1 shows code snippets
which compute the OR of three qubits. This is easily expressed
in Silq (top left), which leverages automatic uncomputation
for a||b. In contrast, Q# (right) requires (i) allocating a new
qubit t initialized to 0 in Line 1, (ii) using OR4 to store the
result of a||b in t in Line 2, (iii) using OR to store the result
of t||c in the pre-allocated qubit d in Line 3, and (iv) uncom-
puting t by reversing the operation from Line 2 in Line 4.
Here, Adjoint OR is the inverse of OR and thus resets t to its
original value of 0. Hence, the implicit measurement induced
by removing t from consideration in Line 5 always measures
the value 0, which has no side-effects (see §3). We note that
we cannot allocate t within OR, as Q# enforces that qubits
must be deallocated in the function that allocates them.
Explicit uncomputation is even more tedious in Fig. 2,

which shows part of a triangle finding algorithm originally
encoded5 by the authors of Quipper [7] (middle). The condi-
tion is easily expressed in Silq (left, Lines 4–5) using nested
expressions. In contrast, the equivalent Quipper code is ob-
fuscated by uncomputation of sub-expressions.

Convenience Functions. As uncomputation is a common
task, various quantum languages try to reduce its boiler-
plate code by introducing convenience functions such as
ApplyWith in Q#. Fig. 1 shows a Quipper implementation
using a similar function with_computed, which (i) evaluates
a||b in Line 1, (ii) uses the result t to compute t||c in Line 2,
and (iii) implicitly uncomputes t. However, this still requires
explicitly triggering uncomputation using with_computed

and introducing a name t for the result of a||b. In par-
ticular, this does not enable a natural nesting of expres-
sions, as the sub-expression OR a b needs to be managed
by with_computed. Moreover, with_computed cannot ensure
safety: we can make the uncomputation unsafe by flipping
the bit stored in b between Line 1 and Line 2, triggering an
implicit measurement.

Non-Linear Type Systems. Most quantum languages can-
not ensure that all temporary values are safely uncomputed
for a fundamental reason: they support reference sharing in
a non-linear type system and hence cannot statically detect
when values are removed from consideration (which hap-
pens when the last reference to the value goes out of scope).
Besides Quipper, which we discuss in more detail, there are
many other works of this flavor, including LIQuiD [32], Pro-
jectQ [29], Cirq [31], and QisKit [1].

4Since Q# does not support OR natively, we would need to implement it too.
5Taken from: https://www.mathstat.dal.ca/~selinger/quipper/doc/src/
Algorithms/TF/QWTFP.html#line-494

http://silq.ethz.ch/
https://github.com/eth-sri/silq/tree/pldi2020
https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq
https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq
https://www.mathstat.dal.ca/~selinger/quipper/doc/src/Algorithms/TF/QWTFP.html#line-494
https://www.mathstat.dal.ca/~selinger/quipper/doc/src/Algorithms/TF/QWTFP.html#line-494

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

Linear Type Systems. Other languages, like QPL [27] and
QWire, introduce a linear type system to prevent accidentally
removing values from consideration, which corresponds to
not using a value. However, linear type systems still require
explicit uncomputation that ends in assertive termination [7]:
the programmer must (manually) assert that uncomputa-
tion correctly resets temporary values to 0. Most recently,
ReQWire [23] introduced syntactic conditions sufficient to
verify assertive termination. However, ReQWire can only
verify explicitly provided uncomputation (except for purely
classical oracle functions, see below), and cannot statically
reason across function boundaries as its type system does
not address uncomputation — a key contribution of Silq.

Further, linear type systems introduce significant syntac-
tic overhead for constant (i.e., read-only) variables where
enforcing linearity is not necessary. Fig. 2 demonstrates this
in QWire code (right), where encoding only Lines 4–6 from
Silq (left) requires 19 lines of code, even when we generously
assume built-in primitives and omit parts of the required
type annotations. We note that while QWire [22] does not
explicitly claim to be high-level, we are not aware of more
high-level quantum languages that achieve a level of safety
similar to QWire — even though it cannot prevent implicit
measurement caused by incorrect manual uncomputation.
In contrast, Silq uses a linear type system to detect val-

ues removed from consideration (which are automatically
uncomputed), but reduces notational overhead by treating
constant variables non-linearly.

Bennett’s Construction. Various languages, like Quip-
per, ReVerC [2], and ReQWire, support Bennett’s construc-
tion [3], which can lift purely classical (oracle) functions to
quantum inputs, automatically uncomputing all temporary
values computed in the function. Concretely, this standard
approach (i) lifts all primitive classical operations in the
oracle function to quantum operations, (ii) evaluates the
function while preserving all temporary values, (iii) uses the
function’s result, and (iv) uncomputes temporary values by
reversing step (ii). Bennett’s construction is also supported by
Qumquat6, which skips step (i) above by annotating quantum
functions as @qq.garbage and calling them with notation
analogous to Quipper’s with_computed.

However, Bennett’s construction is unsafe when the oracle
function contains quantum operations: as we demonstrate
in App. C, it can fail to drop temporary values without side-
effects. In contrast, Silq safely uncomputes temporary values
in functions containing quantum operations.
Importantly, Silq’s workflow when defining oracle func-

tions is different from existing languages: while the latter
typically require programmers to define a purely classical
oracle function and then apply Bennett’s construction, Silq

6Available at https://github.com/patrickrall/Qumquat, commit 27d6794

programmers can define oracle functions directly using prim-
itive quantum operations, implicitly relying on Silq’s auto-
matic uncomputation.

Summary. In contrast to other languages, Silq (i) enables
intuitive yet physical semantics and (ii) statically prevents
errors that are not detected in existing languages, while
(iii) avoiding the notational overhead associated with lan-
guages that achieve (less) static safety (e.g., QWire).

3 Background on Quantum Computation
We now provide a short review of the core concepts in quan-
tum computation relevant to this work.

Qubit. The state of a quantum bit (qubit) is a superposi-
tion (linear combination) φ = γ0 |0⟩+γ1 |1⟩, where γ0,γ1 ∈ C,
and ∥φ∥2 = ∥γ ∥2 = ∥γ0∥

2 + ∥γ1∥
2 denotes the probability of

being in state φ. In particular, we allow ∥φ∥ < 1 to indicate
that a measurement yields state φ with probability ∥φ∥ — a
common convention [27, Convention 3.3].

Hilbert Space, Ground Set, Basis State. More generally,
assume a variable on a classical computer can take on values
from a finite ground set S . Then, the quantum states induced
by S form the Hilbert spaceH (S) consisting of the formal
complex linear combinations [25, p. 379] over S :

H (S) :=

{∑
v ∈S

γv |v⟩

����� γv ∈ C

}
.

Here, each element v ∈ S corresponds to a (computational)
basis state |v⟩. For S = {0, 1}, we obtain the Hilbert space of
a single qubitH ({0, 1}) = {γ0 |0⟩ + γ1 |1⟩ | γ0,γ1 ∈ C}, with
computation basis states |0⟩ and |1⟩.
We note that we use the (standard) inner product ⟨·|·⟩

throughout this work, defined by〈∑
v ∈S

γv |v⟩

����� ∑
v ∈S

γ ′
v |v⟩

〉
=

∑
v ∈S

γvγ
′
v .

Tensor Product. A system of multiple qubits can be de-
scribed using the tensor product ⊗. For example, for two
qubits φ0 = |0⟩ and φ1 =

1√
2
|0⟩ − i 1√

2
|1⟩, the composite state

isφ0⊗φ1 =
1√
2
|0⟩⊗ |0⟩−i 1√

2
|0⟩⊗ |1⟩ = 1√

2
|0⟩ |0⟩−i 1√

2
|0⟩ |1⟩.

Here, we first used the linearity of ⊗ in its first argument
and then omitted ⊗ for convenience. Simplifying notation
further, we may also write |0⟩ |0⟩ as |0, 0⟩.

Entanglement. A composite state is called entangled if it
cannot be written as a tensor product of single qubit states,
but needs to be written as a sum of tensor products. For
example, the above composite state φ0 ⊗ φ1 is unentangled,
while Φ+ = 1√

2
|0⟩ |0⟩ + 1√

2
|1⟩ |1⟩ is entangled.

Measurement. To acquire information about a quantum
state, we can (partially) measure it. Measurement has a prob-
abilistic nature; if we measure φ =

∑
v ∈S γv |v⟩, we obtain

https://github.com/patrickrall/Qumquat

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

the value v ′ ∈ S with probability ∥γv ′ ∥2. As a fundamental
law of quantum mechanics, if we measure the value v ′, the
state after the measurement is γv ′ |v ′⟩ (we do not normalize
this state to preserve linearity). This is referred to as the
collapse of φ to γv ′ |v ′⟩, since superposition is lost.

Importantly, measuring part of a state can affect the whole
state. To illustrate the effect of measuring the first part |v⟩
of

∑
v,w γv,w |v⟩ ⊗ |w⟩, we first rewrite it to

∑
v γv |v⟩ ⊗ φ̃v ,

separating out the remainder φ̃v of the state, where ∥φ̃v ∥ = 1.
This is a common technique and always possible for appro-
priate choices of γv and φ̃v . Then, measuring the first part to
bev ′ yields state γv ′ |v ′⟩ ⊗ φ̃v ′ , also collapsing the remainder
of the state.

Linear Isometries. Besides measurements, we can also
manipulate quantum states using linear isometries, i.e., lin-
ear functions f : H (S) → H (S ′) preserving inner products:
for all φ,φ ′ ∈ H (S), ⟨f (φ)| f (φ ′)⟩ = ⟨φ |φ ′⟩. Linear isome-
tries generalize the commonly used notion of unitary oper-
ations, which additionally require that vector spacesH (S)
and H (S ′) have the same dimension. As this prevents dy-
namically allocating and deallocating qubits 7, we use the
more general notion of linear isometries in this work.

QRAM. As a computational model for quantum comput-
ers, this work assumes a quantum random access machine
(QRAM) [11]. A QRAM consists of a classical computer ex-
tended with quantum storage supporting state preparation,
some unitary gates, and measurement. QRAMs can be ex-
tended to support linear isometries, by (i) padding input
and output space to have the same dimension (using state
preparation) and (ii) approximating the resulting unitary
operation arbitrarily well using a standard set of universal
quantum gates [21, §4.5.3].

No-Cloning. The no-cloning theorem states that cloning
an arbitrary quantum state is unphysical: we cannot achieve
the operation φ 7→ φ⊗φ. Silq’s type system prevents cloning.

4 Overview of Silq
Wenow illustrate Silq onGrover’s algorithm, awidely known
quantum search algorithm [8], [21, §6.1]. It can be applied
to any NP problem, where finding the solution may be hard,
but verification of a solution is easy.
Fig. 3 shows a Silq implementation of grover. Its input

is an oracle function f from (quantum) unsigned integers
representedwith n qubits to (quantum) booleans, mapping all
but one inputw⋆ to 0. Here, Silq uses the generic parameter
n to parametrize the input type uint[n] of f. Then, grover
outputs an n-bit unsigned integer w which is equal to w⋆

with high probability.

7Since given input space H (S), allocating qubits leads to a larger output
space H (S ′), requiring H (S) and H (S ′) to have the same dimension (as
enforced by unitary operations) prevents dynamically allocating qubits.

4.1 Silq Annotations
Classical Types. The first argument of grover is a generic

parameter n, used to parametrize f. It has type !N, which
indicates classical natural numbers of arbitrary size. Here, an-
notation ! indicates n is classically known, i.e., it is in a basis
state (not in superposition), and we can manipulate it clas-
sically. For example, 0 has type !B. In contrast, H(0) applies
Hadamard H (defined shortly) to 0 and yields 1√

2

(
|0⟩ + |1⟩

)
.

Thus, H(0) is of type B and not of (classical) type !B.
In general, we can liberally use classical variables like nor-

mal variables on a classical computer: we can use them mul-
tiple times, or drop them. We also annotate parameter f as
classical, writing the annotation as τ !→τ ′ instead of !τ → τ ′

to avoid the ambiguity between !(τ → τ ′) and (!τ) → τ ′. 8

Qfree Functions. The type of f is annotated as qfree,
which indicates the semantics of f can be described classi-
cally: we can capture the semantics of a qfree function g

as a function д : S → S ′ for ground sets S and S ′. Note that
since S ′ is a ground set, д can never output superpositions.
Then, g acting on

∑
v ∈S γv |v⟩ yields

∑
v ∈S γv |д(v)⟩, where

for simplicity
∑
v ∈S γv |v⟩ does not consider other qubits

untouched by g.
For example, the qfree function X flips the bit of its input,

mapping
∑1
v=0 γv |v⟩ to

∑1
v=0 γv

��X(v)〉, for X(v) = 1 − v . In
contrast, the Hadamard transform H maps

∑1
v=0 γv |v⟩ to∑1

v=0 γv
1√
2

(
|0⟩ + (−1)v |1⟩

)
. As this semantics cannot be

described by a function on ground sets, H is not qfree.

Constant Parameters. Note that X (introduced above)
transforms its input — it does not preserve it. In contrast, the
parameter of f is annotated as const, indicating f preserves
its input, i.e., treats it as a read-only control. Thus, running
f on

∑
v ∈S γv |v⟩ yields

∑
v ∈S γv |v⟩ ⊗ φv , where φv follows

the semantics of f. Because f is also qfree, |v⟩ ⊗φv =
���f (v)〉

for some f : S → S × S ′. Combining both, we conclude that
f (v) = (v, f̃ (v)) for some function f̃ : S → S ′.
An example of a possible instantiation of f is NOT, which

maps γ0 |0⟩ +γ1 |1⟩ to γ0 |0, 1⟩ +γ1 |1, 0⟩. Here, �NOT : {0, 1} →
{0, 1} maps v 7→ 1 − v and NOT : {0, 1} → {0, 1} × {0, 1}
maps v 7→ (v, 1 −v) = (v,�NOT(v)).
Function parameters not annotated as const are not ac-

cessible after calling the function — the function consumes
them. For example, groverDiff consumes its argument (see
top-right box in Fig. 3). Hence, the call in Line 10 consumes
cand, transforms it, and writes the result into a new vari-
able with the same name cand. Similarly, measure in Line 12
consumes cand by measuring it.

8Annotating functions as classical indicates that their function bodies are
classically known (at runtime). We note that classical functions can still per-
form quantum operations: for example, H : B!

mfree
−−−−→ B is classical, meaning

that the quantum operations performed by H are classically known.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

Figure 3. Grover’s algorithm in Silq. We provide an unannotated version, including groverDiff, in App. B. The top-right box
shows the type of all used functions. The shown sums range over all n-bit unsigned integers {0, . . . , 2n − 1}.

Lifted Functions. We introduce the term lifted to de-
scribe qfree functions with exclusively const parameters, as
such functions are crucial for uncomputation. In particular,
we could write the type of f as uint[n]

lifted
−−−−−→ B.

4.2 Silq Semantics
Next, we discuss the semantics of Silq on grover.

Input State. In Fig. 3, the state of the system after Line 1
isψ1, where the state of f:uint[n]!

qfree
−−−−→ B is described as

a function f̃ : {0, . . . , 2n − 1} → {0, 1}. We note that later,
our formal semantics represents the state of functions as Silq-
core expressions (§7). However, as the semantics of f can be
captured by f̃ , this distinction is irrelevant here. Next, Line 2
initializes the classical variable nIterations, yieldingψ2.

Superpositions. Lines 3–4 result in stateψ4, where cand
holds the equal superposition of all n-bit unsigned integers.
To this end, Line 4 updates the k th bit of cand by applying
the Hadamard transform H to it.

Loops. The loop in Line 6 runs nIterations times. Each
loop iteration increases the coefficient of

��w⋆
〉
, thus increas-

ing the probability of measuring w⋆ in Line 12. We now
discuss the first loop iteration (k = 0). It starts from state
ψ (0)

6 which introduces variable k. For convenience,ψ (0)
6 splits

the superposition intow⋆ and all other values.

Conditionals. Intuitively, Lines 7–9 flip the sign of those
coefficients for which f(cand) returns true. To this end, we
first evaluate f(cand) and place the result in a temporary
variable f(cand), yielding stateψ (0)

7 . Here and in the follow-
ing, we write e for a temporary variable that contains the re-
sult of evaluating e . Then, we determine those summands of

ψ (0)
7 where f(cand) is true (marked as “then branch” in Fig. 3),

and run phase(π) on them. This yieldsψ (0)
8 , as phase(π) flips

the sign of coefficients. Lastly, we drop f(cand) from the
state, yieldingψ (0)

9 .

Grover’s Diffusion Operator. Completing the explana-
tions of our example, Line 10 applies Grover’s diffusion op-
erator to cand. Its implementation consists of 6 lines of code
(see App. B). It increases the weight of solutionw⋆, obtainingγ+w⋆

 > 1√
2n

, and decreases the weight of non-solutions

v , w⋆, obtaining
γ−v < 1√

2n

. After one loop iteration,

this results in state ψ (0)
10 . Repeated iterations of the loop in

Lines 6–11 further increase the coefficient ofw⋆, until it is
approximately 1. Thus, measuring cand in Line 12 returns
w⋆ with high probability.

4.3 Uncomputation

While dropping the temporary value f(cand) from ψ (0)
8 is

intuitive, achieving this physically requires uncomputation.
Without uncomputation, simply removing f(cand) from

consideration in Line 9 would induce an implicit measure-
ment. 9 Concretely, measuring and dropping f(cand) would
collapseψ (0)

8 to one of the following two states (ignoring f,
n, and k):

ψ (0,0)
8 =

∑
v,w⋆

1√
2n

|v⟩cand or ψ (0,1)
8 = − 1√

2n
��w⋆

〉
cand
.

In this case, as the probability of obtainingψ (0,1)
8 is only 1

2n ,
grover returns the correct resultw⋆ with probability 1

2n , i.e.,
it degrades to random guessing.
9Formally, this corresponds to taking the partial trace over f(cand).

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

Figure 4. Uncomputation of f(cand) is safe. The term (−1)[v=w⋆] equals −1 if v = w⋆ and 1 otherwise.

def useConsumed(x:B){

y := H(x); // consumes x

return
:
(x
:
,y);

} // undefined identifier x

def useConsumedFixed(const x:B){

// ψ1 =
∑1
v=0 γv |v ⟩x

// ψ2 =
∑1
v=0 γv |v ⟩x ⊗ |v ⟩x

y := H(x);

// ψ3 =
∑1
v=0 γv |v ⟩x ⊗

(
|0⟩y + (−1)v |1⟩y

)
return (x,y);

}

def discard[n:!N](
:
x:
:::
uint

:
[
:
n
:
]){

y := x % 2; // '%' supports quantum inputs

return y;

} // parameter 'x' is not consumed

def nonQfree(const x:B,y:B){

if
:
H(
:
x
:
) { y := X(y); }

return y;

} // non-lifted quantum expression must be consumed

def nonConst(c:B){

if
:
X(
:
c
:
) { phase(π); } // X consumes c

} // non-lifted quantum expression must be consumed

def nonConstFixed(const c:B){

// ψ1 =
∑1
v=0 γv |v ⟩c

if X(c) { phase(π); }

// ψ2 =
∑1
v=0(−1)1−vγv |v ⟩c

}

def condMeas(const c:B,x:B){

if c { x :=
:::::
measure

:
(
:
x); }

} // cannot call function

// 'measure[B]' in 'mfree' context

def revMeas(){

return
:::::
reverse

:
(
:::::
measure

:
);

} // reversed function must be mfree

Figure 5. Examples of invalid Silq programs, their error messages, and possible fixes (where applicable).

Without correct intervention from the programmer, all
existing quantum languages would induce an implicit mea-
surement in Line 9, or reject grover. This is unfortunate
as grover cleanly and concisely captures the programmer’s
intent. In contrast, Silq achieves the intuitive semantics of
dropping f(cand) fromψ (0)

8 , using uncomputation. In gen-
eral, uncomputing x is possible whenever in every summand
of the state, the value of x can be reconstructed (i.e., deter-
mined) from all other values in this summand. Then, revers-
ing this reconstruction removes x from the state.

Automatic Uncomputation. To ensure that uncomput-
ing f(cand) is possible, the type system of Silq ensures that
f(cand) is lifted, i.e., (i) f is qfree and (ii) cand is const:
it is preserved until uncomputation in Line 9.
Fig. 4 illustrates why this is sufficient. Evaluating f in

Line 7 adds a temporary variable f(cand) to the state, whose
value can be computed from cand using f̃ (as f is qfree and
cand is const). Then, Line 8 transforms the remainder ψ̃v of
the state to χv, f̃ (v). The exact effect of Line 8 on the state is
irrelevant for uncomputation, as long as it preserves cand,
ensuring we can still reconstruct f(cand) from cand inψ (0)

8 .
Thus, reversing the operations of this reconstruction (i.e.,
reversing f) uncomputes f(cand) and yieldsψ (0)

9 .

4.4 Preventing Errors: Rejecting Invalid Programs
Fig. 5 demonstrates how the type system of Silq rejects in-
valid programs. We note that the presented examples are not
exhaustive — we discuss additional challenges in §6.

Error: Using Consumed Variables. In useConsumed, H
consumes x and stores its result in y. Then, it accesses x,
which leads to a type error as x is no longer available.

Assuming we want to preserve x, we can fix this code by
marking x as const (see useConsumedFixed). Then, instead
of consuming x in the call to H (which is disallowed as xmust
be preserved), Silq implicitly duplicates x, resulting in ψ2,
and then only consumes the duplicate x.

Implicit Duplication. It is always safe to implicitly du-
plicate constant variables, as such duplicates can be uncom-
puted (in useConsumedFixed, uncomputation is not neces-
sary as the duplicate is consumed). In contrast, it is typically
impossible to uncompute duplicates of consumed quantum
variables, which may not be available for uncomputation
later. Hence, Silq treats constant variables non-linearly (they
can be duplicated or ignored), but treats non-constant vari-
ables linearly (they must be used exactly once).
We note that duplication

∑
v γv |v⟩ 7→

∑
v γv |v⟩ |v⟩ is

physical and can be implemented using CNOT, unlike the
unphysical cloning

∑
v γv |v⟩ 7→ (

∑
v γv |v⟩)⊗ (

∑
v γv |v⟩) =∑

v,w γvγw |v⟩ |w⟩ discussed earlier.

Error: DiscardingVariables. Function discard does not
annotate x as const, meaning that its callers expect it to con-
sume x. However, the body of discard does not consume x,
hence calling discard would silently discard x. As the callee
does not know if x can be uncomputed, Silq rejects this code.
A possible fix is annotating x as const, which would be in
line with preserving x in the function body.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

Error: Uncomputation Without Qfree. Silq rejects the
function nonQfree, as H(x) is not lifted (since H is not
qfree), and hence its result cannot be automatically un-
computed. Indeed, automatic uncomputation of H(x) is not
possible in this case, intuitively because H introduces addi-
tional entanglement preventing uncomputation in the end.
We provide a more detailed mathematical derivation of this
subtle fact in App. C. To prevent this case, Silq only supports
uncomputing qfree expressions.
We note that because x is const in nonQfree, H does not

consume it, but a duplicate of x.

Error: Uncomputation Without Const. Silq rejects the
function nonConst, as X(c) is not lifted (since it consumes
c). Indeed, automatic uncomputation is not possible in this
case, as the original value of c is not available for uncompu-
tation of X(c). To get this code to type-check, we can mark c
as const (see nonConstFixed) to clarify that c should remain
in the context. Then, Silq automatically duplicates c before
calling X, which thus consumes a duplicate of c, leaving the
original c available for later uncomputation.

Temporary Constants. In contrast to nonConst, which
consumes c, grover does not consume cand in Line 7 (Fig. 3),
even though cand is not annotated as const either. This is be-
cause Silq temporarily annotates cand as const in grover. In
general, Silq allows temporarily annotating some variables as
const for the duration of a statement or a consumed subex-
pression. Our implementation determines which variables to
annotate as const as follows: If a variable is encountered in
a position where it is not expected to be const (as in X(c)),
it is consumed, and therefore any further occurrence of that
variable will result in an error (whether const or not). If a
variable is encountered in a position where it is expected to
be const (as in f(cand)), we temporarily mark it as const
until the innermost enclosing statement or consumed subex-
pression finishes type checking.

Mfree. Silq’s main advantage over existing quantum lan-
guages is its safe, automatic uncomputation, enabled by
its novel annotations const and qfree. To ensure all Silq
programs are physical (i.e., can be physically realized on a
QRAM), we leverage one additional annotation mfree, in-
dicating a function does not perform measurements. This
allows us to detect (and thus prevent) attempts to reverse
measurements and to apply measurements conditioned on
quantum values.

Error: ConditionalMeasurement. Silq rejects condMeas,
as it applies a measurement conditioned on quantum vari-
able c. This is not realizable on a QRAM, as the then-branch
requires a physical action and we cannot determine whether
or not we need to carry out the physical action without mea-
suring the condition. However, changing the type of c to !B
would fix this error, as conditional measurement is possible if
c is classical. We note that Silq could also detect this error if

measurement was hidden in a function passed to condMeas,
as this function would not be mfree. Here, it is crucial that
Silq disallows implicit measurement — otherwise, it would
be hard to determine which functions are mfree.

Reverse. Silq additionally also supports reversing func-
tions, where expression reverse(f) returns the inverse of
function f . In general, all quantum operations except mea-
surement describe linear isometries (see §3) and are thus
injective. Hence, if f is also surjective (and thus bijective),
we can reverse it, meaning reverse(f) is well-defined on all
its inputs.

Reverse Returns Unsafe Functions. When f is not sur-
jective, reverse(f) is only well-defined on the range of f .
Hence, it is the programmer’s responsibility to ensure re-
versed functions never operate on invalid inputs.

For example, y:=dup(x) duplicates x, mapping
∑
v γv |v⟩x

to
∑
v γv |v⟩x |v⟩y. Thus, reverse(dup)(x,y) operates on

states
∑
v γv |v⟩x |v⟩y⊗ψ̃v , for which it yields

∑
v γv |v⟩x⊗ψ̃v ,

uncomputing y. On other states, reverse(dup) is undefined.
As reverse(dup) is generally useful for (unsafe) uncompu-
tation, we introduce its (unsafe) shorthand forget.
When realizing a reversed function on a QRAM, the re-

sulting program is defined on all inputs but only behaves
correctly on valid inputs. For example, we can implement
reverse(dup)(x,y) by running if x { y:=X(y); } and dis-
carding y, which has unintended side-effects (due to implicit
measurement) unless originally x==y.

Error: Reversing Measurement. Silq rejects revMeas as
it tries to reverse a measurement, which is physically im-
possible according to the laws of quantum mechanics. Thus,
reverse only operates on mfree functions.

Discussion: Annotations as Negated Effects. We can
view annotations mfree and qfree as indicating the absence
of effects: mfree indicates a function does not perform a
measurement, while qfree indicates the function does not
introduce quantum superposition. As we will see later, all
qfree functions in Silq are also mfree.

5 The Silq-Core Language Fragment
In this section, we present the language fragment Silq-core
of Silq, including syntax (§5.1) and types (§5.2).

Silq-core is selected to contain Silq’s key features, in par-
ticular all its annotations. Compared to Silq, Silq-core omits
features (such as the imperative fragment and dependent
types) that distract from its key insights. We note that in our
implementation, we type-check and simulate full Silq.

5.1 Syntax of Silq-Core
Fig. 6 summarizes the syntax of Silq-core.

Expressions. Silq-core expressions include constants and
built-in functions (c), variables (x), measurement (measure),

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

Figure 6. Syntax, types, and annotations.

Figure 7. Typing judgments.

and reversing quantum operations (reverse). Further, its
if-then-else construct if e then e1 else e2 is syntactically
standard, but supports both classical (!B) and quantum (B)
condition e . Function application e ′(®e) explicitly takes multi-
ple arguments. Likewise, lambda abstraction λ(®β ®x : ®τ).e de-
scribes a function with multiple parameters {xi }ni=1 of types
{τi }

n
i=1, annotated by {β}ni=1, as discussed in §5.2 (next).

We note that Silq-core can support tupling as a built-in
function c .

Universality. Assuming built-in functions c include X (en-
abling CNOT by if x {y:=X(y)}) and arbitrary operations on
single qubits (e.g., enabled by rotX, rotY, and rotZ), Silq-core
is universal for quantum computation, i.e., it can approximate
any quantum operation to arbitrary accuracy [21].

5.2 Types and Annotations of Silq-Core
Further, Fig. 6 introduces the types τ of Silq-core.

Primitive Types. Silq-core types include standard primi-
tive types, including 1, the singleton type that only contains
the element “()”, and B, the Boolean type describing a sin-
gle qubit. We note that it is straightforward to add other
primitive types like integers or floats to Silq-core.

Products and Functions. Silq-core also supports prod-
ucts, where we often write τ1 × · · · × τn for×n

k=1 τk , and
functions, where ! emphasizes that functions are classically
known (i.e., we do not discuss superpositions of functions).
Function parameters and functions themselves may be an-
notated by βi and α , respectively, as discussed shortly. As
usual, × binds stronger than →.
Finally, Silq-core supports annotating types as classical.

Annotations. Fig. 6 also lists all Silq-core annotations.
Our annotations express restrictions on the computations

of Silq-core expressions and functions, ensuring the physical-
ity of its programs. For example, for quantum variable x : B,
the expression if x then f (0) else f (1) is only physical
if f is mfree (note thatx does not appear in the two branches).

6 Typing Rules
In this section, we introduce the typing rules of Silq. Most
importantly, they ensure that every sub-expression that is
not consumed can be uncomputed, by ensuring these sub-
expressions are lifted.

Format of Typing Rules. In Fig. 7, Γ α
e : τ indicates an

expression e has type τ under context Γ, and the evaluation
of e is α ⊆ {qfree, mfree}. For example, x : B α

H(x) : B for
α = {mfree}, where mfree ∈ α since evaluating H(x) does
not induce a measurement, and qfree < α since the effect
of evaluating H(x) cannot be described classically. We note
that in general, x : τ α

f (x) : τ ′ if f has type τ !
α
−→τ ′, i.e., the

annotation of f determines the annotation of the turnstile .
A context Γ is a multiset {βixi : τi }i ∈I that assigns a type

τi to each variable xi , where I is a finite index set, and xi
may be annotated by const ∈ βi , indicating that it will not
be consumed during evaluation of e . As a shorthand, we
often write Γ = ®β ®x : ®τ .
We write Γ, βx : τ for Γ ⊎ {βx : τ }, where ⊎ denotes the

union of multisets. Analogously Γ, Γ′ denotes Γ ⊎ Γ′. In gen-
eral, we require that types and annotations of contexts can
never be conflicting, i.e., βx : τ ∈ Γ and β ′x : τ ′ ∈ Γ implies
β = β ′ and τ = τ ′.

6.1 Typing Constants and Variables
If c is a constant of type τ , its typing judgement is given
by ∅

mfree,qfree
c : τ . For example, ∅ mfree,qfree

H : B!
mfree
−−−−→B.

Here, we annotate the turnstile as qfree, because evaluating
expression H maps the empty state |⟩ to |⟩ ⊗ |H⟩H, which can

be described classically by f (|⟩) = |H⟩H. We provide the types
of other selected built-in functions in App. E.2.

Likewise, the typing judgement of variables carries anno-
tations qfree and mfree (rule var in Fig. 8), as all constants
c and variables x in Silq-core can be evaluated without mea-
surement, and their semantics can be described classically.
Further, both rules assume an empty context (for constants
c) or a context consisting only of the evaluated variable (for
variables), preventing ignoring variables from the context.
To drop constant and classical variables from the context,
we introduce an explicit weakening rule, discussed next.

Weakening andContraction. Fig. 8 further showsweak-
ening and contraction typing rules for classical and constant
variables. These rules allow us to drop classical and constant
variables from the context (weakening rules !W and W) and
duplicate them (contraction rules !C and C). For weakening,
the interpretation of “dropping variable x” arises from read-
ing the rule bottom-up, which is also the way our semantics
operates (analogously for contraction). In our semantics (§7),
dropping constant variable x in the body of a function f can
be handled by uncomputing it at the end of f .

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

βx : τ mfree,qfree x : τ
var

Γ
α e : τ ′

Γ, x : !τ α e : τ ′
!W

Γ
α e : τ ′

Γ, const x : τ α e : τ ′
W

Γ, x : !τ , x : !τ α e : τ ′

Γ, x : !τ α e : τ ′
!C

Γ, const x : τ , const x : τ α e : τ ′

Γ, const x : τ α e : τ ′
C

Figure 8. Typing variables, including weakening and contraction.

const ∈ βi =⇒ qfree ∈ αi ∧ Γi = const ®x : ®τ ′′ (1)

qfree ∈ α ′′ ⇐⇒ qfree ∈
⋂
i
αi ∩ α ′ ∩ α ′

func (2)

mfree ∈ α ′′ ⇐⇒ mfree ∈
⋂
i
αi ∩ α ′ ∩ α ′

func (3)

Figure 9. Typing rule and constraints for function calls.

We note that variables with classical type can be used
more liberally than const variables (e.g., as if-conditions).
Hence, annotating a classical variable as const has no effect.
We annotate variables (not types) as const as our syntax
does not allow partially consuming variables.

6.2 Measurement
We type measure as ∅ mfree,qfree

measure : τ ! −→ !τ , where
the lack of const annotation for τ indicates measure con-
sumes its argument, and !τ indicates the result is classical.
We annotate the judgement itself as mfree, as evaluating
the expression measure simply yields the function measure,
without inducing a measurement. In contrast, the function
type of measure itself is not mfree (indicated by ! −→), as
evaluating the function measure on an argument induces a
measurement. Thus, measure(0) is not mfree, as evaluating
it induces a measurement: ∅ ⊢ measure(0) : !B.

6.3 Function Calls
Fig. 9 shows the typing rule for function calls e ′(e1, . . . , en).
Ignoring annotations, the rule follows the standard pattern,
which we provide for convenience in App. E.1 (Fig. 25).

We now discuss the annotation Constraints (1)–(3). Con-
straint (1) ensures that if a function leaves its argument
constant (const ∈ βi), ei is lifted, i.e., qfree and depend-
ing only on const variables. In turn, this ensures that we
can automatically uncompute ei when it is no longer needed.
We note that non-constant arguments (const < βi) do not
need to be uncomputed, as they are no longer available after
the call. To illustrate that Constraint (1) is critical, consider
a function f : const B × B → B, and a call f (x + 1, H(x))
with non-constant variable x in context Γ1. This call must be
rejected by Silq-core as there is no way to uncompute x + 1
after the call to f , since H consumes x . Indeed, since x is not
const in Γ1 even though const ∈ β1, (1) does not hold.

Figure 10. Typing lambda abstraction.

Constraint (2) ensures an expression is only qfree if all
its components are qfree, and if the evaluated function only
uses qfree operations. Constraint (3) is analogous for mfree.

We note that in order to allow temporarily marking vari-
ables as const (as discussed in §4.4), we could replace the top-
left Γi in Fig. 9 by Γi ,⋆i , where⋆i = const Γi+1, . . . , const Γn
if const < βi , and ⋆i = ∅ otherwise. This would allow us
to temporarily treat variables as const, if they appear in a
consumed expression ei and they are consumed in a later
expression ej for j > i . Fig. 9 omits this for conciseness.

6.4 Lambda Abstraction
Fig. 10 shows the rule for lambda abstraction. Its basic pat-
tern without annotations is again standard (App. E.1) . In
terms of annotations, the rule enforces multiple constraints.
First, it ensures that the annotation of the abstracted function
follows the annotationα of the original typing judgment. Sec-
ond, we tag the resulting type judgment as mfree and qfree,
since function abstraction requires neither measurement nor
quantum operations. Third, the rule allows capturing clas-
sical variables (yi has type !τi), but not quantum variables.
This ensures that all functions in Silq-core are classically
known, i.e., can be described by a classical state.

6.5 Reverse
Fig. 11 shows the type of reverse. We only allow reversing
functions without classical components in input or output
types (indicated by), as reconstructing classical compo-
nents of inputs is typically impossible. Concretely, types
without classical components are (i) 1, (ii) B, and (iii) prod-
ucts of types without classical components. In particular, this
rules out all classical types !τ , function types, and products
of types with classical components.
The input to reverse, i.e., the function f to be reversed

must be measure-free, because measurement is irreversible.
Further, the function f may or may not be qfree (as indi-
cated by a callout). Then, the type rule for reverse splits the
input types of f into constant and non-constant ones. The
depicted rule assumes the first parameters of f are annotated
as constant, but we can easily generalize this rule to other

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

Figure 11. Type of reverse.

qfree ∈ αc ∧ Γc = const ®x : ®τ ′ (4)
mfree ∈ αc ∩ α1 ∩ α2 ∩ α (5)

qfree ∈ α ⇐⇒ qfree ∈ αc ∩ α1 ∩ α2 (6)

mfree ∈ α ⇐⇒ mfree ∈ αc ∩ α1 ∩ α2 (7)
qfree ∈ α ⇐⇒ qfree ∈ αc ∩ α1 ∩ α2 (8)

Figure 12. Typing quantum (left) and classcial (right) control flow

J1Kc := {()} JBKc := {()}

s
n
×
k=1

τk

{c

:=
n
×
k=1

Jτk Kc
s

n
×
k=1

βkτk !
α
−→ τ ′

{c

:=
{
e, σ

��� ®y : !®τ ′′ α ′

e : ×n
k=1 βkτk !

α
−→ τ ′,

σ ∈ J®y : !®τ ′′Kc
}

J!τ Kc := Jτ Kc × Jτ Kq

J1Kq := {()} JBKq := {0, 1}
s

n
×
k=1

τk

{q

:=
n
×
k=1

Jτk Kq
s

n
×
k=1

βkτk !
α
−→τ ′

{q

:= {()} J!τ Kq := {()}

Classical set Jτ Kc

J1Kq := {()} JBKq := {0, 1}
s

n
×
k=1

τk

{q

:=
n
×
k=1

Jτk Kq
s

n
×
k=1

βkτk !
α
−→τ ′

{q

:= {()} J!τ Kq := {()}

J1Kc := {()} JBKc := {()}

s
n
×
k=1

τk

{c

:=
n
×
k=1

Jτk Kc
s

n
×
k=1

βkτk !
α
−→ τ ′

{c

:=
{
e, σ

��� ®y : !®τ ′′ α ′

e : ×n
k=1 βkτk !

α
−→ τ ′,

σ ∈ TODO : r eplace J®y : !®τ ′′Kb
}

J!τ Kc := Jτ Kc × Jτ Kq

Quantum ground set Jτ Kq

Figure 13. Classical set Jτ Kc and quantum ground set Jτ Kq to build the semantics Jτ K = Jτ Kc ×H
(
Jτ Kq

)
of type τ .

orders. Based on this separation, reverse returns a function
which starts from the constant input types and the output
types of f , and returns the non-constant input types. The
returned function reverse(f) is measure-free, and qfree if
f is qfree.

6.6 Control Flow
Even though if e then e1 else e2 is syntactically stan-
dard, it supports both classical and quantum conditions e .
A classical condition induces classical control flow, while
a non-classical (i.e., quantum) condition induces quantum
control flow. In Fig. 12, we provide the typing rules for both
cases, which follow the standard basic patterns when ignor-
ing annotations (App. E.1).

Quantum Control Flow. Constraint (4) ensures that e is
lifted and can thus be uncomputed after the conditional,
analogously to uncomputing constant arguments in Con-
straint (1). Constraint (5) requires both branches to be mfree,
which is important because we cannot condition a measure-
ment on a quantum value (this would violate physicality).
Further, it also requires the condition to be mfree (which
is already implicitly ensured by Constraint (4) as all qfree
expressions are also mfree), meaning the whole expression is
mfree. Constraint (6) ensures that the resulting typing judg-
ment gets tagged as qfree if all subexpressions are qfree.
Finally, the rule does not allow the return type τ to contain
classical components (indicated by), as otherwise we could
introduce unexpected superpositions of classical values.

Classical Control Flow. Classical control flow requires
the condition to be classical, in addition to our usual re-
strictions on annotations. Concretely, Constraints (7) and (8)
propagate mfree and qfree annotations.

7 Semantics of Silq-Core
In this section, we discuss the operational semantics of Silq-
core. We use big-step semantics, as this is more convenient
to define reverse and control flow.

7.1 Semantics of Types
We build the semantics Jτ K of type τ from a classical set Jτ Kc

and a quantum ground set Jτ Kq as Jτ K = Jτ Kc × H
(
Jτ Kq

)
.

Note that Jτ K stores the classical and quantum parts of τ
separately, which is in line with how a QRAM can physically
store values of type τ . In particular, Jτ Kq contains the ground
set from which we build the Hilbert space H

(
Jτ Kq

)
.

Classical Set andQuantumGround Set. Fig. 13 defines
both the classical set Jτ Kc and the quantum ground set Jτ Kq

for all possible types τ . For type 1, both the classical set
and the quantum ground set are the singleton set {()}. The
(quantum) Boolean type B stores no classical information
and hence, its classical set is again the singleton set. In con-
trast, its quantum ground set is {0, 1}, for whichH ({0, 1})
contains all superpositions of |0⟩ and |1⟩. The sets associated
with the product type are standard. Functions store no quan-
tum information, and hence their quantum ground set is {()}.
In contrast, the classical set associated with a function type
contains all expressions e of this type, and a state σ storing
the variables captured in e . Finally, classical types !τ store
no quantum information and hence their quantum ground
set is {()}. In contrast, their classical set consists of (i) the
classical set Jτ Kc which remains classical and (ii) the quan-
tum ground set Jτ Kq. As a straightforward consequence of
our definition, duplicate classical annotations do not affect
the semantics: J!!τ K ≃ J!τ K.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

J!BK = J!BKc × H
(
J!BKq

)
=

(
JBKc × JBKq

)
× H ({()}) =

(
{()} × {0, 1}

)
× H ({()}) ≃ {0, 1} × H ({()})

J!B × BK = J!B × BKc × H
(
J!B × BKq

)
=

(
J!BKc × JBKc

)
× H

(
J!BKq × JBKq

)
=

(
{()} × {0, 1} × {()}

)
× H ({()} × {0, 1}) ≃ {0, 1} × H ({0, 1})

J!B × BK+ = H
(
J!BKc × JBKq

)
≃ H ({0, 1} × {0, 1}) = H

(
{0, 1}2) =

∑

w∈{0,1}2
γw |w ⟩

������ γw ∈ C

Type semantics

Jx : !B × BK = Jx : !B × BKc × H
(
Jx : !B × BKq

)
≃ {(v)x | v ∈ {0, 1}} × H

(
{(v ′)x | v ′ ∈ {0, 1}}

)
=

{(
(v)x , γ0 |0⟩x + γ1 |1⟩x

) ���� v ∈ {0, 1}
γ0, γ1 ∈ C

}
Jx : !B × BK+ = H

(
Jx : !B × BKc × Jx : !B × BKq

)
≃ H

({(
(v)x , (v ′)x

)
︸ ︷︷ ︸

(v,v ′)x

���� v ∈ {0, 1}
v ′∈ {0, 1}

})
=

∑

w∈{0,1}2
γw |w ⟩x

������ γw ∈ C

Context semantics

ι (Jx : !B × BK) ≃
{
ι
(
(v)x , γ0 |0⟩x + γ1 |1⟩x

) ��� v ∈ {0, 1}, γ0, γ1 ∈ C
}
≃

{
γ0 |v, 0⟩x + γ1 |v, 1⟩x

���v ∈ {0, 1}, γ0, γ1 ∈ C
}Embedding

Figure 14. Example semantics of type !B, type !B × B, and context x : !B × B.

standard representation

r
®β ®x : ®τ

z
:=

r
®β ®x : ®τ

zc
× H

(r
®β ®x : ®τ

zq)
=

{
(v1)x1, . . . , (vn)xn

�� vi ∈ Jτi Kc
}
× H

({
(v ′

1)x1, . . . , (v
′
n)xn

�� v ′
i ∈ Jτi Kq

})
r
®β ®x : ®τ

z+
:= H

(r
®β ®x : ®τ

zc
×

r
®β ®x : ®τ

zq)
≃

∑

wi ∈Jτi Kc×Jτi Kq
γw1, . . .,wn |w1 ⟩x1 ⊗ · · · ⊗ |wn ⟩xn

������ γw1, . . .,wn ∈ C

Figure 15. Semantics

r
®β ®x : ®τ

z
and extended semantics

r
®β ®x : ®τ

z+

of context ®β ®x : ®τ .

To illustrate the semantics of types, Fig. 14 provides seman-
tics for two example types. In particular, J!BK is isomorphic
to {0, 1} × H ({()}) — note that it is not formally isomor-
phic to {0, 1} because H ({()}) = {γ |()⟩ | γ ∈ C} tracks a
(physically irrelevant) global phase γ ∈ C.

Extended Semantic Space. Unfortunately, working with
elements (v,φ) ∈ Jτ K for v ∈ Jτ Kc and φ ∈ H

(
Jτ Kq

)
is

inconvenient because (i) every operation on (v,φ) needs to
handlev andφ separately (as they are different mathematical
objects) and (ii) some operations, like (v,φ)+ (v ′,φ ′) are not
defined because Jτ K is not a vector space.
Therefore, we define the semantics of expressions (§7.2)

and annotations (§7.4) on a more convenient, larger space
that also allows superpositions of classical values:

Jτ K+ := H
(
Jτ Kc × Jτ Kq

)
= H

(
Jτ Kc

)
⊗ H

(
Jτ Kq

)
.

Here, (i) the classical and quantum part of ϕ ∈ Jτ K+ can be
handled analogously and (ii) operation + is defined on Jτ K+.
We provide an example of this extended semantics in Fig. 14.

While elements of Jτ K can be naturally lifted to Jτ K+ via
embedding ι : Jτ K → Jτ K+ defined by ι(v,φ) := |v⟩ ⊗ φ, the
larger space Jτ K+ also contains invalid elements, namely those
where classical values are in superposition. In contrast, valid
elements do not put classical values in superposition, i.e., the
classical part of every summand in their superposition coin-
cides. Our semantics exclusively produces valid elements, as
we formally prove in Thm. 7.1.

Semantics of Contexts. Fig. 15 provides the semantics
of context

r
®β ®x : ®τ

z
. Here, (vi)xi indicates that variable xi

stores value vi . Fig. 14 provides semantics for an example
context, where we write |0⟩x as a short-hand for |(0)x ⟩.

Analogously to Jτ K+, Fig. 15 also introduces the extended
semantics

r
®β ®x : ®τ

z+

for contexts, and a standard representa-
tion that stores the classical and quantum value of variable x
together in a single location |v⟩x . We use this representation
throughout this work (including Fig. 3). Again, we illustrate
this extended semantics in Fig. 14.

For contexts, the embedding ι :
r
®β ®x : ®τ

z
→

r
®β ®x : ®τ

z+

is

ι
(
(®v)®x ,

∑
®v ′

γ ®v ′ | ®v ′⟩

)
=

∑
®v ′

γ ®v ′ | ®v, ®v ′⟩ ®x ,

for (®v)®x ∈

r
®β ®x : ®τ

zc

and
∑

®v ′ γ ®v ′ | ®v ′⟩ ®x ∈ H

(r
®β ®x : ®τ

zq)
. We

illustrate this in Fig. 14 on an example context.

7.2 Semantics of Expressions
Our operational semantics evaluates an expression e in state
ψ by constructing derivation trees whose structure follows
the structure of our type derivations. Since e may contain
measurements with probabilistic outcome, we provide an
evaluation

[
Γ

α
e : τ

��� ψ] run
−−→ ψ ′

i for each possible sequence
of measurement results, indicating that evaluating e (typed
as Γ α

e : τ), on stateψ yields stateψ ′
i with probability

ψ ′
i

2,

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

Figure 16. Part of derivation when evaluating expression x | | y | | z on state ψ = |0⟩x |0⟩y |1⟩z . For a complete semantics
derivation tree that leverages more rules, see App. F.3.

Figure 17. Non-isometry.

assuming ∥ψ ∥2 = 1 (see §3). If e is undefined for a given
input ψ (possible since reverse returns unsafe functions),
we do not provide any evaluation.

Domain ofψ ,ψ ′. When our semantics evaluates e accord-
ing to

[
Γ

α
e : τ ′′

��� ψ] run
−−→ ψ ′, it requires thatψ ∈ ι (JΓ,∆K).

By construction, for context Γ = const ®x : ®τ , ®y : ®τ ′, output
stateψ ′ lies in Jconst ®x : ®τ ,∆, e : τ ′′K+, i.e., we preserve con-
stant variables ®x and the additional context ∆ (discussed
next), and store the value of e in a temporary variable e .
Here, ∆ is additional context containing the remainder

of the state preserved while evaluating e . We illustrate the
need for ∆ in Fig. 16. Here, we cannot evaluate (x | | y) and z
independently, as their values may be entangled inψ . Hence,
we must evaluate x | | y in a state that not only contains x ,y
(in the context when typing x | |y, cp. blue box), but also z (in
∆, cp. red box). After this, we evaluate z in a state containing
z (in the context when typing z), x ,y (in ∆), and the value of
x | | y (stored as x | | y in ∆).

Formal Semantics. Here, we discuss the most important
aspects of the formal semantics of Silq-core expressions (see
App. F.1 for details, and App. F.3 for an example). Recall
that the structure of semantic derivation trees follows the
structure of the type derivation trees, and hence, every type
rule corresponds to a semantic derivation rule.

The semantics of evaluating a variable x is to rename x to
x in the new state if x is consumed, and to duplicate x to x if
x is constant. Contraction of constant variable x duplicates
x , according to

∑
v γv |v⟩x ⊗ ψ̃v 7→

∑
v γv |v⟩x |v⟩x ⊗ ψ̃v .

Weakening of constant variables postpones uncomputing
them until the end of the function body. When evaluating
a function call e ′(e1, . . . , en), we uncompute the constant
arguments ei (i.e., preserved according to the signature of
e ′) at the end of the function call. To reverse functions, we
postpone the reversal until the reversed function is called.
We handle control flow if e then e1 else e2 by separately
evaluating e1 (respectively e2) in the part of the state where
e is true (respectively false).

7.3 Type Preservation
Thm. 7.1 ensures that our semantics never produces invalid
statesψ ′, meaning that the classical values inψ ′ can never
be in superposition (since ι only returns valid elements).

Theorem 7.1 (Type Preservation). If Γ = const ®x : ®τ , ®y : ®τ ′,[
Γ

α
e : τ ′′

��� ψ]
run
−−→ ψ ′, and ψ ∈ ι (JΓ,∆K), then ψ ′ lies in

ι
(
Jconst ®x : ®τ , e : τ ′′,∆K

)
.

We provide a proof for Thm. 7.1 in App. G. Here, ι (JΓ,∆K)
contains all elements of JΓ,∆K+ where classical values are
not in superposition.

7.4 Semantics of Annotations
In the following, we show theorems formalizing the guar-
antees of annotations of Silq-core expressions. We do not
formally discuss the guarantees of annotations of Silq-core
functions, which are analogous. We note that the guarantees
of ! were already discussed in §7.3.

Preserving Constants. Thm. 7.2 ensures that constant
variables are indeed preserved by Silq-core.

Theorem 7.2 (Const Semantics). If Γ = const ®x : ®τ , ®y : ®τ ′,[
Γ

α
e : τ ′′

��� ψ]
run
−−→ ψ ′, andψ =

∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ψ̃ ®v, ®w ,

thenψ ′ =
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ χ ®v, ®w ⊗ ψ̃ ®v, ®w for some χ ®v, ®w .

We provide a proof for Thm. 7.2 in App. G.

Mfree Expressions. Wewant to ensure that mfree expres-
sions correspond to linear isometries, which in turn ensures
we can physically implement their effect with quantum gates.
However, this correspondence is non-trivial: Fig. 17 shows
an example where

run
−−→ is not isometric because we drop a

classical value from the input. Thm. 7.3 side-steps this issue,
intuitively by ensuring that our semantics is isometric when
the classical components of its input are fixed.

Theorem 7.3 (Mfree Semantics). If mfree ∈ α , σ ∈ JΓ,∆Kc,[
Γ

α
e : τ ′′

��� ι(σ ,ψ1)
]

run
−−→ ψ ′

1 for ψ1 ∈ H
(
JΓ,∆Kq

)
, and[

Γ
α
e : τ ′′

��� ι(σ ,ψ2)
]

run
−−→ ψ ′

2 for ψ2 ∈ H
(
JΓ,∆Kq

)
,

then ⟨ψ1 |ψ2⟩ =
〈
ψ ′

1
��ψ ′

2
〉
.

We provide a proof for Thm. 7.3 in App. G.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

A useful interpretation of Thm. 7.3 states that
run
−−→ acts

like an isometry on the subspace consistent with a fixed
classical component σ ∈ JΓ,∆Kc,

{ι(σ , χ) | χ ∈ H
(
JΓ,∆Kq

)
} ⊆ JΓ,∆K+ .

This corresponds to the intuition that in order to evaluate e
onψ1, we can (i) extract the classical component σ fromψ1,
(ii) build a circuit C that realizes the linear isometry for this
classical component and (iii) run C , yieldingψ ′

1 .

Qfree Expressions. Thm. 7.4 ensures that qfree expres-
sions can be described by a function f̄ on the ground sets.

Theorem7.4 (Qfree Semantics). If Γ
α
e : τ ′′ for qfree ∈ α

and context Γ = const ®x : ®τ , ®y : ®τ ′, then there exists a function
f̄ : JΓKs → Jconst ®x : ®τ , e : τ ′′Ks on ground sets such thatΓ α

e : τ ′′

������ ∑
σ ∈JΓKs

γσ |σ ⟩ ⊗ ψ̃σ

 run
−−→

∑
σ ∈JΓKs

γσ
�� f̄ (σ)〉 ⊗ ψ̃σ ,

where JΓKs is a shorthand for the ground set JΓKc × JΓKq on
which the Hilbert space JΓK+ = H

(
JΓKs

)
is defined.

We provide a proof for Thm. 7.4 in App. G.

7.5 Physicality
Thm. 7.5 ensures Silq-core programs can be physically real-
ized on a QRAM. If we would change our semantics to abort
on operations that are not physical, we could re-interpret
Thm. 7.5 to guarantee progress, i.e., the absence of errors due
to unphysical operations.

Theorem 7.5 (Physicality). The semantics of well-typed Silq
programs is physically realizable on a QRAM.

We provide a proof for Thm. 7.5 in App. G, which heavily
relies on the semantics of annotations. As a key part of the
proof, we show that we can uncompute temporary values by
reversing the computation that computed them. Reversing a
computation is possible on a QRAM (and supported by most
existing quantum languages) by (i) producing the gates that
perform this computation and (ii) reversing them.

8 Evaluation of Silq
Next, we experimentally compare Silq to other languages.
Our comparison focuses on Q#, because (i) it is one of the
most widely used quantum programming languages, (ii) we
consider it to be more high-level than Cirq or QisKit, and
(iii) the Q# coding contest [15, 16] provides a large collection
of Q# implementations we can leverage for our comparison.
To check if our findings can generalize to other languages,
we also compare Silq to Quipper (§8.2).

Table 1. Silq compared to Q#.

Silq Q#
S18 W19 Both S18 W19 Both

Lines of code 99 168 267 251 242 493
Quantum primitives 8 10 10 12 19 22
Annotations 2 3 3 3 6 6
Low-level quantum gates 14 23 37 33 54 87

Implementation. We implemented a publicly available
parser, type-checker, and simulator for Silq as a fork of the
PSI probabilistic programming language [6]. Specifically,
Silq’s AST and type checker are based on PSI, while Silq’s
simulator is independent of PSI. Our implementation handles
all valid Silq code examples in this paper, while rejecting in-
valid programs. We also provide a development environment
for Silq, in the form of a Visual Studio Code extension. 10
Compared to Silq-core, Silq supports an imperative frag-

ment (including automatic uncomputation), additional prim-
itives, additional convenience features (e.g., unpacking of tu-
ples), additional types (e.g., arrays), dependent types (which
only depend on classical values, as shown in Fig. 3), type
equivalences (e.g., !!τ ≡ !τ), subtyping, and type conversions.

8.1 Comparing Silq to Q#
To compare Silq to Q#, we solved all 28 tasks of Microsoft’s
Q# Summer 2018 and Winter 2019 [15, 16] coding contest
in Silq. We compared the Silq solutions to the Q# reference
solutions provided by the language designers [17, 18] (Tab. 1)
and the top 10 contestants (App. H).

Our results indicate that algorithms expressed in Silq are
far more concise compared to the reference solution (−46%)
and the average top 10 contestants (−59%). We stress that we
specifically selected these baselines to be written by experts
in Q# (for reference solutions) or strong programmers well-
versed in Q# (for top 10 contestants). We did not count empty
lines, comments, import statements, namespace statements,
or lines that were unreachable for the method solving the
task. This greatly benefits Q#, as it requires various imports.
Because the number of lines of code heavily depends on

the available language features, we also counted (i) the num-
ber of different quantum primitives, (ii) the number of dif-
ferent annotations in both Q# (controlled auto, adjoint
self, Controlled, . . .) and Silq (mfree, qfree, const, lifted,
and !), as well as (iii) the number of low-level quantum circuit
gates used to encode all programs in Q# and Silq (for details,
see App. H).

Our results demonstrate that Silq is not only significantly
more concise, but also requires only half as many quantum
primitives, annotations, and low-level quantum gates com-
pared to Q#. As a consequence, we believe Silq programs
are easier to read and write. In fact, we conjecture that the

10https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-
silq

https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq
https://marketplace.visualstudio.com/items?itemName=eth-sri.vscode-silq

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

Table 2. Comparing Silq to other quantum languages. Paren-
thesized features are partially (but not fully) supported.

Language Type
system

Autom.
Uncomp. const mfree qfree

QPL [27] linear11 ✗ ✗ ✗ ✗

Quantum λ-calc. [28] affine ✗ ✗ ✗ ✗

Quipper [7] non-linear (✓) ✗ ✗ ✗

ReVerC [2] non-linear (✓) ✗ ✗ (✗)
QWire [22] linear ✗ ✗ ✗ ✗

Q# [30] non-linear ✗ ✗ ✓ ✗

ReQWire [23] linear (✗) (✗) ✗ (✗)
Silq (this work) linear+ ✓ ✓ ✓ ✓

code of the top 10 contestants was longer than the reference
solutions because they had difficulties choosing the right
tools out of Q#’s large set of quantum primitives. We note
that Silq is better in abstracting away standard low-level
quantum circuit gates: they occur only half as often in Silq.

8.2 Comparing Silq to Quipper
The language designers of Quipper provide an encoding [26]
of the triangle finding algorithm [4, 14]. We encoded this
algorithm in Silq and found that again, we need significantly
less code (−38%; Quipper: 378 LOC, Silq: 236 LOC). An ex-
cerpt of this, on which we achieve even greater reduction
(−64%), was already discussed in Fig. 2.

The intent of the algorithm in Fig. 2 is naturally captured in
Silq: it iterates over all j,kwith 0 ≤ j < k < 2rbar, and counts
how often ee[tau[j]][tau[k]] && eew[j] && eew[k] is
true, where we use quantum indexing into ee. In contrast,
Quipper’s code is cluttered by explicit uncomputation (e.g., of
eedd_k), custom functions aiding uncomputation (e.g., .&&.),
and separate initialization and assignment (e.g., eedd_k), be-
cause Quipper lacks automatic uncomputation.
Similarly to Q#, Quipper offers an abundance of built-in

and library functions. It supports 76 basic gates and 8 types of
reverse, while Silq only provides 10 basic gates and 1 type of
reverse, without sacrificing expressivity. Some of Quippers
overhead is due to double definitions for programming in
declarative and imperative style, e.g., it offers both gate_T

and gate_T_at or due to definition of inverse gates, e.g.,
gate_T_inv.

8.3 Further Silq Implementations
To further illustrate the expressiveness of Silq on interesting
quantum algorithms, we provide Silq implementations of
(i) Wiesner’s quantum money scheme [34], (ii) a naive (un-
successful) attack on it, and (iii) a recent (successful) attack
on it [20] in App. H.3.

11QPL (i) enforces no-cloning syntactically and (ii) disallows implicitly
dropping variables (cp. rule discard in Fig. 12)

9 Related Work
Various quantum programming languages aim to simplify
development of quantum algorithms. Tab. 2 shows the key
language features of the languages most related to ours.

Const. To our knowledge, Silq is the first quantum lan-
guage to mark variables as constant. We note that for Q#,
so-called immutable variables can still be modified (unlike
const variables), for example by applying the Hadamard
transform H.
Silq’s constant annotation is related to ownership type

systems guaranteeing read-only references [19]. As a con-
crete example, the Rust programming language supports a
single mutable borrow and many const borrows [10](§4.2).
However, the quantum setting induces additional challenges:
only guaranteeing read-only access to variables is insuffi-
cient as we must also ensure safe uncomputation. To this
end, Silq supports a combination of const and qfree.

Qfree. To our knowledge, no existing quantum language
annotates qfree functions. ReverC’s language fragment con-
tains qfree functions (e.g., X), and ReQWire’s syntactic con-
ditions cover some qfree operations, but neither language
explicitly introduces or annotates qfree functions.

Mfree. Of the languages in Tab. 2, only Q# can prevent
reversing measurement and conditioning measurement (via
special annotations). However, as Q# cannot detect implicit
measurements, reverse and conditionals may still induce
unexpected semantics. For other languages, reversal may fail
at runtime when reversing measurements, and control may
fail at runtime on conditional measurement.

We note that QWire’s reverse returns safe functions, but
only when given unitary functions (otherwise, it reports a
runtime error by outputting None). Thus, it for example can-
not reverse dup, which is linearly isometric but not unitary.

Semantics. The semantics of Silq is conceptually inspired
by Selinger and Valiron, who describe an operational seman-
tics of a lambda calculus that operates on a separate quantum
storage [28]. However, as a key difference, Silq’s semantics
is more intuitive due to automatic uncomputation.
All other languages in Tab. 2 support semantics in terms

of circuits that are dynamically constructed by the program.

10 Conclusion
We presented Silq, a new high-level statically typed quantum
programming language which ensures safe uncomputation.
This enables an intuitive semantics that is physically realiz-
able on a QRAM.

Our evaluation shows that quantum algorithms expressed
in Silq are significantly more concise and less cluttered com-
pared to their version in other quantum languages.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

References
[1] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Lu-

ciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-
Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen,
Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, An-
drew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente
González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan
Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert
Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-
Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe
Hellmers, Łukasz Herok, Hiroshi Horii, ShaohanHu, Takashi Imamichi,
Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev,
Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques,
Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay,
Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Ro-
dríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James
O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Vik-
tor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Ray-
mond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel,
Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Sir-
aichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Taka-
hashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing,
Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot,
Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher
Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and
Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum
Computing. https://doi.org/10.5281/zenodo.2562110

[2] Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017. Veri-
fied Compilation of Space-Efficient Reversible Circuits. In CAV’17.
Vol. 10427. Cham, 3–21. https://doi.org/10.1007/978-3-319-63390-9_1

[3] Charles H Bennett. 1973. Logical Reversibility of Computation. IBM
Journal of Research and Development 17, 6 (Nov. 1973), 525–532. https:
//doi.org/10.1147/rd.176.0525

[4] Andrew M. Childs and Robin Kothari. 2011. Quantum query complex-
ity of minor-closed graph properties. In STACS’11 (Dagstuhl, Germany,
2011) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 9.
661–672. https://doi.org/10.4230/LIPIcs.STACS.2011.661

[5] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. 2016. Quantum-
Enhanced Machine Learning. Physical Review Letters 117, 13 (Sept.
2016). https://doi.org/10.1103/physrevlett.117.130501

[6] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. Psi: Exact
symbolic inference for probabilistic programs. In CAV’16. 62–83.

[7] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter
Selinger, and Benoît Valiron. 2013. Quipper: a scalable quantum pro-
gramming language. In PLDI’13. ACM Press, Seattle, Washington, USA.
https://doi.org/10.1145/2491956.2462177

[8] Lov K Grover. 1996. A fast quantummechanical algorithm for database
search. In Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing. ACM, 212–219.

[9] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quan-
tum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 103
(Oct 2009), 150502. Issue 15. https://doi.org/10.1103/PhysRevLett.103.
150502

[10] Steve Klabnik and Carol Nichols. 2018. The Rust programming language.
No Starch Press, San Francisco.

[11] Emmanuel Knill. 1996. Conventions for quantum pseudocode. Technical
Report. Citeseer.

[12] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum
principal component analysis. Nature Physics 10, 9 (July 2014), 631–633.
https://doi.org/10.1038/nphys3029

[13] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. 2014. Quan-
tum inference on Bayesian networks. Phys. Rev. A 89, 6 (June 2014),
062315. https://doi.org/10.1103/PhysRevA.89.062315

[14] F. Magniez, M. Santha, and M. Szegedy. 2007. Quantum Algorithms
for the Triangle Problem. 37, 2 (2007), 413–424. https://doi.org/10.
1137/050643684

[15] Microsoft. 2018. Public submissions of the Microsoft Q# Coding Con-
test - Summer 2018. (2018). https://codeforces.com/contest/1002/

[16] Microsoft. 2019. Public submissions of the Microsoft Q# Coding Con-
test - Winter 2019. (2019). https://codeforces.com/contest/1116/

[17] Mariia Mykhailova and Martin Roetteler. 2018. Microsoft Q# Coding
Contest - Summer 2018 - Main Contest July 6-9, 2018. (2018). https:
//assets.codeforces.com/rounds/997-998/main-contest-editorial.pdf

[18] Mariia Mykhailova and Martin Roetteler. 2019. Microsoft Q# Coding
Contest - Winter 2019 - Main Contest March 1-4, 2019. (2019). https:
//assets.codeforces.com/rounds/1116/contest-editorial.pdf

[19] PeterMüller and Arnd Poetzsch-Heffter. 1999. Universes: a type system
for controlling representation exposure.

[20] Daniel Nagaj, Or Sattath, Aharon Brodutch, and Dominique Unruh.
2016. An Adaptive Attack on Wiesner’s Quantum Money. Quantum
Info. Comput. 16, 11-12 (Sept. 2016), 1048–1070. http://dl.acm.org/
citation.cfm?id=3179330.3179337

[21] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum computa-
tion and quantum information (10th anniversary ed ed.). Cambridge
University Press, Cambridge ; New York.

[22] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE:
a core language for quantum circuits. In POPL’17. ACM Press, Paris,
France. https://doi.org/10.1145/3009837.3009894

[23] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic.
2019. ReQWIRE: Reasoning about Reversible Quantum Circuits. Elec-
tronic Proceedings in Theoretical Computer Science 287 (Jan. 2019), 299–
312. https://doi.org/10.4204/EPTCS.287.17 arXiv: 1901.10118.

[24] Patrick Rebentrost, M Mohseni, and Seth Lloyd. 2013. Quantum Sup-
port Vector Machine for Big Data Classification. Physical Review Letters
113 (2013).

[25] Steven Roman. 2008. Advanced Linear Algebra. New York, NY. http:
//site.ebrary.com/id/10230315 OCLC: 730328666.

[26] Neil J. Ross and Peter LeFanu Lumsdaine. 2015. Algorithms.TF.Main.
https://www.mathstat.dal.ca/~selinger/quipper/doc/Algorithms-TF-
Main.html.

[27] Peter Selinger. 2004. Towards a Quantum Programming Language.
Mathematical. Structures in Comp. Sci. 14, 4 (Aug. 2004), 527–586. https:
//doi.org/10.1017/S0960129504004256

[28] Peter Selinger and Benoit Valiron. 2006. A lambda calculus for quan-
tum computation with classical control. Mathematical Structures in
Computer Science 16, 03 (June 2006), 527. https://doi.org/10.1017/
S0960129506005238

[29] Damian S. Steiger, Thomas Häner, andMatthias Troyer. 2018. ProjectQ:
an open source software framework for quantum computing. Quantum
2 (Jan. 2018), 49. https://doi.org/10.22331/q-2018-01-31-49

[30] Krysta Svore, Martin Roetteler, Alan Geller, Matthias Troyer, John
Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov,
Mariia Mykhailova, and Andres Paz. 2018. Q#: Enabling Scalable
Quantum Computing and Development with a High-level DSL. In
Proceedings of the Real World Domain Specific Languages Workshop
2018 on - RWDSL2018. ACM Press, Vienna, Austria. https://doi.org/10.
1145/3183895.3183901

[31] Google AI Quantum Team. 2017. Cirq. (2017). https://github.com/
quantumlib/Cirq

[32] Dave Wecker and Krysta M Svore. 2014. LIQUi|>: A software design
architecture and domain-specific language for quantum computing.
arXiv preprint arXiv:1402.4467 (2014).

[33] Nathan Wiebe, Daniel Braun, and Seth Lloyd. 2012. Quantum Al-
gorithm for Data Fitting. Physical Review Letters 109, 5 (Aug. 2012).
https://doi.org/10.1103/physrevlett.109.050505

[34] Stephen Wiesner. 1983. Conjugate Coding. SIGACT News 15, 1 (Jan.
1983), 78–88. https://doi.org/10.1145/1008908.1008920

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.4230/LIPIcs.STACS.2011.661
https://doi.org/10.1103/physrevlett.117.130501
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/nphys3029
https://doi.org/10.1103/PhysRevA.89.062315
https://doi.org/10.1137/050643684
https://doi.org/10.1137/050643684
https://codeforces.com/contest/1002/
https://codeforces.com/contest/1116/
https://assets.codeforces.com/rounds/997-998/main-contest-editorial.pdf
https://assets.codeforces.com/rounds/997-998/main-contest-editorial.pdf
https://assets.codeforces.com/rounds/1116/contest-editorial.pdf
https://assets.codeforces.com/rounds/1116/contest-editorial.pdf
http://dl.acm.org/citation.cfm?id=3179330.3179337
http://dl.acm.org/citation.cfm?id=3179330.3179337
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.4204/EPTCS.287.17
http://site.ebrary.com/id/10230315
http://site.ebrary.com/id/10230315
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://doi.org/10.1103/physrevlett.109.050505
https://doi.org/10.1145/1008908.1008920

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

1 cTri <- foldM (\cTri j -> do

2 let tau_j = tau ! j

3 eed <- qinit (intMap_replicate rr False)

4 -- computing eed = ee[tau[j]]

5 (taub,ee,eed) <- a11_FetchE tau_j ee eed

6 cTri <- foldM (\cTri k -> do

7 let tau_k = tau ! k

8 eedd_k <- qinit False

9 -- eedd_k=eed[tau[k]]=ee[tau[j]][tau[k]]

10 (tauc, eed, eedd_k) <- qram_fetch qram tau_k eed eedd_k

11 -- using eedd_k as ctrl

12 cTri <- increment cTri `controlled` eedd_k .&&. (eew ! j)

.&&. (eew ! k)

13 -- uncomputing eedd_k

14 (tauc, eed, eedd_k) <- qram_fetch qram tau_k eed eedd_k

15 qterm False eedd_k

16 return cTri)

17 cTri [j+1..rrbar-1]

18 -- uncomputing eed

19 (taub,ee,eed) <- a11_FetchE tau_j ee eed

20 qterm (intMap_replicate rr False) eed

21 return cTri)

22 cTri [0..rrbar-1]

Figure 18. Quipper code from Fig. 2.

A Comparing Silq to Quipper and QWire
Fig. 18 and Fig. 19 provide full versions of the programs
shown in Fig. 2.

B Grover’s Algorithm
Fig. 20 shows an implementation of Grover’s algorithm, in-
cluding Grover’s diffusion operator in Silq.

C Uncomputing Non-Qfree Expressions
Here, we show why uncomputing the condition in function
nonQfree in Fig. 5 is not possible (in particular also not by
following Bennet’s construction). Fig. 22a provides a rewrit-
ten version of nonQfree that makes its individual operations
more explicit.

Without uncomputation, nonQfree produces x (implicitly
duplicated before applying H), a modified y, and a temporary
control t, hence uncomputation should remove t without
uncomputing x or the modified y.
The most natural way to try to uncompute t is running

Bennett’s construction by (i) running nonQfree, (ii) duplicat-
ing the modified y, and (iii) reversing nonQfree. However,
this would result in x, the original y, and the modified y,
instead of just x and the modified y.
Fig. 22 shows that more generally, dropping t from the

state is unphysical. Specifically, dropping t from the state
(which is the goal of correct uncomputation) can result in
the invalid state 0.

1index :
∏
(n:Nat,i:Nat) . CIRC(t[n] ,t[n]⊗ t)

= ...

2qindex :
∏
(n:Nat,m:Nat) . CIRC(t[n]⊗qubit[m],t[n]⊗qubit[m]⊗t)

= ...

3controlledInc :
∏
(n:Nat). CIRC(qubit[n]⊗qubit,qubit[n]⊗qubit)

= ...

4
5EvalCondition :

∏
(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

6qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar],...⊗qubit

7) = box(ee,tau,eew) =>

8(tau,tauj) <- unbox (index rrbar j) tau; -- tauj=tau[j]

9(tau,tauk) <- unbox (index rrbar k) tau; -- tauk=tau[k]

10(ee, tauj, eed) <- unbox (qindex rrbar r) ee tauj; -- eed=ee

[tauj]

11(eed,tauk,eedd_k) <- unbox (qindex rrbar r) eed tauk; --

eedk=eed[tauk]

12(eew,eewj) <- unbox (index rrbar j) eew; -- eewj=eew[j]

13(eew,eewk) <- unbox (index rrbar k) eew; -- eewk=eew[k]

14(eedd_k,eewj,eewk,c) <- unbox and eedd_k eewj eewk; --

condition

15output (ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) --

output

16
17LoopBody :

∏
(r:Nat,rrbar:Nat,j:Nat,k:Nat). CIRC(

18qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar

],

19qubit[rrbar][rrbar]⊗qubit[rrbar][r]⊗qubit[rrbar]⊗qubit[rrbar

]

20) = box (ee,tau,eew,cTri) =>

21(ee,tau,eew,tauj,tauk,eed,eedd_k,eewj,eewk,c) <- unbox (

EvalCondition r rrbar j k) ee tau eew; -- evaluate

condition

22(cTri,c) <- unbox (controlledInc rrbar) cTri c; --

controlled increment

23(ee,tau,eew) <- unbox (reverseIsometric EvalCondition r

rrbar j k) ee tau eew tauj tauk eed eedd_k eewj eewk c

-- uncompute

24output (ee,tau,eew,cTri) -- output

Figure 19. QWire code from Fig. 2.

D Notational Conventions
Fig. 23 summarizes the notational conventions used in this
work.

E Typing Rules
In the following, we provide additional information on typ-
ing rules of Silq-core.

E.1 Basic Pattern of Typing Rules
Fig. 25 shows the basic patterns of our typing rules without
annotations.

E.2 Types of Selected Built-in Functions
Fig. 24 shows the type of some built-in functions. In the
following, we only discuss its most interesting aspects.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

1 def groverDiff[n:!N](cand:uint[n]){

2 for k in [0..n) { cand[k] := H(cand[k]); }

3 if cand!=0 {

4 phase(π);
5 }

6 for k in [0..n) { cand[k] := H(cand[k]); }

7 return cand;

8 }

9
10 def grover[n:!N](f:uint[n]!→ lifted B){

11 nIterations:= floor(π/4/asin(2^(-n/2)));
12 cand:=0:uint[n];

13 for k in [0..n) { cand[k] := H(cand[k]); }

14
15 for k in [0..nIterations){

16 if f(cand) { phase(π); }

17 cand:=groverDiff(cand);

18 }

19 return measure(cand);

20 }

Figure 20. Grover’s diffusion operator in Silq.

1 def PeriodFinding[n:!N](f:!(const uint[n]→qfree uint[n])):!N{

2 cand := 0:uint[n];

3 for k in [0..n) { cand[k] ~= H(cand[k]); }

4 measure(f(cand));

5 cand := reverse(QFT[n])(cand);

6 return measure(cand);

7 }

8
9 def QFT[n:!N](x: uint[n])mfree: uint[n]{

10 for k in [0..n div 2){

11 (x[k],x[n-k-1]) := (x[n-k-1],x[k]);

12 }

13 for k in [0..n){

14 x[k] := H(x[k]);

15 for l in [k+1..n){

16 if x[l] && x[k]{

17 phase(2*π*2^(k-l-1));
18 }

19 }

20 }

21 return x;

22 }

Figure 21. Period Finding and Quantum Fourier Transform in Silq.

1 def nonQfree(const x:B,y:B){

2 t := dup(x);

3 t := H(t);

4 if t{

5 y := X(y);

6 }

7 // uncompute t

8 }

(a) Rewritten version of nonQfree that makes
its individual operations more explicit.

1√
2
|1⟩x |0⟩y + 1√

2
|1⟩x |1⟩y

Line 2
−−−−→ 1√

2
|1⟩x |0⟩y |1⟩t + 1√

2
|1⟩x |1⟩y |1⟩t

Line 3
−−−−→ 1√

2
|1⟩x |0⟩y |−⟩t + 1√

2
|1⟩x |1⟩y |−⟩t

=
1
2
|1⟩x |0⟩y |0⟩t −

1
2
|1⟩x |0⟩y |1⟩t +

1
2
|1⟩x |1⟩y |0⟩t −

1
2
|1⟩x |1⟩y |1⟩t

Lines 4–6
−−−−−−−→

1
2
|1⟩x |0⟩y |0⟩t −

1
2
|1⟩x |1⟩y |1⟩t +

1
2
|1⟩x |1⟩y |0⟩t −

1
2
|1⟩x |0⟩y |1⟩t

Lines 7
−−−−−→

1
2
|1⟩x |0⟩y −

1
2
|1⟩x |1⟩y +

1
2
|1⟩x |1⟩y −

1
2
|1⟩x |0⟩y = 0

(b) Semantics of nonQfree.

Figure 22. Semantics of nonQfree on input 1√
2
|1⟩x |0⟩y + 1√

2
|1⟩x |1⟩y when uncomputing the condition.

Expressions e
Constants c
Variables x, y, z, xi , . . .

(a) Symbols used in grammar.
Type 1, B, . . .

Type (meta variable) τ , τ ′, τi , τ ′i
Annotation !, const, qfree, mfree

Annotation (meta variable) α, α ′, αi , α ′
i , β, βi

Context Γ, Γi , ∆

(b) Symbols used in type system.

Indices i, j, k
Numbers n,m, l

Value v, v ′, ®v, ®v ′, b
Storage (of form (®v) ®x) σ

Unnamed state (of form
∑

®v γ ®v | ®v ⟩) φ, ϕ
Named state (of form

∑
®v γ ®v | ®v ⟩ ®x) ψ , χ

Remainder of state (as in
∑
v γ ′

v |v ⟩ ⊗ φ̃v) φ̃, ϕ̃, ψ̃
Imaginary unit i

Coefficients γv , γ ®v , γσ , . . .
Identity I

Embedding (injection) ι

(c) Symbols used in semantics.

Figure 23. Notational conventions used in this work.

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

H B !
mfree
−−−−→ B

phase !float !
mfree
−−−−→ 1

rotX, rotY, rotZ !float × B !
mfree
−−−−→ B

X B !
qfree,mfree
−−−−−−−−−−→ B

Y, Z B !
mfree
−−−−→ B

dup const τ !
qfree,mfree
−−−−−−−−−−→ τ

(·, . . . , ·) ×n
i=1 τi !

qfree,mfree
−−−−−−−−−−→ ×n

i=1 τi
forget(· = ·) τ × const τ !

qfree,mfree
−−−−−−−−−−→ 1

· ⊕ · const uint × const uint !
qfree
−−−−→ uint

Figure 24. Types of selected built-in functions.

Γi ei : τi Γ′ e′ : ×n
i=1 τi → τ ′

Γ1, . . . , Γn, Γ
′ e′(e1, . . . , en) : τ ′

®x : ®τ , ®y : ®τ ′ e : τ ′′

®y : ®τ ′ λ(®x : ®τ).e : ×n
i=1 τi → τ ′′

Γc e : B Γ e1 : τ Γ e2 : τ

Γc , Γ if e then e1 else e2 : τ

Figure 25. The basic patterns of our typing rules (ignoring
annotations) are standard for a linear type system.

Hadamard, Phase. The parameter of H is not const, mean-
ing that evaluating H consumes its argument (the argument
is not available after the call). In contrast, the parameters of
⊕ are const, meaning that adding two expressions preserves
them. Further, H is only mfree, while ⊕ is qfree and mfree.
The function phase requires a classical phase (!float), and
does not return anything (indicated by 1).

Dup, Tupling. Function dup returns a copy of its argu-
ment, without changing the argument (indicated by const τ).
For tupling (·, . . . , ·), our typing rule relies on the implicit
tupling by function calls (see Fig. 9). It consumes its argu-
ments and is qfree. As an implicit consequence, (e1, . . . , en)
is classical if all ei ’s are classical.

Forget. Function forget(e1 = e2) leaves its second argu-
ment constant, but consumes its first. This allows us to forget
e1.

F Semantics
In the following, we provide additional information on se-
mantics of Silq-core.

F.1 Semantics of Expressions
In the following, we provide formal semantics for Silq-core
expressions.

Constants, Variables. Fig. 26 first shows the rule for con-
stants, which adds the constant to the state. Then, it shows

the rules for variables. For consumed variables, Ix→x re-
names x to x in ψ without affecting other variables in ψ
(shortly discussed in more detail). In contrast, the rule for
constant variables preserves x and introduces an explicit
duplicate x by JdupK, which maps |v⟩ to |v,v⟩ (cp. Fig. 33).

Operating on Named States with Context. We provide
amore detailed example demonstrating the effect of subscript
“x → x” in Fig. 31, which shows how to apply JXK x →y

to state |b⟩ x ⊗ | ®w⟩ ®z , where the formal definition of JXK is
JXK (|b⟩) = |1 − b⟩ (see App. F.2).
Here, the subscript x → y of X ensures that we (i) pre-

serve | ®w⟩ ®z (cp. Eq. (10–11)) and (ii) run X on |b⟩ x and name
the output y (cp. Eq. (12)).

Here, it is crucial that we assume the standard representa-
tion introduced in Fig. 15, which ensures that classical and
quantum components of variable x are stored together as
|(v,v ′)⟩x . As a consequence, we know that if ®z contains one
or more occurrences of x , these represent duplicates of x , as
opposed to classical or quantum components of x .

Contraction, Weakening. Next, Fig. 27 shows the se-
mantics of contraction and weakening.

If the weakening rule drops a classical variable x from the
context (rule !W), the semantics drops x from the state, using
drop(x)

(
|v⟩x | ®w⟩ ®y

)
= | ®w⟩ ®y . If the context contains multiple

occurrences of x , only the first occurrence of x is dropped.
If the rule drops a constant variable (ruleW), the semantics

ignores this. Instead, it waits until the end of the function to
uncompute all constant variables.

The contraction rule for classical variables (rule !C) dupli-
cates the contracted variable x . In contrast, the contraction
rule for quantum variables (rule C), duplicating the con-
tracted variable x , and removes the duplicate after evaluat-
ing e . This removal of duplicates is not needed for classical
variables, as only constant variables are preserved after their
last usage.

Function Calls. The first rule in Fig. 28 shows the seman-
tics of a generic function call e ′(®e). First, the rule evaluates all
arguments, resulting in stateψn . Second, the rule evaluates
e ′, resulting in state ψn+1 containing the function e ′′ to be
evaluated, which may capture variables σ . We note that the
rule implicitly assumes that the function to be evaluated is
classically known — a property guaranteed by our type sys-
tem. Third, it evaluates the function using a transition rule
of the form [e ′′(®e) | σ | ψn+1]

eval
−−−→ ψn+2. In contrast to run-

transitions, eval-transitions assume that all arguments ®e are
already evaluated inψn+1 (as guaranteed by run-transitions).
Finally, the rule drops the const arguments of e ′′ by un-
computing them, and renames the output value from ret to
e ′(®e).

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

[
∅

α c : τ
��� ψ] run

−−−→ ψ ⊗ |c ⟩c
const [

x : τ α x : τ
��� ψ] run

−−−→ Ix→x (ψ)

var [
const x : τ α x : τ

��� ψ] run
−−−→ dupx→x,x (ψ)

var-const

Figure 26. Semantics of constants and variables.[
Γ

α e : τ ′
��� drop(x) (ψ)

] run
−−−→ ψ ′[

Γ, x : !τ α e : τ ′
��� ψ] run

−−−→ ψ ′
!W

[
Γ

α e : τ ′
��� ψ] run

−−−→ ψ ′[
Γ, const x : τ α e : τ ′

��� ψ] run
−−−→ ψ ′

W

[
Γ, x : !τ , x : !τ α e : τ ′

��� dupx→x,x (ψ)

] run
−−−→ ψ ′[

Γ, x : !τ α e : τ ′
��� ψ] run

−−−→ ψ ′
!C

[
Γ, const x : τ , const x : τ α e : τ ′

��� dupx→x,x (ψ)

] run
−−−→ ψ ′[

Γ, const x : τ α e : τ ′
��� ψ] run

−−−→ drop(x) (ψ ′)

C

Figure 27. Semantics of contraction and weakening.

ψ =
∑
v
γv |v ⟩e ⊗ ψ̃v v ′ ∈ Jτ Kc × Jτ Kq[

measure(e) : τ !
α
−→!τ

��� ∅ : ∅
��� ψ] eval

−−−→ γv ′ |v ′⟩ret ⊗ ψ̃v ′

measure [
c(®e) : ×n

i=1 βiτi !
α
−→τ ′

��� ∅ : ∅
��� ψ] eval

−−−→ JcK ®e→(ei)i |const∈βi ,ret
(ψ)

built-in-eval

Figure 28. Semantics of function calls.

ψ = |efunc, σ ⟩e ⊗ ψ̃[
reverse(e) :

(
n
×
i=1

const τi ×
m
×
j=1

τ ′j !
mfree,α
−−−−−−−→

l
×
k=1

τ ′′k

)
!
mfree,qfree
−−−−−−−−−−→

(
n
×
i=1

const τi ×
l
×
k=1

τ ′′k !
mfree,α
−−−−−−−→

m
×
j=1

τ ′j

) ����� ∅
����� ψ]

eval
−−−→ |reverse(efunc), σ ⟩ret ⊗ ψ̃

rev

[
efunc(®ec, ®t) :

n
×
i=1

const τi ×
m
×
j=1

τ ′j !
mfree,α
−−−−−−−→

l
×
k=1

τ ′′k

����� σ : Γ

����� ψ ′

]
eval
−−−→ I ®ec→ret (ψ) ψ ′ ∈

t

®ec :
n
×
i=1

const τi , ®t :
m
×
j=1

τ ′j , ∆

|+

∆ according to ψ[
reverse(efunc)(®ec, ®ec) :

n
×
i=1

const τi ×
l
×
k=1

τ ′′k !
mfree,α
−−−−−−−→

m
×
j=1

τ ′j

����� σ : Γ

����� ψ]
eval
−−−→ I®t→ret

(
ψ ′

) call-rev

Figure 29. Semantics of reverse.[
Γc

αc ec : B
��� ψ] run

−−−→ ψt ⊗ |1⟩ec +ψf ⊗ |0⟩ec
[
Γ

αt et : τ
��� ψt] run

−−−→ ψ ′
t

[
Γ

αf ef : τ
��� ψf] run

−−−→ ψ ′
fΓc , Γ

α
if ec then et else ef︸ ︷︷ ︸

e

: τ

�������� ψ

run
−−−→ Iet→e

(
ψ ′
t
)
+ Ief →e

(
ψ ′
f

) ite-q

Figure 30. Semantics of control flow. The rule is analogous for ec : !B.

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

(
JXK x →y

) (
|b ⟩ x ⊗ | ®w ⟩ ®z

)
(9)

= JXK x →y
(
|b ⟩ x

)
⊗ I

(
| ®w ⟩ ®z

)
(10)

= JXK x →y
(
|b ⟩ x

)
⊗ | ®w ⟩ ®z I (11)

=

(
JXK

(
|b ⟩

))
y

⊗ | ®w ⟩ ®z x → y (12)

= |1 − b ⟩ y ⊗ | ®w ⟩ ®z X (13)

Figure 31. Operating on named states with context.

Eval-transitions. All remaining rules in Fig. 28 are eval-
transitions. The rules modify their input stateψ according
to the called function, and then store the result in ret.

Measurement. The rule for measurement selects one pos-
sible measurement v ′ and collapses the state to this value.
Note that measurement allows multiple transitions, one for
each possible measured value v ′. Here, and in various other
eval-transitions, the state of captured variables is σ = ∅, as
measurement cannot capture variables.

Built-in Functions. The rule for evaluating built-in func-
tions c relies on the semantics JcK of these functions, as dis-
cussed in App. F.2. The subscript to JcK ensures that the func-
tion operates on input values named e1, . . . , en , and names
the output values ei (if the ith argument of c is const) and
ret (to indicate the return value).

Evaluating LambdaAbstraction. The last rule in Fig. 28
evaluates a lambda abstraction. First, it adds the variables
captured in e ′′ to the current state ψ . Second, it renames
the values of the evaluated arguments to the names of the
parameters of e ′′. Third, it runs e ′′ on the resulting state,
obtainingψ ′. Finally, it resets the variable names of constant
parameters to e ′′ back to ei and names the return value ret.

Reverse. We show the semantics of reverse in Fig. 29. Ex-
pression reverse(e) does not immediately reverse e (which
evaluates to function efunc), but instead records that efunc
should be reversed, by storing reverse(efunc) and the state
σ captured by efunc under ret.

The actual reversal is performed upon a call to the reversed
function, also shown in Fig. 29. Here, we explicitly split
the arguments into ®ec (the const arguments) and ®ec (the
non-const arguments), as assumed by Fig. 11. Intuitively,
rule call-reversed mapsψ toψ ′, if running efunc onψ ′ yields
ψ . However, it must also account for naming mismatches:
Running efunc onψ ′ yields ret instead of ®ec, and the name of
the returned value must be ret.
We note that it is possible that there is no ψ ′ satisfying

the premise of call-reversed, when efunc is not surjective. In
this case, reverse(efunc) is undefined onψ , which intuitively
happends ifψ is not in the range of efunc).

For f :
n
×
i=1

const τi ×
m
×
i=1

τ ′i
α
−→ τ ′′ , we have

Jf K :
s

n
×
i=1

τi ×
m
×
i=1

τ ′i

{+ lin.
̸→

s
n
×
i=1

τi × τ ′′
{+

(a) Semantics of a general built-in function f .

JXK |b ⟩ = |1 − b ⟩ (14)

JXK

(1∑
b=0

γb |b ⟩

)
=

1∑
b=0

γb JXK |b ⟩ =
1∑

b=0
γb |1 − b ⟩ (15)

(b) Semantics of X.

Figure 32. Semantic of built-in functions.

Control Flow. Fig. 30 shows the semantics of control flow,
handling both classical and quantum control flow. The rule
(i) evaluates condition e and (ii) splits the resulting state into
two states based on the value of e . Then, it evaluates e1 in the
first state and e2 in the second. Finally, it adds both resulting
states and drops e from the state.

F.2 Semantics of Built-in Functions
Fig. 32a shows the semantic space of built-in functions f in
terms of partial linear functions Jf K, where being a partial
function allows us to support undefined behavior for some
inputs.
Note that the function space of Jf K in principle admits

functions (i) violating const by modifying constant argu-
ments and even (ii) violating the rules of quantum physics as
in α |0⟩+β |1⟩ 7→ (α+β) |0⟩. Thus, we must ensure that these
violations do not occur for the built-in functions defined by
Silq-core.

As an example, Fig. 32b shows the semantics of X on basis
states (Eq. (14)), the quantum semantics are given by linear
extension (Eq. (15)). For simplicity, the semantics in Fig. 32a
(i) operates on states with unnamed indices and (ii) does
not take context into account. However, our operational
semantics operates on states with named indices involving
context. Fig. 31 shows how to bridge this gap when applying
X to state |b⟩ x ⊗ | ®w⟩ ®z . The subscript x → y of X ensures
(i) we preserve | ®w⟩ ®z (cp. Eq. (10–11)) and (ii) we run X on
|b⟩ x and name the output y (cp. Eq. (12)).

Semantics of Selected Built-in Functions. Fig. 32 shows
the semantics of selected built-in functions in Silq-core.
The semantics of forget(· = ·) is only defined if its two

arguments evaluate to the same value.

F.3 Semantics Example
We provide an example semantic derivation tree in Fig. 34.
It demonstrates weakening, contraction, and function evalu-
ation.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

JHK |b ⟩ =
1
√

2

(
|0⟩ + (−1)b |1⟩

)
JphaseK |r ⟩ = e ir · |()⟩

JrotXK |r ⟩ |b ⟩ =
(
cos

r
2
|b ⟩ − i sin

r
2

JXK |b ⟩
)

JXK |b ⟩ = |1 − b ⟩

JrotYK |r ⟩ |b ⟩ =
(
cos

r
2
|b ⟩ − i sin

r
2

JYK |b ⟩
)

JYK |b ⟩ = i · (−1)b |1 − b ⟩

JrotZK |r ⟩ |b ⟩ =
(
cos

r
2
|b ⟩ − i sin

r
2

JZK |b ⟩
)

JZK |b ⟩ = (−1)b |b ⟩

JdupK |v ⟩ = |v, v ⟩

J(·, . . . , ·)K |v1 ⟩ · · · |vn ⟩ = |v1, . . . , vn ⟩

Jforget(· = ·)K |v ⟩ |w ⟩ =

{
|v ⟩ v = w
undefined v , w

J· ⊕ ·K |v1, v2 ⟩ = |v1, v2, v1 ⊕ v2 ⟩

Figure 33. Example semantics of built-in functions. Most
definitions are taken from [21, §4.2]. All definitions can be
linearly extended.

G Proofs
Here, we provide proofs for key results.

G.1 Theorems
We recall all theorems presented in §7 in the following.

Theorem 7.1 (Type Preservation). If Γ = const ®x : ®τ , ®y : ®τ ′,[
Γ

α
e : τ ′′

��� ψ]
run
−−→ ψ ′, and ψ ∈ ι (JΓ,∆K), then ψ ′ lies in

ι
(
Jconst ®x : ®τ , e : τ ′′,∆K

)
.

Theorem 7.2 (Const Semantics). If Γ = const ®x : ®τ , ®y : ®τ ′,[
Γ

α
e : τ ′′

��� ψ]
run
−−→ ψ ′, andψ =

∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ψ̃ ®v, ®w ,

thenψ ′ =
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ χ ®v, ®w ⊗ ψ̃ ®v, ®w for some χ ®v, ®w .

Theorem 7.3 (Mfree Semantics). If mfree ∈ α , σ ∈ JΓ,∆Kc,[
Γ

α
e : τ ′′

��� ι(σ ,ψ1)
]

run
−−→ ψ ′

1 for ψ1 ∈ H
(
JΓ,∆Kq

)
, and[

Γ
α
e : τ ′′

��� ι(σ ,ψ2)
]

run
−−→ ψ ′

2 for ψ2 ∈ H
(
JΓ,∆Kq

)
,

then ⟨ψ1 |ψ2⟩ =
〈
ψ ′

1
��ψ ′

2
〉
.

Theorem7.4 (Qfree Semantics). If Γ
α
e : τ ′′ for qfree ∈ α

and context Γ = const ®x : ®τ , ®y : ®τ ′, then there exists a function
f̄ : JΓKs → Jconst ®x : ®τ , e : τ ′′Ks on ground sets such thatΓ α

e : τ ′′

������ ∑
σ ∈JΓKs

γσ |σ ⟩ ⊗ ψ̃σ

 run
−−→

∑
σ ∈JΓKs

γσ
�� f̄ (σ)〉 ⊗ ψ̃σ ,

where JΓKs is a shorthand for the ground set JΓKc × JΓKq on
which the Hilbert space JΓK+ = H

(
JΓKs

)
is defined.

We will prove a different formulation of this theorem to
improve presentation. Because of Thm. 7.2, we know that
the constant part of Γ is preserved, hence it suffices to prove
that there exists a function f̄ : J®τ , ®τ ′Ks → Jτ ′′Ks such that

ψ =
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ ψ̃ ®v, ®w

gets mapped to

ψ ′ =
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗
�� f̄ (®v, ®w)

〉
®y ⊗ ψ̃ ®v, ®w .

Theorem 7.5 (Physicality). The semantics of well-typed Silq
programs is physically realizable on a QRAM.

We use the following helper lemma to prove Thm. 7.5.

Lemma G.1. Any well-typed mfree expression e can be im-
plemented on a QRAM which maps ψ ∈ ι (JΓ,∆K) to ψ ′ if[
Γ

α,mfree
e : τ ′

��� ψ]
run
−−→ ψ ′.

Proof. Let Γ = const ®x : ®τ , ®y : ®τ ′ and σ ∈ JΓ,∆Kc. From
Thm. 7.3, we know that there exists a linear isometryMσ

Mσ : A → ι
(r
const ®x : ®τ , e : τ ,∆

z)
,

where A :=
{
ι(σ ,ψ̃) | ψ̃ ∈ H

(
JΓ,∆Kq

)}
. Hence, given ψ , a

QRAM can (i) extract the classical components ofψ , (ii) deter-
mineMσ based on those classical components σ , and (iii) run
Mσ onψ , yieldingψ ′. □

G.2 Proofs for Run
To improve presentation, we prove all theorems simulta-
neously in one large inductive proof. In the following, we
discuss each semantic rule, e.g., the rules in Fig. 26. For each
rule, we will mark the part for type-preservation (Thm. 7.1)
by [T], the part for preserving constants (Thm. 7.2) by [C],
the part for mfree expressions (Thm. 7.3) by [M], the part
for qfree expressions (Thm. 7.4) by [Q], and the part for
physicality (Thm. 7.5) by [P].

G.2.1 [const]. The rule[
∅

α
c : τ

��� ψ] run
−−→ ψ ⊗ |c⟩c

mapsψ toψ ⊗ |c⟩c .
[T] Since Γ = ∅ we have thatψ ∈ ι (J∆K). Hence we have

immediatelyψ ′ = ψ ⊗ |c⟩c ∈ ι
(r
c : τ ,∆

z)
.

[C] Since Γ = ∅ we have that ψ = ψ̃ . Hence we have
immediatelyψ ′ = ψ̃ ⊗ χ = ψ ⊗ |c⟩c , where χ = |c⟩c .

[M] We have

(ψ †
1 ⊗ ⟨c |c)(ψ2 ⊗ |c⟩c) = ψ

†
1ψ2,

whereψ †
1ψ2 denotes the inner product ⟨ψ1 |ψ2⟩.

[Q] Function f̄ (·) = c has the correct behavior.
[P] A QRAM can prepare prepare state c in variable c .

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

1 =
[
const x : B α x : B

��� |0⟩x |0⟩x |1⟩y
] run
−−−→ |0⟩x |0⟩x |0⟩x |1⟩y

var

2 =
[
const x : B α x : B

��� |0⟩x |0⟩x |0⟩x |1⟩y
] run
−−−→ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y

var

3 =
[
∅

α
· | | · : const B × const B !

α
−→ B

��� |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y
] run
−−−→ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y ⊗ | · | | ·, ∅⟩·| |·

const

(a) Subtrees of full semantic derivation tree (provided separately due to space constraints).

1 2 3

Assuming: J· | | ·K |a ⟩ |b ⟩ = |a ⟩ |b ⟩ |a | | b ⟩[
(· | | ·)(x, x) : const B × const B !

α
−→ B

��� ∅ : ∅
��� |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y

] eval
−−−→ |0⟩x |0⟩x |0⟩x |0⟩x |1⟩y |0⟩ret

built-in-eval

[
const x : B, const x : B α x | | x : B

��� |0⟩x |0⟩x |1⟩y
] run
−−−→ |0⟩x |0⟩x |1⟩y |0⟩x | |x

func-eval

[
const x : B α x | | x : B

��� |0⟩x |1⟩y
] run
−−−→ |0⟩x |1⟩y |0⟩x | |x

C

[
const x : B, const y : B α x | | x : B

��� |0⟩x |1⟩y
] run
−−−→ |0⟩x |1⟩y |0⟩x | |x

W

(b) Full semantic derivation tree for const x : B, const y : B α
x | | x : B.

const x : B α x : B
var

const x : B α x : B
var

(assuming | | is built-in)

∅
α
· | | · : const B × const B !

α
−→ B

const x : B, const x : B α x | | x : B
func-eval

const x : B α x | | x : B
C

const x : B, const y : B α x | | x : B
W

(c) Type derivation tree for const x : B, const y : B α
x | | x : B.

Figure 34. Semantics of const x : B, const y : B α
x | | x : B on input state |0⟩x |1⟩y . Here, α = qfree, mfree and gray parts

of states correspond to the additional context ∆.

G.2.2 [var]. The rule[
x : τ α

x : τ
��� ψ] run

−−→ Ix→x (ψ)
var

mapsψ =
∑
w γw |w⟩x ⊗ ψ̃w to

∑
w γw |w⟩x ⊗ ψ̃w .

[T] Since Γ = x : τ and ψ ∈ ι (Jx : τ ,∆K), we have that
ψ ′ ∈ ι

(r
x : τ ,∆

z)
.

[C] We have thatψ ′ =
∑
w γw |w⟩x ⊗ ψ̃w , hence the claim.

[M] This is straightforward as renaming does not change
the inner product.

[Q] Function f̄ (v) = v has the correct behavior.
[P] A QRAM can simply rename variable x to x .

G.2.3 [var-const]. The rule is[
const x : τ α

x : τ
��� ψ] run

−−→ dupx→x,x (ψ)
var-const

mappingψ =
∑
v γv |v⟩x ⊗ ψ̃v toψ ′ =

∑
v γv |v⟩x |v⟩x ⊗ ψ̃v

[T] Since ψ ∈ ι (Jconst x : ,∆K), we have that the state
ψ ′ ∈ ι

(r
const x : τ ,x : τ ,∆

z)
.

[C] The claim follows immediately.
[M] We have

ψ ′†
1 ψ

′
2 =

∑
v

γ 1∗
v ⟨v |x ⟨v |x ⊗ ψ̃ 1†

v

∑
w

γ 2
w |w⟩x |w⟩x ⊗ ψ̃ 2

w

=
∑
v

γ 1∗
v γ

2
vψ̃

1†
v ψ̃

2
v

= ψ †
1ψ2.

[Q] Function f̄ (v) = v has the correct behavior.
[P] A QRAM can run the linear isometry dup.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

G.2.4 [!W]. The rule is[
Γ

α
e : τ ′

��� drop(x) (ψ)] run
−−→ ψ ′[

Γ,x : !τ α
e : τ ′

��� ψ] run
−−→ ψ ′

!W.

The general state forψ ∈ ι (JΓ,x : !τ ,∆K) is

ψ = |v⟩x ⊗
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ ψ̃ ®v, ®w ,

where Γ = const ®x : ®τ , ®y : ®τ ′. Note that

drop(x) (ψ) =
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ ψ̃ ®v, ®w .

[T] As drop(x) (ψ) ∈ ι (JΓ,∆K), the claim follows from the
induction hypothesis.

[C] The claim follows from the induction hypothesis.
[M] By the induction hypothesis, we know that

drop(x) (ψ1)
† drop(x) (ψ2) = ψ

′†
1 ψ

′
2 .

Further, because x : !τ , ψ1 = |v⟩x ⊗ drop(x) (ψ1) and
similarlyψ2 = |v⟩x ⊗ drop(x) (ψ2). Thus the claim

ψ †
1ψ2 = drop(x) (ψ1)

† drop(x) (ψ2) = ψ
′†
1 ψ

′
2 .

[Q] By the induction hypothesis, we know that there is an
f̄ ′ satisfying

ψ ′ =
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗
�� f̄ ′(®v, ®w)

〉
e ⊗ ψ̃ ®v, ®w ,

hence f̄ (v, ®v, ®w) := f̄ ′(®v, ®w) suffices.
[P] A QRAM can remove x from consideration (which has

the semantics of drop(x) (·) for classical values), and
then computeψ ′ by the induction hypothesis.

G.2.5 [W]. The rule is[
Γ

α
e : τ ′′

��� ψ] run
−−→ ψ ′[

Γ, const x : τ α
e : τ ′′

��� ψ] run
−−→ ψ ′

W.

The general form forψ ∈ ι (JΓ, const x : τ ,∆K) is

ψ =
∑
v, ®v, ®w

γv, ®v, ®w |v⟩x ⊗ | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ ψ̃v, ®v, ®w

[T] We can apply the induction hypothesis by considering
const x : τ as part of the remainder∆′ = const x : τ ,∆,
yieldingψ ′ ∈ ι

(
const ®x : ®τ , e : τ ′′,∆′

)
, hence the claim.

[C] Similarly, this claim follows immediately by apply-
ing the induction hypothesis after grouping |v⟩x with
ψ̃v, ®v, ®w .

[M] The induction hypothesis immediately yields the claim.
[Q] Here f̄ (v, ®v, ®w) := f̄ ′(®v, ®w), where f̄ ′ is the function

from the induction hypothesis.
[P] A QRAM can computeψ ′ by the induction hypothesis.

G.2.6 [!C]. The rule is[
Γ,x : !τ ,x : !τ α

e : τ ′′
��� dupx→x,x (ψ)

] run
−−→ ψ ′[

Γ,x : !τ α
e : τ ′′

��� ψ] run
−−→ ψ ′

!C.

The general form forψ ∈ ι (JΓ,x : !τ ,∆K) is

ψ = |v⟩x ⊗
∑
®v, ®w

γ ®v, ®w | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ ψ̃ ®v, ®w ,

[T] It is clear that dupx→x,x (ψ) ∈ ι (JΓ,x : !τ ,x : !τ ,∆K).
Applying the induction hypothesis to dupx→x,x (ψ),
yields that ψ ′ ∈ ι (Jconst ®x : ®τ , e : τ ′′,∆K), hence the
claim.

[C] The claim follows from the induction hypothesis.
[M] The induction hypothesis yields the claim.
[Q] Here f̄ (v, ®v, ®w) := f̄ ′(v,v, ®v, ®w), where f̄ ′ is the func-

tion from the induction hypothesis.
[P] A QRAM can duplicate x (which has the semantics of

dup for classical values) and then compute ψ ′ by the
induction hypothesis.

G.2.7 [C]. The rule is[
Γ, const x : τ , const x : τ α

e : τ ′′
��� dupx→x,x (ψ)

] run
−−→ ψ ′[

Γ, const x : τ α
e : τ ′′

��� ψ] run
−−→ drop(x) (ψ ′)

C.

The general form forψ ∈ ι (JΓ, const x : τ ,∆K) is

ψ =
∑
v, ®v, ®w

γv, ®v, ®w |v⟩x ⊗ | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ ψ̃v, ®v, ®w .

[T] It is clear that

dupx→x,x (ψ) ∈ ι (JΓ, const x : τ , const x : τ ,∆K) .

Thus, the induction hypothesis yields

ψ ′ ∈ ι
(r
const x : τ , const x : τ , const ®x : ®τ , e : τ ′′,∆

z)
.

The claim follows by applying drop(x) (·) toψ ′.
[C] The induction hypothesis yields the claim.
[M] A straightforward calculation and the induction hy-

pothesis yield the claim.
[Q] Similar to before, f̄ (v, ®v, ®w) := f̄ ′(v,v, ®v, ®w), where f̄ ′

is the function from the induction hypothesis.
[P] A QRAM can duplicate x using the linear isometry

JdupK, yielding a state of the form
∑
v γv |v⟩x |v⟩x ⊗

ψ̃v . By the induction hypothesis, the QRAM can then
compute ψ ′ of the form ψ ′ =

∑
v γv |v⟩x |v⟩x ⊗ χv

(Thm. 7.2). Hence, reversing dup yields

JdupK−1
x,x→x (ψ

′) =
∑
v

γv |v⟩x ⊗ χv = drop(x) (ψ ′) .

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

G.2.8 [ite]. The rule is depicted in Fig. 30.
[T] We first consider quantum control flow (ec : B).

Using the induction hypothesis, we know that the state
after evaluating the condition is

ψ ′ ∈ ι
(r
Γc , ec : B, Γ,∆

z)
,

hence we can write

ψ ′ = ψt ⊗ |1⟩ec +ψf ⊗ |0⟩ec .

Next we show that Iet→e
(
ψ ′
t
)
+ Ief →e

(
ψ ′
f

)
is in

ι
(r
const ®xc : ®τc , const ®x : ®τ , e : τ ,∆

z)
.

The induction hypothesis yields that

ψ ′
t ∈ ι

(r
const ®x : ®τ , et : τ , const ®xc : ®τc ,∆

z)
,

ψ ′
f ∈ ι

(r
const ®x : ®τ , ef : τ , const ®xc : ®τc ,∆

z)
.

Because τ does not have any classical components, the
classical components ofψ ′

t andψ ′
f coincide, hence they

can be added. This yields, after renaming, the claim.

Next we consider classical control flow (ec : !B). It is
clear thatψ ′ originating from[

Γc
αc ec : !B

��� ψ] run
−−→ ψ ′,

whereψ ∈ ι (JΓc , Γ,∆K), can be written as

ψ ′ = ψt ⊗ |1⟩ec +ψf ⊗ |0⟩ec

∈ ι
(r
const ®xc : ®τc , ec : !B, Γ,∆

z)
.

We assume w.l.o.g. ec evaluates to true, thus the ψf
part has amplitude 0.

The induction hypothesis yields that

ψ ′
t ∈ ι

(r
const ®x : ®τ , et : τ , const ®xc : ®τc ,∆

z)
,

which is exactly what we would like to have after re-
naming et to e . The second summand can be neglected
due to having 0 amplitude.

[C] From the induction hypothesis for ec , we know that
ψt ⊗ |1⟩ec +ψf ⊗ |0⟩ec are of the correct form. Thus,
due to the induction hypotheses for et and ef ,ψ ′

t +ψ
′
f

is of the correct form. This proves the claim, up to
renaming of variables.

[M] First, we consider quantum control flow. The induction
hypothesis on ec yields that

ψ †
1ψ2 =

(
ψ 1†
t ⊗ ⟨1|ec +ψ

1†
f ⊗ ⟨0|ec

) (
ψ 2
t ⊗ |1⟩ec +ψ

2
f ⊗ |0⟩ec

)
= ψ 1†

t ψ
2
t +ψ

1†
f ψ

2
f

The induction hypothesis on et and ef yields that

ψ 1†
t ψ

2
t = ψ

1′†
t ψ 2′

t

ψ 1†
f ψ

2
f = ψ

1′†
f ψ 2′

f ,

thus

ψ †
1ψ2 = ψ

1†
t ψ

2
t +ψ

1†
f ψ

2
f = ψ

1′†
t ψ 2′

t +ψ
1′†
f ψ 2′

f .

This proves the claim after renaming.

Next, we consider classical control flow. If the classical
components ofψ1 andψ2 coincide, then also ec 1 = ec

2.
Using the induction hypothesis, we see that the term
for ec preserves the inner product betweenψ1 andψ2.
Furthermore, because ec : !B, we get ψ †

1ψ2 = ψ 1†
t ψ

2
t ,

w.l.o.g. assuming ec = 1. Thus with the induction hy-
pothesis on the term for et , we get thatψ †

1ψ2 = ψ
1′†
t ψ 2′

t .
Renaming does not change the inner product, hence
the claim.

[Q] First, we consider quantum control flow. If qfree ∈ α
then by the typing rule qfree ∈ αc ∩ αt ∩ αf .
Let Γc = const ®xc : ®τc and Γ = const ®x : ®τ , ®y : ®τ ′. The
general form ofψ is

ψ =
∑

®vc , ®v, ®w

γ ®vc , ®v, ®w | ®vc ⟩ ®xc ⊗ | ®v⟩ ®x ⊗ | ®w⟩ ®y ⊗ψ ®vc , ®v, ®w

Using the induction hypothesis, we get the functions
f̄ec , f̄et and f̄ef . For the next step we only suppress vari-
able names that are not immediately clear to lighten
the notation. Thus evaluating ec yields

ψ ′ =
∑

®vc , ®v, ®w

γ ®vc , ®v, ®w | ®vc ⟩ ⊗
�� f̄ec (®vc)〉ec ⊗ | ®v⟩ ⊗ | ®w⟩ ⊗ψ ®vc , ®v, ®w

=
∑

®vc , ®v, ®w

γ ®vc , ®v, ®w | ®vc ⟩ ⊗ |0⟩ec ⊗ | ®v⟩ ⊗ | ®w⟩ ⊗ψ ®vc , ®v, ®w

+
∑

®vc , ®v, ®w

γ ®vc , ®v, ®w | ®vc ⟩ ⊗ |1⟩ec ⊗ | ®v⟩ ⊗ | ®w⟩ ⊗ψ ®vc , ®v, ®w

Further, evaluating et and ef yields

ψ ′′ =
∑

®vc , ®v, ®w

γ ®vc , ®v, ®w | ®vc ⟩ ⊗ |0⟩ec ⊗ | ®v⟩ ⊗
���fef (®v, ®w)

〉
⊗ψ ®vc , ®v, ®w

+
∑

®vc , ®v, ®w

γ ®vc , ®v, ®w | ®vc ⟩ ⊗ |1⟩ec ⊗ | ®v⟩ ⊗
��fet (®v, ®w)

〉
⊗ψ ®vc , ®v, ®w .

Thus the final state can be described by

ψ ′′′ =
∑

®vc , ®v, ®w

γ ®vc , ®v, ®w | ®vc ⟩ ⊗ | ®v⟩ ⊗
�� f̄ (®vc , ®v, ®w)

〉
e ⊗ψ ®vc , ®v, ®w ,

where f̄ is defined by

f̄ (®vc , ®v, ®w) :=

{
f̄et (®v, ®w) if f̄ec (®vc) = 1
f̄ef (®v, ®w) otherwise.

The proof works analogously for the case where ec : !B.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

[P] For quantum control flow (ec : B), expression

if ec then et else ef

is mfree (ensured by our type system), hence Lem. G.1
applies.
For classical control flow (ec : !B), a QRAM can first
evaluate ec (by the induction hypothesis). Then, as
ec : !B, by Thm. 7.1, its value is classical, meaning the
QRAM can classically determine what this value is,
and run the appropriate branch (by induction hypoth-
esis). This yields the correct state up to renaming of
variables.

G.3 Proofs for Eval

In order to prove our theorems for rules involving
eval
−−−→, we

strengthen our theorems to also cover the following:
For ®e = ®ec, ®ec, split into constant and non-constant argu-

ments, assume[
e ′(®e) :

n
×
i=1

αiτi !
α
−→τ ′

���� σ : Γ
���� ψ]

eval
−−−→ ψ ′,

where the general form ofψ is

ψ =
∑
®v, ®w

γ ®v, ®w ⊗ | ®v⟩ ®ec ⊗ | ®w⟩ ®ec ⊗ ψ̃ ®v, ®w .

Then, we have the following:

[T] Ifψ ∈ ι
(r

®e : ®τ ,∆
z)

, then

ψ ′ ∈ ι
(r

®ec : ®τ c, ret : τ ′,∆
z)
.

[C]
ψ ′ =

∑
®v, ®w

γ ®v, ®w ⊗ | ®v⟩ ®ec ⊗ χ ®v, ®w ⊗ ψ̃ ®v, ®w .

[M] If mfree ∈ α , ρ ∈

r
®e : ®τ ,∆

zc

,[
Γ

α
e : τ ′′

��� σ : Γ
��� ι(ρ,ψ1)

] eval
−−−→ ψ ′

1

forψ1 ∈ H
(
J®e : ®τ ,∆Kq

)
and[

Γ
α
e : τ ′′

��� σ : Γ
��� ι(ρ,ψ2)

] eval
−−−→ ψ ′

2

forψ2 ∈ H
(
J®e : ®τ ,∆Kq

)
, then it holds that

ψ †
1ψ2 = ψ

′†
1 ψ

′
2 .

[Q] If qfree ∈ α , then there exists f̄ : J®τ Ks → Jτ ′Ks, such
that

ψ ′ =
∑
®v, ®w

γ ®v, ®w ⊗ | ®v⟩ ®ec ⊗
�� f̄ (®v, ®w)

〉
ret ⊗ ψ̃ ®v, ®w ,

where f̄ can depend on σ .
[P] Then there exists a QRAM implementing this, i.e.,

maps inputψ ⊗ |e ′′,σ ⟩e ′ to the correct outputψ ′.

G.3.1 [built-in-eval]. We require that all built-ins behave
correctly, thus no further reasoning is needed.

G.3.2 [measure]. The rule is provided in Fig. 28. The gen-
eral form ofψ is

ψ =
∑
w

γw |w⟩e ⊗ ψ̃w

[T] Letw ′ ∈ Jτ Kc × Jτ Kq. Then immediately

ψ ′ = γw ′ |w ′⟩ret ⊗ ψ̃w ′ ∈ ι
(
Jret : !τ ,∆K

)
.

[C] The claim follows immediately from the semantics of
measure.

[M] Nothing to prove as measure is not mfree.
[Q] Nothing to prove as measure is not qfree.
[P] Measuring the appropriate value yields the correct

semantics.

G.3.3 [rev].
[T] We see that

reverse(efunc) :
n
×
i=1

const τi ×
l
×
k=1

τ ′′k !
mfree,α
−−−−−−→

m
×
j=1

τ ′j ,

hence the claim.
[C] The claim follows immediately from the semantics of

reverse.
[M] The classical components ofψ1 andψ2 coincide, hence

in particular the expression e and the captured values
σ coincide. The non-classical part of ψ1 and ψ2 does
not get modified, thus the inner product is preserved.

[Q] The appropriate f̄ is

f̄ (efunc,σ) = (reverse(efunc),σ).

[P] A QRAM can prepare the correct state by purely clas-
sical operations, replacing efunc by reverse(efunc).

G.4 [call-rev]
[T] Using the induction hypothesis, we know that

ψ ′ ∈
q
®ec : ®τ c, ®t : ®t ′,∆

y+
.

We need to show ψ ′ ∈ ι
(q
®ec : ®τ c, ®t : ®τ ′,∆

y)
, then the

claim follows immediately after renaming.
By contradiction: Let ψ ′ < ι

(q
®ec : ®τ c, ®t : ®τ ′,∆

y)
, then

there exists a classical component of ψ ′ which is in
superposition. The typing rule of reverse enforces
that the arguments and the return value of reversed
function are not classical, hence the classical compo-
nent in superposition needs to lie in context ∆. By the
induction hypothesis (specifically [C]), we know that
evaluating efunc(®ec, ®t) leaves ∆ unchanged, hence the
classical component in superposition is also a classical
component in superposition of ψ , which is a contra-
diction toψ ∈ ι

(r
®e : ®τ ,∆

z)
.

[C] We know that ψ ′ ∈
q
®ec : ®τ c, ®t : ®τ ′,∆

y+. Further, the
linear map sendingψ ′ toψ is∑

®v

| ®v⟩ ⟨®v | ⊗ M ®v ;®t→ret ⊗ I∆,

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

where Mv : J®τ ′K → J®τ ′′K is an isometry. The map
becomes unitary by restricting the codomain to its
image, which can be inverted resulting in∑

®v

| ®v⟩ ⟨®v | ⊗ M−1
®v ;®t→ret |Mv ;t→ret(J®τ ′K) ⊗ I∆,

which preserves ®ec : ®τ c and ∆, hence the claim.
[M] As renaming does not change the inner product, this

claim follows from the induction hypothesis.
[Q] Let qfree ∈ α . By the induction hypothesis, we get

that

ψ ′ =
∑
®v, ®w ′

γ ®v, ®w ′ | ®v⟩ ®ec ⊗ | ®w ′⟩®t ⊗ ψ̃ ®v, ®w ′

and that there exists an f̄ ′ such that after renaming
ret to ®ec we have

ψ =
∑
®v, ®w ′

γ ®v, ®w ′ | ®v⟩ ®ec ⊗
�� f̄ ′(®v, ®w ′)

〉
®ec ⊗ ψ̃ ®v, ®w ′ .

We note that f̄ is injective by Thm. 7.3, since non-
injectivity would violate the semantics of the mfree

efunc being a linear isometry. Thus, there exists a func-
tion f̄ = f̄ ′

−1 satisfying f̄ ′
−1
(®v, f̄ ′(®v, ®w ′)) = ®w ′, hence

the claim.
[P] As efunc is mfree, a QRAM can implement it, according

to Lem. G.1. As efunc has no classical components in
its type, the implementation depends only on efunc,
not on classical components of the input state. Then,
applying the reverse of the implementation toψ yields
the correct result (up to renaming).

G.4.1 [eval-λ-abs].
[T] We know thatψ ∈ ι

(
J®e : ®τ ,∆K

)
, thus

ψ ⊗ |σ ⟩ ∈ ι
(
J®e : ®τ , Γ,∆K

)
,

which leads to I®e→®x (ψ ⊗ |σ ⟩) ∈ ι (J®x : ®τ , Γ,∆K). The
induction hypothesis yields now that

ψ ′ ∈ ι
(
J ®α c®xc : ®τ c, e ′′ : τ ′,∆

)y
,

thus after renaming,ψ ′ ∈ ι
(r

®ec : ®τ c, ret : τ ′,∆
z)

.
[C] The claim follows from the induction hypothesis.
[M] It is immediate thatψ †

1ψ2 = ψ
†
1 ⊗ ⟨σ |ψ2 ⊗ |σ ⟩. Further,

renaming does not change the inner product, hence by
the induction hypothesis, we get that ψ †

1ψ2 = ψ
′†
1 ψ

′
2 .

Renaming again leaves the inner product invariant,
hence the claim.

[Q] The f̄ obtained from the induction hypothesis behaves
correctly, up to adding σ to the state and renaming
variables.

[P] Given input ψ ⊗ |e ′′,σ ⟩e ′ , a QRAM can rename vari-
ables (®e → ®x), run e ′′ (by induction hypothesis), and
rename variables in the result again.

G.4.2 [func-eval].
[T] After applying the induction hypothesis from left to

right on all terms on top, we get

ψn+2 ∈ ι
(
J®ec : ®τ c, ret : τ ′,∆n+2K

)
,

where ∆n+2 accumulated additionally to the ∆ of ψ0
all constant parts of ®Γ and Γ′. Thus

drop(®e
c)
(ψn+2) ∈ ι

(
Jret : τ ′,∆n+2K

)
,

which leads to

Iret→e ′(®e) ◦ drop
(®ec)

(ψn+2) ∈ ι
(r
e ′(®e) : τ ′, ®Γc, Γ′c,∆

z)
.

[C] The claim follows from the induction hypotheses.
[M] Using the induction hypothesis iteratively, we get that

ψ †
0,1ψ0,2 = ψ

†
i,1ψi,2 for all 1 ≤ i ≤ n. Using the induc-

tion hypothesis on the other parts yields ψ †
0,1ψ0,2 =

ψ †
n+2,1ψn+2,2. The type system guarantees that sub-

expressions which are not consumed, that is const ∈

α ′
i are qfree, and thus they can be uncomputed sim-

ilarly to the case for ite where we uncomputed the
expression ec . Thus drop(®e

c) (ψn+2) preserves the inner
product, and hence the claim.

[Q] An appropriate composition of all f̄ from the induction
hypotheses, drop(ei), and variable renamings yields the
claim.

[P] We can evaluate all arguments, and determine the
function itself by the induction hypothesis, yielding
ψn+1⊗ |e ′′,σ ⟩e ′ . By the strengthened induction hypoth-
esis, we have

ψn+2 =
∑

®v, ®w1, ..., ®wn

γ ®v | ®v⟩ ®x ⊗
⊗

{i |const∈α ′
i }

�� f̄i (®v, ®wi)
〉
ei
⊗ ψ̃ ®v ,

where ®x consists of all constant variables in ®Γ, Γ′. This
is due to Thm. 7.4 (which ensures this holds after eval-
uating all arguments) and Thm. 7.2 (which ensures this
form is preserved).
Hence, a QRAMcan reverse f̄i , to implement drop(ei) (·)
for each i with const ∈ α ′

i . This yields the correct re-
sult up to renaming of variables.

H Evaluation
H.1 Evaluation against Q#
In this section, we provide a detailed evaluation of the Q#
Summer 2018 [17] and Winter 2019 [18] coding contests.

Tab. 3 summarizes the comparison of our solutions written
in Silq against the solutions written by (i) the Q# language
designers and (ii) the respective top 10 contest participants.
Our results demonstrate that Silq requires significantly less
lines of code and only requires roughly half the built-in
features and library functions. The remaining tables contain
more detailed results.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

Silq Q# reference solution Q# average of top 10
S18 W19 Both S18 W19 Both S18 W19 Both

Lines of code 99 168 267 251 242 493 282.9 372.7 655.6
Quantum primitives 8 10 10 12 19 22 8.1 12.0 -

Annotations 2 3 3 3 6 6 1.0 4.0 -
Low-level quantum gates 14 23 37 33 54 87 38.2 102.9 141.1

Table 3. Silq compared to Q#. Two entries in the last column are missing, because the top 10 contestants are not the same for
both competitions and the number of used annotation and built-in and library functions where calculated per contestant.

Lines of Code. When counting lines of code, we did not
count empty lines, lines that only consist of comments, con-
tain import or namespace statements or code that is unreach-
able for the solving operation.

Quantum Primitives and Annotations. We counted
both the number of quantum primitives and annotations.
Note that annotations are called functors in Q#. The sum-
mary in Tab. 3 shows how many quantum primitives and
annotations were used at least once, measuring how many
concepts a programmer needs to know.

Low-level quantum gates. We also counted low-level
quantum gates, which are marked as ♣ in the detailed re-
sults. The summary in Tab. 3 shows how many low-level
quantum gates were used in total, measuring how often the
programmer has to resort to low-level operations.
For Q#, we did not include the counts of operations like

ControlledOnInt, as they are more high-level. For the same
reason, for Silq, we did not include phase, if, or forget.

Further, we did not add the counts for M or Measure (Q#) or
measure (Silq), because measure can be applied to any data
structure, and is thus more high-level, but gets often used
similarly to M in Q#.

Top 10 Contestants. In order to compare the Silq solu-
tions against the solutions of the top 10 contestants of the Q#
Summer 2018 and Winter 2019 coding contest, we evaluate
the submissions of the top 10 contestants using the same
methods as before. We provide detailed results in Tab. 8, 9,
10, and 11.

PLD
I’20,June

15–20,2020,London,U
K

B
enjam

in
B
ichsel,M

axim
ilian

B
aader,Tim

on
G
ehr,and

M
artin

Vechev
Summer 2018 Winter 2019

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 D1 D2 D3 E1 E2 A1 A2 B1 B2 C1 C2 C3 D1 D2 D3 D4 D5 D6 Sum
Quantum primitives

ApplyToEach 3 2 1 2 8
ApplyToEachC 1 1
ApplyToEachCA 1 1

CCNOT♠ 3 1 4
CNOT♠ 1 1 1 1 2 3 2 2 3 2 18

ControlledOnBitString 2 2 4
ControlledOnInt 1 1 1 2 1 1 7

H♠ 1 1 1 1 2 1 1 3 1 2 1 1 1 1 2 1 21
M 1 1 2 2 1 2 1 1 1 12

MResetZ 1 1
MeasureInteger 1 1

PrepareUniformSuperposition 1 1
R1♠ 2 2

ResetAll 1 1 2
ResultAsInt 1 1 2

Ry♠ 1 1 1 3
S♠ 1 1

SWAP♠ 1 1 1 3
With 1 1
WithA 1 1
X♠ 2 1 2 2 1 1 3 1 1 2 3 3 5 2 4 33
Z♠ 1 1 2

Annotations
Adjoint 1 1 1 1 4

Controlled 1 1 2 1 1 3 1 2 12
adjoint self 1 1 2
adjoint auto 1 2 2 1 2 2 1 11

controlled auto 1 1 1 3
controlled adjoint auto 1 1 2

Low-level quantum gates (marked by ♠) 1 2 4 4 2 5 1 1 1 4 3 4 1 4 4 9 2 5 3 1 1 3 6 8 8 87
Lines of code 9 12 32 24 12 16 9 19 11 28 11 15 9 23 21 3 20 21 30 18 27 19 3 12 5 21 10 53 493

Table 4. Evaluation of the solutions provided by the Q# language designers for the Summer 2018 and Winter 2019 coding contest.

Summer 2018 Winter 2019
A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 D1 D2 D3 E1 E2 A1 A2 B1 B2 C1 C2 C3 D1 D2 D3 D4 D5 D6 Sum

Quantum primitives
dup 1 1

forget 1 1 1 1 2 1 2 1 10
H♠ 1 1 1 1 2 2 2 2 2 1 2 1 1 1 1 2 1 24
if 1 1 1 1 1 3 3 5 1 2 2 2 4 27

measure 1 1 1 1 1 3 1 1 2 1 1 14
phase 1 1 2 2 6

reverse 1 1
rotY♠ 1 1 1 3
X♠ 1 1 1 2 3 2 10
[] 1 1 2

Annotations
mfree 1 1
lifted 1 1 1 1 1 1 1 1 1 1 10

! (classical) 1 2 2 1 1 1 2 2 3 3 2 2 1 1 1 1 1 1 1 16 45
Low-level quantum gates (marked by ♠) 1 1 1 2 2 2 1 2 2 2 1 2 4 1 1 3 4 4 1 37

Lines of code 5 6 12 12 3 9 4 5 3 7 7 7 7 7 5 10 10 17 15 7 11 7 4 15 18 17 15 22 267

Table 5. Evaluation of the Silq solutions for Q# Summer 2018 and Winter 2019 coding contest.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

1 2 3 4 5 6 7 8 9 10 average
Quantum primitives

ApplyToEach 4 3 5 5 5 2.2
BoolArrFromResultArr 3 0.3

BoolFromResult 1 0.1
CCNOT♠ 6 3 3 3 12 3 3 3.3
CNOT♠ 7 8 9 7 7 9 8 9 6 6 7.6
H♠ 14 11 12 12 13 13 12 14 13 12 12.6

IsResultZero 1 0.1
M 12 11 12 16 12 18 10 12 3 12 11.8

MultiM 6 0.6
R♠ 1 0.1

Reset 3 0.3
ResetAll 2 2 5 3 2 2 2 1.8

ResultAsInt 5 1 2 0.8
Ry♠ 1 1 1 2 3 3 1 1 2 1.5

SWAP♠ 1 2 0.3
X♠ 7 12 15 5 42 11 9 10 6 10 12.7
Z♠ 1 1 0.2

Annotations
Controlled 2 5 1 8 3 2 2 2.3

controlled auto 1 1 1 0.3
Quantum primitives (number of non-zero rows) 7 6 10 6 6 6 7 10 13 10 8.1

Annotations (number of non-zero rows) 2 1 1 1 1 2 2 1.0
Low-level quantum gates (marked by ♠) 35 35 39 29 65 39 30 46 30 34 38.2

Lines of code 181 312 259 313 313 387 228 271 280 285 282.9
Table 6. Summer 2018: Overview of the evaluation of the Q# solution provided by the top 10 contestants.

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

1 2 3 4 5 6 7 8 9 10 average
Quantum primitives

ApplyPauliFromBitString 4 0.4
ApplyToEach 2 7 6 1.5
ApplyToEachA 8 3 1.1
ApplyToEachC 1 0.1
ApplyToEachCA 1 5 7 6 1.9

CCNOT♠ 6 10 1 2 9 31 1 4 6.4
CNOT♠ 5 15 12 14 20 17 13 23 18 15 15.2

ControlledOnBitString 2 6 2 1.0
ControlledOnInt 4 6 1.0

H♠ 13 11 13 14 13 10 13 12 13 15 12.7
IntegerIncrementLE 2 4 0.6

M 3 3 12 3 5 4 8 3.8
Measure 1 0.1

MeasureInteger 1 2 0.3
MultiM 2 1 0.3
MultiX 9 2 1.1
QFT 1 0.1
R1♠ 2 2 2 5 1.1
Reset 1 1 2 1 0.5

ResetAll 1 3 0.4
ResultAsInt 2 1 0.3

Rx♠ 1 1 0.2
Ry♠ 2 3 3 2 3 4 4 8 6 2 3.7
Rz♠ 4 1 5 1 2 2 1.5
S♠ 2 1 1 1 0.5

SWAP♠ 1 1 1 1 5 1 1 1.1
StatePreparationComplexCoefficients 2 1 0.3
StatePreparationPositiveCoefficients 1 0.1

WithA 1 0.1
X♠ 18 62 50 36 98 65 119 64 58 27 59.7
Z♠ 1 1 2 4 0.8

Annotations
Adjoint 2 1 8 2 1 2 3 1.9

Controlled 14 26 27 25 37 27 30 57 36 12 29.1
adjoint self 1 3 1 0.5
adjoint auto 2 5 23 15 5 8 3 4 9 8 8.2

controlled auto 2 10 28 2 4 6 5.2
controlled adjoint auto 2 2 1 4 0.9

Quantum primitives (number of non-zero rows) 15 9 10 21 10 8 8 12 12 15 12.0
Annotations (number of non-zero rows) 4 4 4 6 2 5 2 5 4 4 4.0
Low-level quantum gates (marked by ♠) 47 107 84 72 143 111 182 115 102 66 102.9

Lines of code 163 322 461 298 367 358 543 610 323 282 372.7
Table 7. Winter 2019: Overview of the evaluation of the Q# solution provided by the top 10 contestants.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 1 0.2

H 1 1 1 1 1 1 1 1 1 1 1.0
ResetAll 1 0.1

Lines of code 7 11 9 10 10 10 5 7 12 10 9.1

(a) Summer 18: A1

Rank 1 2 3 4 5 6 7 8 9 10 average
CNOT 1 1 1 1 1 1 1 1 1 1 1.0
H 1 1 1 1 1 1 1 2 1 1 1.1
M 1 0.1
X 1 0.1

Lines of code 11 17 12 24 12 23 11 16 24 20 17.0

(b) Summer 18: A2

Rank 1 2 3 4 5 6 7 8 9 10 average
CNOT 1 2 1 1 2 1 1 1 1 2 1.3
H 1 1 1 1 1 1 1 1 1 2 1.1
M 1 0.1
X 2 3 3 2 5 1 1 3 2 2 2.4

Lines of code 24 46 38 35 39 30 22 33 40 42 34.9

(c) Summer 18: A3

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1

CCNOT 3 2 0.5
CNOT 1 1 1 1 3 2 1 1 1.1
H 1 1 1 1 1 1 1 0.7
M 1 0.1
Ry 2 2 1 0.5

SWAP 2 0.2
X 1 3 1 1 2 1 3 1 1 3 1.7

Controlled 2 1 1 1 2 1 1 0.9
controlled auto 1 1 1 0.3
Lines of code 24 25 22 46 17 19 25 24 13 47 26.2

(d) Summer 18: A4

Rank 1 2 3 4 5 6 7 8 9 10 average
BoolFromResult 1 0.1

M 1 1 1 1 1 1 1 1 1 0.9
MultiM 1 0.1
ResetAll 1 0.1

X 1 0.1
Lines of code 8 16 12 12 13 16 25 13 9 13 13.7

(e) Summer 18: B1

Rank 1 2 3 4 5 6 7 8 9 10 average
BoolArrFromResultArr 1 0.1

CNOT 1 0.1
H 1 0.1
M 2 1 1 1 1 1 1 1 2 1.1

MultiM 1 0.1
Lines of code 9 22 18 17 16 24 15 17 19 14 17.1

(f) Summer 18: B2

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1

H 2 2 1 2 2 2 2 2 2 2 1.9
M 2 2 2 3 2 2 2 2 2 1.9

MultiM 1 0.1
ResultAsInt 2 1 1 0.4
Lines of code 10 20 10 20 16 34 10 9 15 15 15.9

(g) Summer 18: B3

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 0.2

CNOT 1 1 1 1 1 1 1 0.7
H 4 2 2 3 3 2 2 2 2 2 2.4
M 2 2 2 3 2 2 2 2 2 1.9

MultiM 1 0.1
ResetAll 1 0.1

ResultAsInt 1 1 0.2
SWAP 1 0.1
X 6 2 0.8
Z 1 1 0.2

Controlled 1 1 1 0.3
Lines of code 13 21 12 24 26 35 14 17 13 18 19.3

(h) Summer 18: B4

Table 8. Evaluation of the submissions of the top 10 contestants of the Q# Summer 2018 coding contest.

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

Rank 1 2 3 4 5 6 7 8 9 10 average
IsResultZero 1 0.1

M 1 1 1 1 1 1 1 1 1 1 1.0
R 1 0.1

ResultAsInt 1 0.1
Ry 1 1 1 1 1 1 1 1 1 0.9

Lines of code 5 15 9 12 14 14 10 11 13 11 11.4

(a) Summer 18: C1

Rank 1 2 3 4 5 6 7 8 9 10 average
H 1 1 2 2 2 1 2 1 1 1.3
M 2 2 2 2 3 5 1 3 2 2 2.4

Reset 2 0.2
ResetAll 1 1 0.2

ResultAsInt 1 0.1
Ry 1 0.1
X 2 0.2

Controlled 1 0.1
Lines of code 10 26 22 20 29 40 13 23 24 18 22.5

(b) Summer 18: C2

Rank 1 2 3 4 5 6 7 8 9 10 average
CNOT 1 1 1 1 1 1 1 1 1 1 1.0

Lines of code 7 13 12 11 11 13 10 12 14 12 11.5

(c) Summer 18: D1

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 0.2

CNOT 2 2 2 2 2 2 2 2 2 1 1.9
X 2 2 2 1 2 2 2 2 1 2 1.8

Lines of code 13 18 17 14 16 19 17 23 19 16 17.2

(d) Summer 18: D2

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 2 0.4

CCNOT 3 3 3 3 10 3 3 2.8
CNOT 3 1 1 0.5
X 5 26 1 3 3.5

Controlled 2 6 1 0.9
Lines of code 7 9 14 9 33 9 9 22 10 9 13.1

(e) Summer 18: D3

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 2 2 2 0.6

BoolArrFromResultArr 1 0.1
H 3 2 3 3 3 4 3 2 2 2 2.7
M 1 1 2 1 1 3 1 1 1 1.2

MultiM 1 0.1
Reset 1 0.1

ResetAll 1 1 1 1 1 0.5
X 1 3 3 1 3 1 1 1 1 1.5

Lines of code 19 30 33 32 30 45 20 25 27 21 28.2

(f) Summer 18: E1

Rank 1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 3 0.4

BoolArrFromResultArr 1 0.1
H 3 0.3
M 1 1 1 1 1 3 1 1 1 1.1

MultiM 1 0.1
ResetAll 1 1 1 1 2 1 1 0.8

X 1 1 1 2 1 0.6
Controlled 1 0.1
Lines of code 14 23 19 27 31 56 22 19 28 19 25.8

(g) Summer 18: E2

Table 9. Evaluation of the submissions of the top 10 contestants of the Q# Summer 2018 coding contest.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1
ApplyToEachC 1 0.1

CNOT 1 0.1
H 1 1 2 2 1 1 1 1 1.0
M 2 0.2

Reset 1 0.1
Ry 1 1 1 1 1 1 1 0.7

StatePreparationPositiveCoefficients 1 0.1
X 1 2 8 1 2 1 2 2 1.9

Controlled 1 1 2 2 1 1 1 1 1 1.1
Lines of code 5 6 27 10 21 5 6 8 6 6 10.0

(a) Winter 19: A1

1 2 3 4 5 6 7 8 9 10 average
ApplyPauliFromBitString 4 0.4

ApplyToEach 1 6 0.7
CCNOT 4 4 4 1 1.3

ControlledOnBitString 2 4 0.6
ControlledOnInt 1 0.1

H 2 2 2 1 2 2 2 2 4 1.9
M 1 3 0.4

ResetAll 2 0.2
Ry 2 0.2
X 3 18 3 8 23 18 18 5 20 5 12.1

Controlled 4 1 4 8 4 4 2 8 3.5
Lines of code 22 66 78 19 72 65 89 63 56 33 56.3

(b) Winter 19: A2

1 2 3 4 5 6 7 8 9 10 average
CCNOT 1 1 1 0.3
CNOT 1 2 3 4 2 1.2
H 1 1 1 1 0.4
M 1 1 2 1 3 3 3 1.4

MeasureInteger 1 0.1
MultiM 1 1 0.2
MultiX 4 0.4

R1 2 2 2 2 0.8
ResultAsInt 1 1 0.2

Ry 1 1 1 1 1 1 2 1 0.9
Rz 2 2 1 2 0.7
S 1 0.1

StatePreparationComplexCoefficients 2 1 0.3
X 4 6 1 2 4 1 1.8
Z 1 0.1

Adjoint 2 1 1 1 1 0.6
Controlled 2 4 2 1 1 4 2 1 1 1.8

adjoint auto 1 1 2 0.4
controlled auto 1 1 0.2

controlled adjoint auto 1 0.1
Lines of code 16 24 86 18 11 33 13 28 11 18 25.8

(c) Winter 19: B1

1 2 3 4 5 6 7 8 9 10 average
CNOT 4 5 4 3 2 1.8
H 2 2 2 2 1 2 2 4 1.7
M 2 2 6 2 2 1 2 1.7

Measure 1 0.1
MeasureInteger 1 1 0.2

MultiM 1 0.1
QFT 1 0.1
R1 3 0.3

Reset 1 2 1 0.4
ResetAll 1 1 0.2

ResultAsInt 1 0.1
Rx 1 1 0.2
Ry 1 1 1 1 1 1 2 1 1 1 1.1
Rz 2 1 3 2 0.8
S 1 1 1 1 0.4

SWAP 1 0.1
X 1 3 1 5 2 1 2 6 2.1
Z 1 2 4 0.7

Controlled 1 4 3 2 6 4 1 1 3 3 2.8
adjoint auto 4 2 2 1 0.9

controlled auto 1 3 1 1 0.6
controlled adjoint auto 1 1 1 0.3

Lines of code 12 34 44 28 50 48 27 31 30 40 34.4

(d)Winter 19: B2

1 2 3 4 5 6 7 8 9 10 average
CNOT 2 2 4 2 1.0

ControlledOnBitString 2 1 0.3
ControlledOnInt 1 0.1

X 4 1 2 2 6 2 5 5 1 4 3.2
Adjoint 1 0.1

Controlled 1 1 1 2 1 2 2 1 1.1
adjoint self 1 0.1
adjoint auto 1 1 2 1 1 1 1 1 1 1.0

controlled auto 2 0.2
Lines of code 13 13 25 23 28 26 25 23 13 19 20.8

(e) Winter 19: C1

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachA 6 3 0.9

CCNOT 24 2.4
CNOT 4 2 2 2 4 4 2 2 2.2

ControlledOnBitString 1 0.1
ControlledOnInt 1 2 0.3

WithA 1 0.1
X 1 10 6 3 7 11 60 10 6 1 11.5

Adjoint 1 0.1
Controlled 3 2 2 3 5 3 2 2.0

adjoint self 1 2 0.3
adjoint auto 1 2 2 1 1 1 3 1 1.2

controlled auto 4 0.4
Lines of code 19 46 22 33 31 48 116 46 34 17 41.2

(f)Winter 19: C2

Table 10. Evaluation of the submissions of the top 10 contestants of the Q# Winter 2018 coding contest.

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachA 2 0.2
ApplyToEachCA 2 0.2

CCNOT 5 5 4 1 1.5
CNOT 2 4 0.6

ControlledOnInt 4 0.4
IntegerIncrementLE 1 0.1

M 1 0.1
SWAP 4 1 0.5
X 4 12 6 5 10 13 4 6 7 4 7.1

Adjoint 1 1 1 1 0.4
Controlled 5 3 3 1 2 3 3 1 2.1

adjoint self 1 0.1
adjoint auto 1 1 3 2 2 1 1 2 3 3 1.9

controlled auto 2 3 2 4 1.1
controlled adjoint auto 1 1 0.2

Lines of code 20 27 40 32 35 31 33 36 39 31 32.4

(a)Winter 19: C3

1 2 3 4 5 6 7 8 9 10 average
H 1 1 1 1 1 1 1 1 1 0.9
Ry 1 0.1

adjoint auto 1 1 0.2
controlled auto 2 0.2
Lines of code 3 3 7 8 3 3 3 4 3 3 4.0

(b) Winter 19: D1

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachCA 1 1 1 2 0.5
ControlledOnInt 1 0.1

H 1 1 1 1 1 1 1 1 1 0.9
Ry 1 0.1
X 2 2 2 2 2 2 2 2 1.6

Controlled 1 2 2 1 1 1 1 1 1 1.1
adjoint auto 1 1 0.2

controlled auto 1 2 0.3
Lines of code 5 14 16 13 14 17 14 9 10 9 12.1

(c)Winter 19: D2

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachCA 2 2 0.4

CNOT 2 2 2 2 2 2 2 1.4
H 1 1 1 1 1 1 1 1 1 1 1.0

MultiX 2 0.2
X 2 2 0.4

Controlled 2 2 2 0.6
adjoint auto 1 1 0.2

controlled auto 2 0.2
Lines of code 5 10 14 12 10 11 11 11 6 9 9.9

(d)Winter 19: D3

1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 6 0.6

ApplyToEachCA 2 4 0.6
CNOT 2 1 3 2 2 8 4 2.2
H 1 1 1 1 1 1 1 4 1 1 1.3

IntegerIncrementLE 2 2 0.4
MultiX 3 2 0.5

X 1 7 5 4 10 7 7 15 8 3 6.7
Adjoint 2 0.2

Controlled 3 2 3 4 4 2 4 7 7 2 3.8
adjoint auto 4 3 0.7

controlled auto 2 6 1 0.9
Lines of code 10 29 44 38 35 28 51 153 25 22 43.5

(e)Winter 19: D4

1 2 3 4 5 6 7 8 9 10 average
ApplyToEach 1 0.1

CCNOT 1 2 3 1 2 0.9
CNOT 3 5 1 4 6 5 2 2 4 4 3.6
H 3 3 3 3 2 3 2 3 3 3 2.8

IntegerIncrementLE 1 0.1
SWAP 1 1 1 1 1 0.5
X 2 2 7 5 22 2 5 5 2 2 5.4

Adjoint 1 0.1
Controlled 3 4 3 4 5 4 1 3 3 4 3.4
adjoint auto 2 3 0.5

controlled auto 6 0.6
Lines of code 11 13 25 38 17 13 14 19 13 15 17.8

(f) Winter 19: D5

1 2 3 4 5 6 7 8 9 10 average
ApplyToEachCA 2 0.2

CNOT 2 2 1 2 1 3 1.1
H 1 1 2 1 1 2 0.8
Ry 1 1 3 1 0.6
X 2 3 2 2 9 3 15 13 4 6 5.9

Adjoint 1 1 1 1 0.4
Controlled 1 2 3 1 4 2 7 33 4 1 5.8
adjoint auto 2 2 1 1 2 2 1.0

controlled auto 2 2 1 0.5
controlled adjoint auto 1 2 0.3

Lines of code 22 37 33 26 40 30 141 179 77 60 64.5

(g)Winter 19: D6

Table 11. Evaluation of the submissions of the top 10 contestants of the Q# Winter 2018 coding contest.

Silq: A High-Level Quantum Language PLDI ’20, June 15–20, 2020, London, UK

funcs data type class
The Circ monad 1
Basic types 2 2
Basic gates 76 1
Other circuit-building functions 17
Notation for controls 4 1 1
Signed items 2 1
Comments and labelling 4 1
Hierarchical circuits 4
Block structure 17
Operations on circuits 17 2
Circuit transformers 3 2 5
Circuit generation from classical code 2
Extended quantum data types 8 8
Sum 154 9 8 10

Table 12. The number of functions, data types, types and
classes provided by Quippers core library in the respective
category.

H.2 Evaluation against Quipper
In order to compare the amount of features, we counted the
definitions provided in Quipper’s core library 12 and list them
by rubric and type in Tab. 12.

H.3 Further Algorithms
In the following, we provide further algorithms implemented
in Silq.

12https://www.mathstat.dal.ca/~selinger/quipper/doc/Quipper.html

1// Wiesner's quantum money: Conjugate coding, Stephen Wiesner,

https://dl.acm.org/citation.cfm?id=1008920

2
3def create_bill[n:!N](){

4// generate new bill and verifier

5secret:=uniform[4,n]();

6bill:=encode(secret)(0:uint[n]);

7verifier:=λ(b:uint[n]). verify(b,secret);

8return (bill,verifier);

9}

10
11def verify[n:!N](bill:uint[n],secret:!N̂ n):uint[n]×!B{

12// verify a given bill

13check:=reverse(encode(secret))(bill);

14if measure(check)==0{ // ok, give money back

15return (encode(secret)(0:uint[n]),true);

16}else{ // forged!

17return (0:uint[n],false);

18}

19}

20
21// ENCODING FUNCTIONS

22
23def encode[n:!N](secret:!N̂ n)(bill:uint[n])mfree{

24for k in [0..n){

25bill[k]:=encode_B[secret[k]](bill[k]);

26}

27return bill;

28}

29def encode_B[state:!N](b:B)mfree{

30// 0 7→ 0, 1 7→ 1, 2 7→ +, 3 7→ -

31if state%2==1{ b:=X(b); }

32if state>=2 { b:=H(b); } // switch basis to +/-

33return b;

34}

35
36// SIMPLE TEST

37
38def verify_new_test[n:!N](){

39// verify a new bill twice

40
41// create new bill

42(bill,verifier):=create_bill[n]();

43// verify twice it is genuine

44(bill,ok1):=verifier(bill);

45assert(ok1);

46(bill,ok2):=verifier(bill);

47assert(ok2);

48// discard the bill

49measure(bill);

50}

51def main(){

52verify_new_test[3]();

53}

54
55// HELPER FUNCTIONS

56
57def uniform[range:!N,length:!N](){

https://www.mathstat.dal.ca/~selinger/quipper/doc/Quipper.html

PLDI ’20, June 15–20, 2020, London, UK Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev

58// returns (x1,...,x_length) with xi~{0,...range-1}
59n:=round(log(range)/log(2)) coerce !N;

60assert(2^n==range);

61r:=vector(length,0:!N);

62for l in [0..length){

63for k in [0..n){

64r[l]+=2^k*rand();

65}

66}

67return r;

68}

69def rand(){

70// quantum number generator

71return measure(H(false));

72}

1import quantum_money;

2
3// PRIMITIVE FORGE ATTEMPT

4// The attempt does not work due to the no-cloning theorem

5
6def forge_primitive[n:!N](bill:uint[n]){

7forged:=dup(bill);

8return (bill,forged);

9}

10
11// SIMPLE TEST

12
13def forge_primitive_test[n:!N](){

14// create new bill

15(bill,verifier):=create_bill[n]();

16// try to duplicate it

17(bill,forged):=forge_primitive(bill);

18// verify both

19(bill,ok_original):=verifier(bill);

20(forged,ok_forged):=verifier(forged);

21assert(!ok_original || !ok_forged);

22// discard bills

23measure(bill);

24measure(forged);

25}

26def main(){

27forge_primitive_test[4]();

28}

1// An adaptive attack on Wiesner's quantum money, https://

arxiv.org/abs/1404.1507

2
3import quantum_money;

4
5def forge_nagaj[n:!N](bill:uint[n],verifier:uint[n]!→ uint[n]

×!B){

6secret:=vector(n,0);

7for k in [0..n){

8(bill,is_plus):=determine(bill,verifier,k,true);

9if is_plus{

10secret[k]=2;

11}else{

12(bill,is_minus):=determine(bill,verifier,k,false);

13if is_minus{

14secret[k]=3;

15}else{

16secret[k]=measure(bill[k]);

17}

18}

19}

20return (bill, encode(secret)(0:uint[n]));

21}

22
23def determine[n:!N](bill:uint[n],verifier:uint[n]!→ uint[n]×!

B,k:!N,check_plus:!B):uint[n]×!B{

24// determine the value of the k-th bit of the quantum bill

25// - check_plus=true: return 1 iff bit is plus

26// - check_plus=false: return 1 iff bit is minus

27fail_prob:=0.01;

28N:=ceil(π^2*n/(2*fail_prob)); // choose N

29if N%2==1{ N+=1; } // ensure N is even

30// choose δ
31δ:=π/(2*N);
32
33probe:=0:B;

34repeat N{

35probe:=rotY(δ*2,probe); // rotate slightly towards 1

36if probe{ // entangle

37bill[k]:=X(bill[k]);

38if !check_plus{ phase(π); }

39}

40(bill,ok):=verifier(bill); // project back by

verification

41assert(ok==1); // we should not be caught

42}

43return (bill, measure(probe));

44}

45
46// SIMPLE TEST

47def forge_nagaj_test[n:!N](){

48// create a new bill

49(bill,verifier):=create_bill[n]();

50// forge

51(bill,forged):=forge_nagaj(bill,verifier);

52// verify both bills

53(bill,ok_original):=verifier(bill);

54assert(ok_original);

55(forged,ok_forged):=verifier(forged);

56assert(ok_forged);

57// discard both bills

58measure(bill);

59measure(forged);

60}

61
62def main(){

63forge_nagaj_test[2]();

64}

	Abstract
	1 Introduction
	2 Benefit of Automatic Uncomputation
	3 Background on Quantum Computation
	4 Overview of Silq
	4.1 Silq Annotations
	4.2 Silq Semantics
	4.3 Uncomputation
	4.4 Preventing Errors: Rejecting Invalid Programs

	5 The Silq-Core Language Fragment
	5.1 Syntax of Silq-Core
	5.2 Types and Annotations of Silq-Core

	6 Typing Rules
	6.1 Typing Constants and Variables
	6.2 Measurement
	6.3 Function Calls
	6.4 Lambda Abstraction
	6.5 Reverse
	6.6 Control Flow

	7 Semantics of Silq-Core
	7.1 Semantics of Types
	7.2 Semantics of Expressions
	7.3 Type Preservation
	7.4 Semantics of Annotations
	7.5 Physicality

	8 Evaluation of Silq
	8.1 Comparing Silq to Q#
	8.2 Comparing Silq to Quipper
	8.3 Further Silq Implementations

	9 Related Work
	10 Conclusion
	References
	A Comparing Silq to Quipper and QWire
	B Grover's Algorithm
	C Uncomputing Non-Qfree Expressions
	D Notational Conventions
	E Typing Rules
	E.1 Basic Pattern of Typing Rules
	E.2 Types of Selected Built-in Functions

	F Semantics
	F.1 Semantics of Expressions
	F.2 Semantics of Built-in Functions
	F.3 Semantics Example

	G Proofs
	G.1 Theorems
	G.2 Proofs for Run
	G.3 Proofs for Eval
	G.4 [call-rev]

	H Evaluation
	H.1 Evaluation against Q#
	H.2 Evaluation against Quipper
	H.3 Further Algorithms

