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Abstract
We present DeepT, a novel method for certifying Trans-
former networks based on abstract interpretation. The key
idea behind DeepT is our newMulti-norm Zonotope abstract
domain, an extension of the classical Zonotope designed to
handle ℓ1 and ℓ2-norm bound perturbations. We introduce
all Multi-norm Zonotope abstract transformers necessary to
handle these complex networks, including the challenging
softmax function and dot product.
Our evaluation shows that DeepT can certify average ro-

bustness radii that are 28× larger than the state-of-the-art,
while scaling favorably. Further, for the first time, we certify
Transformers against synonym attacks on long sequences of
words, where each word can be replaced by any synonym.
DeepT achieves a high certification success rate on sequences
of words where enumeration-based verification would take
2 to 3 orders of magnitude more time.

CCS Concepts: • Theory of computation → Program
verification; Abstraction; • Computing methodologies
→ Neural networks.

Keywords: Abstract Interpretation, Robustness Certification,
Deep Learning, Adversarial attacks, Transformer Networks
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Figure 1. Certification against synonym attacks: input is a
sentence (2 of the words each have 2 colored synonyms), the
words are embedded; on two of the embeddings we create an
abstract region which captures synonyms. Then, our verifier
DeepT takes this region and proves that any sentence whose
embedding is inside it classifies to a “negative” sentiment.

1 Introduction
It has been established that neural networks can be tricked
into misclassifying images by small, imperceptible changes
to the input, called adversarial attacks [52]. Since their dis-
covery, the community has developed many different at-
tacks, including ℓ𝑝 -norm bound perturbations [18, 36, 52] as
well as geometric perturbations like rotations and transla-
tions [13, 25, 42]. The existence of adversarial examples has
driven the need for methods and tools able to formally ver-
ify the robustness of neural networks against these attacks.
Early works on ℓ𝑝 -norm bound certification included [15, 56],
while later research investigated certification against geo-
metric transformations [3, 14, 39, 44, 50]. While many works
focused on certifying networks operating on continuous in-
put spaces such as images, substantially less research exists
on the setting of networks with a discrete input space, as in
natural language processing (NLP) tasks, where the input
is a word sequence. Recently, however, neural networks for
NLP tasks were successfully attacked by exchanging words
in the input sequence with synonyms [1, 5, 22, 23, 31, 34].

Transformer Networks. A successful recent neural net-
work architecture for NLP is the Transformer network [54].
Since its introduction, these networks have delivered state-
of-the-art performance across many NLP tasks [27, 58]. Fur-
ther, Transformer networks were successfully applied to a
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wide variety of other tasks including object detection [7],
graph classification [32], speech recognition [20], and visual
question answering [33]. The core part of a Transformer
network is a stack of self-attention layers. For NLP tasks, the
first layer of this stack is preceded by an embedding layer,
mapping words to vectors in an embedding space.

Certification of Transformer Networks. As the set of
words is discrete, to perform certification in the NLP setting,
one might try enumeration in order to certify the absence
of adversarial examples, by classifying every combination
of synonyms. However, while this works well for short sen-
tences consisting of words having few synonyms, enumer-
ation is already infeasible for moderately sized sequences
where a few words have many synonyms. A method to cir-
cumvent enumeration is to approximate the region of syn-
onym embeddings using an abstract shape. This shape can
then be propagated through the network (as standard in neu-
ral network verification), as illustrated in Figure 1. In the
recent work of [47], a linear relaxation was used to certify
Transformer networks against ℓ𝑝-norm bound attacks ap-
plied to word embeddings for 𝑝 ∈ {1, 2,∞}. However, the
work of [47] does not scale to large Transformer networks,
with their verifiers having either a dramatically reduced certi-
fication ability as the network becomes deeper or becoming
impractically slow (superlinear verification time growth).
The main challenge in Transformer network verification is
creating scalable and precise methods to handle the effects of
the softmax function and the dot product. This is difficult as
these functions apply non-linearities on multiple terms un-
der perturbation, simultaneously. Specifically, the challenge
for the dot product are the many occurrences of multipli-
cation, while the challenge for the softmax function is the
occurrence of the exponential and reciprocal.

This Work: Precise Certification of Transformers. In
this work, we address this challenge and present a verifier
called DeepT, able to certify significantly larger Transformer
networks, compared to prior work. The key idea is a new
abstract domain, referred to as the Multi-norm Zonotope,
which improves the precision of the standard Zonotope (that
has so far been successfully used for robustness certifica-
tion of images [49, 55]). Our central contribution is a set of
carefully designed abstract transformers that handle critical
components of the Transformer architecture, including the
challenging self-attention (composed of dot products and
softmax functions), balancing scalability and precision.
We specifically focus on encoder Transformer networks

and show that DeepT can certify on average significantly
higher robustness radii (up to more than 28×), particularly
of deep Transformer networks, compared to state-of-the-art
[47], in comparable time. Further, DeepT can certify robust-
ness against attacks where each word can be replaced by syn-
onyms. For long sentences, DeepT outperforms enumeration-
based methods by 2 to 3 orders of magnitude.

Main Contributions. Our main contributions are:
• The first robustness certification for synonym attacks
on Transformer network classification, where each
word in long word sequences can potentially be re-
placed by any synonym, simultaneously.

• The Multi-norm Zonotope domain together with ab-
stract transformers for all functions occurring in Trans-
former networks.

• Carefully constructed abstract transformers for the
dot-product and the softmax function, that strike a
good balance between precision and performance.

• A verifier called DeepT based on our abstract trans-
formers, and an extensive experimental evaluation
showing DeepT is able to scale certification to signifi-
cantly larger Transformer networks.

2 Overview
We now explain the threat model we are certifying against
and how this threat model relates to other threat models.
Then, we provide an informal explanation of our method
for certifying the robustness of Transformer networks. A
detailed explanation is provided in Section 4 and Section 5.

Threat Models. In this work we focus on binary senti-
ment classification, where each input sentence is either posi-
tive or negative, a standard NLP classification task.

In our threat model T1, the adversary can perturb an input
sequence by adding ℓ𝑝 noise (𝑝 ∈ {1, 2,∞}) to the embed-
ding of a word. The threat model T2 allows the attacker to
exchange every word in the input sequence with a synonym.

The two threat models are related since a good embedding
will map synonyms to points in the embedding space that
are close to each other [40]. If we certify robustness for an ℓ𝑝 -
norm bound region around a point in the embedding space,
then all words (synonyms) that have their embedding in that
region will not change the classification of that sentence.
Further, if we have a word we would like to replace, we can
certify an ℓ𝑝-norm bound ball covering the embeddings of
all the replacement words, in order to certify against attacks
as in [1]. The process is depicted in Figure 1.

Robustness Certification. Inspired by the success of the
Zonotope domain in the context of robustness certification
for images [15, 49], we introduce the Multi-norm Zonotope
in order to certify the robustness of Transformer networks
performing binary sequence classification. The Multi-norm
Zonotope is an extension of the classical Zonotope domain,
containing new noise symbols bounded by an ℓ𝑝 -norm. This
improves certification against ℓ𝑝 -norm bound attacks.

We define abstract transformers for the Multi-norm Zono-
tope domain for all operations in the Transformer network,
including affine operations, ReLU, tanh, exponential, recip-
rocal, dot product and softmax. It is particularly challeng-
ing to tightly approximate the dot product and the softmax
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function, since they may apply multiplications or divisions
between two variables under perturbation. Additionally, the
quadratic number of interactions between noise symbols
leads to a blow-up of the number of noise symbols which
slows down computation or even renders it infeasible. To ad-
dress these issues, we carefully construct the abstract trans-
formers for the softmax and dot product to achieve high
precision while maintaining good performance. Further, the
number of noise symbols is periodically reduced to lower
memory use and improve performance.
We certify the robustness of a Transformer network by

constructing a Multi-norm Zonotope capturing the ℓ𝑝 region
around the embedding of a given input sequence (See Figure
1), which is then propagated through the whole network us-
ing our abstract transformers. Thus, we obtain a Multi-norm
Zonotope representing an over-approximation of the possi-
ble outputs of the Transformer network. Finally, robustness
can be certified if the lower bound of𝑦𝑡 −𝑦𝑓 is positive where
𝑦𝑡 is the true class output and 𝑦𝑓 is the false class output.

3 Background
In this section, we describe the background needed for the
rest of the paper. We first demonstrate the Transformer archi-
tecture instantiated to binary sequence classification, after
which we explain the Zonotope domain and how Zonotopes
are used for neural network verification.

3.1 Transformer Networks
In this work, we apply Transformer networks to the task of
binary sequence classification, like sentiment prediction. The
transformer network takes as input a sequence of tokens (e.g.,
words) and processes them to get a binary answer (Figure 2).
The length of the sequence is variable and is denoted by 𝑁 .

A Transformer network first embeds each token token𝑗
into R𝐸 via a discrete mapping. Then a position embedding
b𝑗 is added, to facilitate the encoding of the location 𝑗 . This
encoded sequence is then passed through 𝑀 Transformer
network layers (Figure 3), after which the encoded sequence
passes through a pooling layer followed by a classifier.

Self-Attention. The key component of a Transformer net-
work layer (Figure 3) is its self-attention mechanism, which
processes all sequence elements in conjunction, and thus is
able to extract relationships between them.

The self-attention receives 𝑁 inputs ®𝑥1, . . . , ®𝑥𝑁 ∈ R𝐸 . We
transpose and stack them into the matrix 𝑋 ∈ R𝑁×𝐸 to sim-
plify notation. 𝑋 is then multiplied by 3 separate matrices
𝑊𝑄 ,𝑊𝐾 ∈ R𝐸×𝑑𝑘 and 𝑊𝑉 ∈ R𝐸×𝑑𝑣 to obtain the queries
𝑄 := 𝑋𝑊𝑄 , the keys 𝐾 := 𝑋𝑊𝐾 and the values 𝑉 := 𝑋𝑊𝑉

of the embeddings 𝑋 . The self-attention output 𝑍 is then
obtained, by computing

𝑍 := 𝜎
(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 = 𝜎

(
𝑋𝑊𝑄𝑊

𝑇
𝐾
𝑋𝑇√

𝑑𝑘

)
𝑋𝑊𝑉 , (1)

where 𝑍 ∈ R𝑁×𝐸 and the softmax function 𝜎 : RN ↦→ R𝑁

𝜎𝑖 (𝜈1, . . . , 𝜈𝑁 ) = 𝑒𝜈𝑖∑𝑁
𝑗=1 𝑒

𝜈𝑗

is applied to every element row by row. Here, 𝜎𝑖 indicates
the 𝑖th component of 𝜎 . The rows ®𝑧1, . . . , ®𝑧𝑁 of 𝑍 are then
returned as output embeddings of the self-attention layer.
We note that the softmax is an integral part of the trans-

former network itself, contrary to most other neural network
architectures where it is only used after the final classifica-
tion layer to define the training loss.

Multi-Head Self-Attention. Similarly to convolutional
neural networks, where multiple convolution filters can
be used per layer, multiple self-attentions (called attention
heads) can be combined in one layer. If we have 𝐴 atten-
tion heads, each with its own𝑊𝐾 ,𝑊𝑄 and𝑊𝑉 matrix, we
get 𝐴 matrices 𝑍𝑎 , where 𝑎 ∈ 1, . . . , 𝐴. These are horizon-
tally stacked and multiplied from the right with a matrix
𝑊0 ∈ R(𝐴𝑑𝑣 )×𝐸 , resulting in a matrix 𝑍 ∈ R𝑁×𝐸 . As before,
rows ®𝑧1, . . . , ®𝑧𝑁 of 𝑍 are then returned.

Residual Connections and Normalization. The inputs
®𝑥 𝑗 of each multi-head self-attention layer are added to the
corresponding outputs ®𝑧 𝑗 , thus creating a residual connection
[21]. This is followed by a layer normalization step [2] but
without the division by the standard deviation. [47] found
that not dividing by the standard deviation has no significant
impact on the performance, but improves certification rates
(see Section 6.6). Thus each vector ®𝑣 𝑗 = ®𝑥 𝑗 + ®𝑧 𝑗 is normalized
by mapping it to ®𝑣 𝑗 − mean(®𝑣 𝑗 ). This normalized value is
then multiplied by a parameter after which a bias is added.

Feed-Forward Network. The normalization is followed
by applying the same feed-forward neural network, mapping
R𝑁 toR𝑁 , to each of the𝑁 output embeddings. This network
consists of one hidden ReLU layer of size 𝐻 (hidden size).
Similarly to the Multi-head self-attention, the feed-forward
networks are encapsulated with a residual connection, fol-
lowed by a normalization layer as described above.

Pooling and Classification. In order for the network
to produce a final classification output, after the𝑀 th trans-
former network layer, we pick its first output embedding and
disregard the others (pooling). The first output embedding
is then pushed through a tanh hidden layer, followed by a
binary linear classifier (Figure 2).

3.2 Zonotope Certification
Our work builds upon the Zonotope abstract domain, which
was used to successfully certify neural networks applied to
image classification tasks [15, 49].

Zonotopes. A classical Zonotope [16] abstracts a set of
𝑁 ∈ N variables and associates the 𝑘-th variable with an
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Figure 2. The Transformer network architecture for sequence classification. The tokenized input first gets embedded, to which
a positional encoding is added. After𝑀 Transformer network layers, pooling follows, which in turn is followed by a classifier.
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Figure 3. A Transformer layer is composed of a multi-head
self-attention and a feed-forward network (FFN). Each com-
ponent is bypassed by a residual connection (dotted lines)
and followed by a normalization layer.

affine expression 𝑥𝑘 using E ∈ N noise symbols defined by

𝑥𝑘 = 𝑐𝑘 +
E∑
𝑖=1

𝛽𝑖
𝑘
𝜖𝑖 = 𝑐𝑘 + ®𝛽𝑘 · ®𝜖,

where 𝑐𝑘 , 𝛽𝑖𝑘 ∈ R and 𝜖𝑖 ∈ [−1, 1]. The value 𝑥𝑘 can devi-
ate from its center coefficient 𝑐𝑘 through a series of noise
symbols 𝜖𝑖 scaled by the coefficients 𝛽𝑖

𝑘
. The set of noise

symbols ®𝜖 is shared among different variables, thus encoding
dependencies between 𝑁 values abstracted by the zonotope.

Affine Abstract Transformer. All affine arithmetic op-
erations such as sums, subtractions or scalings can be ap-
plied directly in the abstract Zonotope domain. Since affine
arithmetic is exact, the corresponding abstract transform-
ers are optimal. Given two variables 𝑥1 = 𝑐1 + ®𝛽1 · ®𝜖 and
𝑥2 = 𝑐2 + ®𝛽2 · ®𝜖 , the abstract transformer for the affine opera-
tion 𝑧 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐 is

𝑧 = (𝑎𝑐1 + 𝑏𝑐2 + 𝑐) + (𝑎 ®𝛽1 + 𝑏 ®𝛽2) · ®𝜖.

ReLU Abstract Transformer. We leverage the minimal
area abstract transformer for the ReLU developed in [49],
which is applied element-wise. Concretely, the Zonotope ab-
stract transformer for ReLU(𝑥) = max(0, 𝑥) of the zonotope

variable 𝑥 is

𝑦 =


0, if 𝑢 < 0
𝑥, if 𝑙 > 0
𝜆𝑥 + 𝜇 + 𝛽new 𝜖new otherwise,

(2)

where 𝑙 and 𝑢 denote the lower and upper bound of 𝑥 and

𝜆 = 𝑢/(𝑢 − 𝑙)
𝜇 = 0.5max(−𝜆𝑙, (1 − 𝜆)𝑢)

𝛽new = 0.5max(−𝜆𝑙, (1 − 𝜆)𝑢).

Certification. To certify the robustness of a neural net-
work on an input region, we express that region in zono-
tope form and propagate it through the network using ab-
stract transformers. The resulting output zonotope is an
over-approximation of the possible outputs of the network.
Given the correct class output 𝑦𝑡 and the incorrect class out-
put 𝑦𝑓 , the robustness is proven if the lower bound of 𝑦𝑡 −𝑦𝑓
is positive.

3.3 Dual Norm
For a given vector ®𝑧 ∈ R𝑁 , the dual norm ∥ · ∥∗𝑝 of the ℓ𝑝
norm is defined by [43] as:

∥®𝑧∥∗𝑝 = sup{®𝑧 · ®𝑥 | ®𝑥 ∈ R𝑁 , ∥ ®𝑥 ∥𝑝 ≤ 1}. (3)

Further, [43] shows that ∥ · ∥∗𝑝 is the ℓ𝑞 normwith 𝑞 satisfying
the relationship 1

𝑝
+ 1
𝑞
= 1.

Lemma 1. Retain the above notation. The tight lower and
upper bounds of ®𝑧 · ®𝑥 where ®𝑥 ∈ R𝑁 s.t. ∥ ®𝑥 ∥𝑝 ≤ 1 are given by

𝑙
𝑞

𝑘
= −∥®𝑧∥𝑞 𝑢

𝑞

𝑘
= ∥®𝑧∥𝑞 .

Proof. The proof follows directly from the definition of the
dual norm in Equation 3 and the fact that the dual norm of
the ℓ𝑝 norm is the ℓ𝑞 norm where 1

𝑝
+ 1
𝑞
= 1. The bounds are

tight because {𝑥 ∈ R𝑁 | ∥ ®𝑥 ∥𝑝 ≤ 1} is compact and the inner
product is continuous, thus the supremum is achieved. □
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Figure 4. A Multi-norm zonotope with two variables 𝑥 =

4+𝜙1+𝜙2−𝜖1+2𝜖2 and𝑦 = 3+𝜙1+𝜙2+𝜖1+𝜖2 where ∥ ®𝜙 ∥2 ≤ 1
and 𝜖1, 𝜖2 ∈ [−1, 1]. The dark green region indicates the
classical zonotope obtained by removing the ®𝜙 noise symbols.

In the next section, we will leverage Lemma 1 to compute
bounds of the variables in ourMulti-normZonotope domain.

4 Multi-Norm Zonotopes
While ℓ∞ perturbations can be naturally expressed with a
classical Zonotope, other perturbations such as ℓ1 or ℓ2-norm
balls captured by a classical Zonotope would introduce heavy
over-approximation. To address this, we introduce the Multi-
norm Zonotope abstract domain, an extension of the classical
Zonotope which in addition to the standard noise symbols 𝜖𝑖 ,
contains noise symbols 𝜙 𝑗 , fulfilling the constraint ∥ ®𝜙 ∥𝑝 ≤ 1,
where ®𝜙 := (𝜙1, . . . , 𝜙E𝑝 )𝑇 (Figure 4). If 𝑝 = ∞, we recover
the classical Zonotope. This new domain allows to easily ex-
press ℓ𝑝 -norm bound balls in terms of the new noise symbols
𝜙 :

𝑥𝑘 = 𝑐𝑘 +
E𝑝∑
𝑖=1

𝛼𝑖
𝑘
𝜙𝑖 +

E∞∑
𝑗=1

𝛽
𝑗

𝑘
𝜖 𝑗 = 𝑐𝑘 + ®𝛼𝑘 · ®𝜙 + ®𝛽𝑘 · ®𝜖,

𝑐𝑘 , 𝛼
𝑖
𝑘
, 𝛽

𝑗

𝑘
∈ R, ∥ ®𝜙 ∥𝑝 ≤ 1, 𝜖 𝑗 ∈ [−1, 1],

where E𝑝 and E∞ denote the number of ℓ𝑝 and ℓ∞ noise
symbols respectively.
To concisely represent the 𝑁 zonotope output variables

𝑥1, . . . , 𝑥𝑁 , we write ®𝑥 := (𝑥1, . . . , 𝑥𝑁 )𝑇 . Therefore, the Multi-
norm Zonotope ®𝑥 can be simplified to

®𝑥 = ®𝑐 +𝐴 ®𝜙 + 𝐵®𝜖
®𝑐 ∈ R𝑁 , 𝐴 ∈ R𝑁×E𝑝 , 𝐵 ∈ R𝑁×E∞

∥ ®𝜙 ∥𝑝 ≤ 1, 𝜖 𝑗 ∈ [−1, 1],

(4)

where 𝐴𝑘,𝑖 = 𝛼𝑖𝑘 and 𝐵𝑘,𝑗 = 𝛽
𝑗

𝑘
. In the rest of the section, we

describe how to compute the concrete bounds of the Multi-
norm zonotope and present Multi-norm Zonotope abstract
transformers for all operations of the Transformer network
(Figures 2 and 3). We extend the existing abstract Zonotope

transformers [49] to our Multi-norm Zonotope domain and
describe new and efficient abstract transformers for the dot
product and the softmax function. To support softmax, we
describe the abstract transformers for the exponential and
the reciprocal. Further, we prove soundness of our abstract
transformers and show that the Relu, Tanh, Exponential and
Reciprocal transformers are optimal with respect to the area
of the corresponding input-output transformer spaces.

4.1 Computing Concrete Upper and Lower Bounds
The lower and upper interval bounds of each variable 𝑥𝑘
of a Multi-norm Zonotope ®𝑥 can be obtained by leveraging
Lemma 1 to compute the bounds of ®𝛼𝑘 · ®𝜙 :

−∥ ®𝛼𝑘 ∥𝑞 ≤ ®𝛼𝑘 · ®𝜙 ≤ ∥ ®𝛼𝑘 ∥𝑞 .

Given this, the lower and upper bounds 𝑙𝑘 and 𝑢𝑘 of 𝑥𝑘 are:

𝑙𝑘 = 𝑐𝑘 − ∥ ®𝛼𝑘 ∥𝑞 +min( ®𝛽𝑘 · ®𝜖) = 𝑐𝑘 − ∥ ®𝛼𝑘 ∥𝑞 − ∥ ®𝛽𝑘 ∥1
𝑢𝑘 = 𝑐𝑘 + ∥ ®𝛼𝑘 ∥𝑞 +max( ®𝛽𝑘 · ®𝜖) = 𝑐𝑘 + ∥ ®𝛼𝑘 ∥𝑞 + ∥ ®𝛽𝑘 ∥1,

where we applied Lemma 1 on ®𝛽𝑘 for the last term.

Theorem 1. For all 𝑘 , 𝑙𝑘 and 𝑢𝑘 are sound and tight bounds
of the Multi-norm Zonotope variable 𝑥𝑘 .

Proof. From the derivation above and the fact that ®𝛼𝑘 · ®𝜙 and
®𝛽𝑘 · ®𝜖 are independent follows that 𝑙𝑘 and 𝑢𝑘 are sound and
tight bounds for 𝑥𝑘 . □

4.2 Affine Abstract Transformer
The abstract transformer for an affine combination
𝑧 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐 of two Multi-norm Zonotope variables
𝑥1 = 𝑐1 + ®𝛼1 · ®𝜙 + ®𝛽1 · ®𝜖 and 𝑥2 = 𝑐2 + ®𝛼2 · ®𝜙 + ®𝛽2 · ®𝜖 , is

𝑧 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐

= 𝑎(𝑐1 + ®𝛼1 · ®𝜙 + ®𝛽1 · ®𝜖) + 𝑏 (𝑐2 + ®𝛼2 · ®𝜙 + ®𝛽2 · ®𝜖) + 𝑐

= (𝑎𝑐1 + 𝑏𝑐2 + 𝑐) + (𝑎 ®𝛼1 + 𝑏 ®𝛼2) · ®𝜙 + (𝑎 ®𝛽1 + 𝑏 ®𝛽2) · ®𝜖.

Theorem 2. The affine transformer for the Multi-norm Zono-
tope domain is exact.

Proof. Follows from the derivation above. □

4.3 ReLU Abstract Transformer
The ReLU abstract transformer defined for the classical Zono-
tope can be extended naturally to the multi-norm setting
since it relies only on the lower and upper bounds of the vari-
ables, computed as described in Section 4.1. Concretely, the
Multi-norm Zonotope abstract transformer for ReLU(𝑥) =
max(0, 𝑥) of the zonotope variable 𝑥 is

𝑦 =


0, if 𝑢 < 0
𝑥, if 𝑙 > 0
𝜆𝑥 + 𝜇 + 𝛽new 𝜖new otherwise,
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where 𝜖new ∈ [−1, 1] denotes a new noise symbol, 𝑙 and 𝑢
denote the lower and upper bound of 𝑥 and

𝜆 = 𝑢/(𝑢 − 𝑙)
𝜇 = 0.5max(−𝜆𝑙, (1 − 𝜆)𝑢)

𝛽new = 0.5max(−𝜆𝑙, (1 − 𝜆)𝑢).
We note that the newly introduced noise symbol 𝜖new is an
ℓ∞ noise symbol. This holds for all 𝜖new in the following.

4.4 Tanh Abstract Transformer
To support the tanh function present in the pooling layer
(Figure 2), we extend the abstract transformer for the tanh
defined in [49], to the multi-norm setting. As for ReLU, the
abstract transformer is applied element-wise. The abstract
transformer for the operation 𝑦 = tanh(𝑥) is

𝑦 = 𝜆𝑥 + 𝜇 + 𝛽new 𝜖new,
where 𝜖new ∈ [−1, 1] denotes a new noise symbol and

𝜆 = min(1 − tanh2 (𝑙), 1 − tanh2 (𝑢))
𝜇 = 1

2 (tanh(𝑢) + tanh(𝑙) − 𝜆(𝑢 + 𝑙))
𝛽new = 1

2 (tanh(𝑢) − tanh(𝑙) − 𝜆(𝑢 − 𝑙)) .

4.5 Exponential Abstract Transformer
Since the softmax function 𝜎 requires the exponential, we
rely on the framework setup in [41] to define the abstract
transformer for the exponential function that minimizes the
area of the output zonotope and ensures its lower bound is
positive, which is required by the reciprocal abstract trans-
former that will be applied afterward. As described in the
paper, the operation 𝑦 = 𝑒𝑥 can be modeled through the
element-wise abstract transformer

𝑦 = 𝜆𝑥 + 𝜇 + 𝛽new 𝜖new,
where 𝜖new ∈ [−1, 1] denotes a new noise symbol,

𝜆 = 𝑒𝑡opt

𝜇 = 0.5(𝑒𝑡opt − 𝜆𝑡opt + 𝑒𝑢 − 𝜆𝑢)
𝛽new = 0.5(𝜆𝑡opt − 𝑒𝑡opt + 𝑒𝑢 − 𝜆𝑢)

and
𝑡opt = min(𝑡crit, 𝑡crit,2)

𝑡crit = log( 𝑒𝑢−𝑒𝑙
𝑢−𝑙 )

𝑡crit,2 = 𝑙 + 1 − 𝜖.
Here, 𝜖 is a small positive constant value, such as 0.01. The
choice 𝑡opt = min(𝑡crit, 𝑡crit,2) ensures that 𝑦 is positive.

4.6 Reciprocal Abstract Transformer
To obtain the minimal area abstract transformer for the re-
ciprocal function, which is required for the softmax, we
instantiate the equations specified in [41] for that particular
function. We note that the algorithm is applicable because
the reciprocal function is convex for positive inputs and we

are only required to define our transformer for positive in-
puts due to the softmax structure. The abstract transformer
for 𝑦 = 1

𝑥
with 𝑥 > 0 is given by

𝑦 = 𝜆𝑥 + 𝜇 + 𝛽new 𝜖new,
where 𝜖new ∈ [−1, 1] denotes a new noise symbol and

𝜆 = − 1
𝑡2opt

𝜇 = 0.5( 1
𝑡opt

− 𝜆 · 𝑡opt + 1
𝑙
− 𝜆𝑙)

𝛽new = 0.5(𝜆 · 𝑡opt − 1
𝑡opt

+ 1
𝑙
− 𝜆𝑙)

and
𝑡opt = min(𝑡crit, 𝑡crit,2)

𝑡crit =
√
𝑢𝑙

𝑡crit,2 = 0.5𝑢 + 𝜖.
Similarly to the exponential transformer, 𝜖 is a small positive
constant and 𝑡opt = min(𝑡crit, 𝑡crit,2) ensures that 𝑦 is positive.

4.7 Soundness and Precision of the Elementwise
Abstract Transformers

Theorem 3. The Multi-norm Zonotope abstract transform-
ers for ReLU, tanh, exponential and reciprocal are sound and
optimal in terms of their area in input-output space.

Proof. As outlined in Section 4.3-4.6, all of our elementwise
abstract transformers follow the functional form of their clas-
sical Zonotope counterparts. In [41, 49] the classical Zono-
tope transformers are applied elementwise and map a Zono-
tope variable 𝑥 to an affine combination𝑦 = 𝜆𝑥+𝜇+𝛽new𝜖new,
where 𝜖new is a new ℓ∞ noise symbol. They prove that their
choices for 𝜆, 𝜇 and 𝛽new provide a sound overapproximation
and are optimal in terms of the area in the input-output space.
Further, 𝜆, 𝜇 and 𝛽new depend only on the interval bounds
𝑙 and 𝑢 of 𝑥 and the underlying function. Their proofs rely
only on the exactness of the affine abstract transformer and
the precision and soundness of 𝑙 and 𝑢.

OurMulti-normZonotope transformers use the same func-
tional form for the Multi-norm Zonotope output variable
𝑦 = 𝜆𝑥 + 𝜇 +𝛽new𝜖new, where as before 𝜖new is a new ℓ∞ noise
symbol. Further, for our Multi-norm Zonotopes, the bounds
𝑙 and 𝑢 are also sound and precise (Theorem 1) and the affine
transformer is also exact (Theorem 2). Since 𝜆, 𝜇 and 𝛽new
depend only on the bounds 𝑙 and 𝑢 and the underlying func-
tion, the proofs in [41, 49] transfer directly to our setting.
Thus, our abstract transformers are also sound and optimal
in terms of the area in input-output space. □

4.8 Dot Product Abstract Transformer
Next, we define the abstract transformer for the dot product
between pairs of vectors of variables of a Multi-norm Zono-
tope. The transformer is used in themulti-head self-attention,
more specifically in the matrix multiplications between 𝑄
and 𝐾 and between the result of the softmax and 𝑉 (Figure
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3). Note that the dot product transformer is required here
because both operands of our matrix multiplications are rep-
resented as a part of the zonotope. This is in contrast to the
matrix multiplications we have in an affine layer for example,
where only one of the matrices is part of the zonotope.

The standard dot product for two vectors ®𝑣1, ®𝑣2 ∈ R𝑁 is
given by 𝑦 = ®𝑣1 · ®𝑣2 =

∑𝑁
𝑘=1 𝑣

𝑘
1 𝑣
𝑘
2 . Computing the dot product

between two Multi-norm Zonotope vectors sharing error
terms ®𝑣1 = ®𝑐1 +𝐴1 ®𝜙 + 𝐵1®𝜖 and ®𝑣2 = ®𝑐2 +𝐴2 ®𝜙 + 𝐵2®𝜖 produces
the output variable 𝑦:

𝑦 = ®𝑣1 · ®𝑣2 = (®𝑐1 +𝐴1 ®𝜙 + 𝐵1®𝜖) · (®𝑐2 +𝐴2 ®𝜙 + 𝐵2®𝜖)

= ®𝑐1 · ®𝑐2 + (®𝑐⊺1𝐴2 + ®𝑐⊺2𝐴1) ®𝜙 + (®𝑐⊺1 𝐵2 + ®𝑐⊺2 𝐵
⊺
1 ) ®𝜖

+ (𝐴1 ®𝜙 + 𝐵1®𝜖) · (𝐴2 ®𝜙 + 𝐵2®𝜖).
Next, we focus on the last term of this expression, represent-
ing interaction between noise symbols, as this term is not
in the functional form of a Multi-norm Zonotope. We first
expand the last term and get

(𝐴1 ®𝜙 + 𝐵1®𝜖) · (𝐴2 ®𝜙 + 𝐵2®𝜖) = (𝐴1 ®𝜙) · (𝐴2 ®𝜙) + (𝐴1 ®𝜙) · (𝐵2®𝜖)

+ (𝐵1®𝜖) · (𝐴2 ®𝜙) + (𝐵1®𝜖) · (𝐵2®𝜖).
Each of the 4 cases contains a different combination of noise
symbols and coefficients. We calculate interval bounds for
each of the combinations, e.g., [𝑙𝜙,𝜖 , 𝑢𝜙,𝜖 ] for (𝐴1 ®𝜙) · (𝐵2®𝜖).
Then the sum of the lower and upper bounds,

𝑙 = 𝑙𝜙,𝜙 + 𝑙𝜙,𝜖 + 𝑙𝜖,𝜙 + 𝑙𝜖,𝜖
𝑢 = 𝑢𝜙,𝜙 + 𝑢𝜙,𝜖 + 𝑢𝜖,𝜙 + 𝑢𝜖,𝜖 ,

binds the whole term 𝑙 ≤ (𝐴1 ®𝜙 + 𝐵1®𝜖) · (𝐴2 ®𝜙 + 𝐵2®𝜖) ≤ 𝑢.
Next, we show a general method to compute the interval

bounds for each of the 4 cases. For the 𝜖 ,𝜖-case, we addition-
ally present a second variant for the computation which is
slower but more precise.

Fast Bounds 𝑙𝛾,𝛿 , 𝑢𝛾,𝛿 (DeepT-Fast). To showcase the
method, we calculate interval bounds for the generic expres-
sion (𝑉 ®𝜉𝑝1 ) · (𝑊 ®𝜉𝑝2 ), where 𝑉 and𝑊 are matrices such that
𝑉 ®𝜉𝑝1 and𝑊 ®𝜉𝑝2 have the same dimension and ∥ ®𝜉𝑝1 ∥𝑝1 ≤ 1
and ∥ ®𝜉𝑝2 ∥𝑝2 ≤ 1. We do this by computing an upper bound
for the absolute value

| (𝑉 ®𝜉𝑝1 ) · (𝑊 ®𝜉𝑝2 ) | = | ®𝜉𝑇𝑝1𝑉
𝑇𝑊 ®𝜉𝑝2 | ≤ | ®𝜉𝑇𝑝1𝑉

𝑇 | |𝑊 ®𝜉𝑝2 |,
where | · | denotes either the absolute value for scalars or the
elementwise absolute value for vectors or matrices. Here, we
used the triangle inequality in the last step.
We use Lemma 1 to bind the elements | ®𝑤 𝑗 · ®𝜉𝑝2 | of the

vector |𝑊 ®𝜉𝑝2 |, where ®𝑤 𝑗 denotes the 𝑗 th row of𝑊 and ℓ𝑞2 is
the dual norm of ℓ𝑝2 . We obtain

| (𝑉 ®𝜉𝑝1 ) · (𝑊 ®𝜉𝑝2 ) | ≤ | ®𝜉𝑇𝑝1𝑉
𝑇 | ©«

| ®𝑤1 · ®𝜉𝑝2 |
...

| ®𝑤𝑁 · ®𝜉𝑝2 |

ª®¬ ≤ | ®𝜉𝑇𝑝1𝑉
𝑇 | ©«

∥ ®𝑤1 ∥𝑞2
...

∥ ®𝑤𝑁 ∥𝑞2

ª®¬ .

We further bind the last term in the inequality

| ®𝜉𝑇𝑝1𝑉
𝑇 | ©«

∥ ®𝑤1 ∥𝑞2
...

∥ ®𝑤𝑁 ∥𝑞2

ª®¬ =
©«

∥ ®𝑤1 ∥𝑞2
...

∥ ®𝑤𝑁 ∥𝑞2

ª®¬
𝑇

|𝑉 ®𝜉𝑝1 | ≤
©«

∥ ®𝑤1 ∥𝑞2
...

∥ ®𝑤𝑁 ∥𝑞2

ª®¬
𝑇

|𝑉 | | ®𝜉𝑝1 |.

As before, we can use Lemma 1 to bind the remaining ex-
pression, which leaves us with

| (𝑉 ®𝜉𝑝1 ) · (𝑊 ®𝜉𝑝2 ) | ≤

©«
∥ ®𝑤1 ∥𝑞2
...

∥ ®𝑤𝑁 ∥𝑞2

ª®¬
𝑇

|𝑉 |


𝑞1

, (5)

where ℓ𝑞1 is the dual norm of ℓ𝑝1 .
The complexity to compute this bound is𝑂 (𝑁 (E𝑝 + E∞)).

As the final bound is not symmetric in𝑊 and 𝑉 , a natural
question arises, whether it is better to apply the dual norm
trick the other way round. Our experiments show, neither
order is strictly better than the other, but on average it is ad-
vantageous to apply the dual norm trick first on the ℓ∞-norm
terms and then on the ℓ𝑝 -norm terms (see section 6.5).

Theorem 4. The Fast variant of dot-product abstract trans-
formers of the Multi-norm Zonotope is sound.

Proof. The derivation of Equation 5 above demonstrates that
the computed bound is indeed a sound upper bound of ®𝑣1 · ®𝑣2,
the derivation for the lower bound is analogous. □

More Precise Bounds 𝑙𝜖,𝜖 , 𝑢𝜖,𝜖 (DeepT-Precise). In the case
where our Multi-norm Zonotope has solely ℓ∞ noise symbols
(𝑝1 = 𝑝2 = ∞), that is ®𝜉𝑝1 = ®𝜉𝑝2 = ®𝜖 , a tighter approxima-
tion using interval analysis can be achieved at the cost of
increasing the computational complexity to𝑂 (𝑁E∞

2) using
a method inspired by [19]. We begin by summing coefficients
related to each pair of noise symbols.

(𝑉 ®𝜖) · (𝑊 ®𝜖) =
E∞∑
𝑖=1

E∞∑
𝑗=1

(®𝑣𝑖 · ®𝑤 𝑗 )𝜖𝑖𝜖 𝑗 ,

where ®𝑣𝑖 and ®𝑤 𝑗 denote the 𝑖th and 𝑗 th column of 𝑉 and𝑊 ,
respectively. We separate 𝜖2𝑖 and 𝜖𝑖𝜖 𝑗 to arrive at

(𝑉 ®𝜖) · (𝑊 ®𝜖) =
E∞∑
𝑖=1

(®𝑣𝑖 · ®𝑤𝑖 )𝜖2𝑖 +
∑
𝑖≠𝑗

(®𝑣𝑖 · ®𝑤 𝑗 )𝜖𝑖𝜖 𝑗 .

We know that 𝜖2𝑖 ∈ [0, 1] and 𝜖𝑖𝜖 𝑗 ∈ [−1, 1], hence

(𝑉 ®𝜖) · (𝑊 ®𝜖) ∈
E∞∑
𝑖=1

(®𝑣𝑖 · ®𝑤𝑖 ) [0, 1] +
E∞∑
𝑖≠𝑗

(®𝑣𝑖 · ®𝑤 𝑗 ) [−1, 1] . (6)

Using simple interval analysis, we can now calculate the
lower and upper interval bounds 𝑙𝜖,𝜖 and 𝑢𝜖,𝜖 .

Theorem 5. The Precise variant of dot-product abstract trans-
formers of the Multi-norm Zonotope is sound.

Proof. The derivation of Equation 6 shows that 𝑙𝜖,𝜖 and 𝑢𝜖,𝜖
are indeed sound bounds of ®𝑣1 · ®𝑣2. □
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We note that DeepT-Fast and DeepT-Precise can be com-
bined: DeepT-Fast can be used to compute the bounds for
the mixed terms (𝑙𝜙,𝜙 , 𝑢𝜙,𝜙 ), (𝑙𝜙,𝜖 , 𝑢𝜙,𝜖 ) and (𝑙𝜖,𝜙 , 𝑢𝜖,𝜙 ), while
DeepT-Precise can be used to compute (𝑙𝜖,𝜖 , 𝑢𝜖,𝜖 ). We leave
empirical evaluation of this variant for future work.

4.9 Multiplication Abstract Transformer
The multiplication abstract transformer is a special case of
the dot-product abstract transformer where the vectors have
only one element.

5 Practical Robustness Certification
While our Multi-norm Zonotope transformers described so
far could be directly implemented and applied in a straight
forward manner, this would not scale to larger networks, and
the accumulated overapproximation would reduce overall
verification precision. In this section we introduce several
techniques that improve the scalability and precision of our
abstract transformers, enhancing their practical effective-
ness: In Section 5.1, we improve performance and lower
memory usage by periodically reducing the number of noise
symbols, in Section 5.2, we reduce the loss of precision that
occurs during softmax by using an alternative but equivalent
softmax definition whose abstract transformer is more pre-
cise, and in Section 5.3 we improve precision by introducing
the constraint that softmax output values need to sum to 1,
ensuring the output variables form a normalized distribution.
Finally, in Section 5.4, we discuss the differences between
DeepT and the related work.

5.1 Noise Symbol Reduction
Through the repeated application of abstract transformers
during verification, the number of ℓ∞ noise symbols grows,
leading to slower verification and higher memory usage. In
fact, every abstract transformer we use, except the one for
affine transformations, can yield new noise symbols 𝜖new. To
address this, we periodically reduce the number of ℓ∞ noise
symbols to ensure an upper bound on the memory usage
independent of the network depth, thus creating a tunable
tradeoff between precision and speed.

DecorrelateMin𝑘 [38]. A heuristic method that reduces
the number of ℓ∞ noise symbols in a classical Zonotope to 𝑘
is DecorrelateMin𝑘 . We follow and apply that method to our
Multi-norm Zonotope setting by calculating a heuristic score
𝑚 𝑗 =

∑𝑁
𝑖=1 |𝐵𝑖, 𝑗 | for every ℓ∞ noise symbol 𝜖 𝑗 and keeping

the top 𝑘 ℓ∞ noise symbols.
Let 𝐼 denote the indices of the eliminated ℓ∞ noise symbols

and 𝑃 the indices of the top 𝑘 ℓ∞ noise symbols. Then, the
new Multi-norm Zonotope is:

®𝑥 = ®𝑐 +𝐴 ®𝜙 + 𝐵𝑃 ®𝜖𝑃 +
(
𝜖new,1

∑
𝑖∈𝐼 |𝛽1,𝑖 |
...

𝜖new,𝑁
∑
𝑖∈𝐼 |𝛽𝑁,𝑖 |

)
, ®𝜖new ∈ [−1, 1]𝑁 .

The Transformer network has residual connections in each
Transfomer layer, each combining two different branches
of the neural network. Noise symbol reduction is applied
to the input embeddings of every Transformer layer, just
before the residual connection around the multi-head self-
attention, avoiding the complexities of handling separate
noise reductions in two branches.

5.2 Softmax Abstract Transformer
The softmax function𝜎 is a key operation in the self-attention
(Figure 3). While the transformers for exponential, sum, re-
ciprocal and multiplication can be used to construct a trans-
former for the softmax directly, we rewrite the softmax to:

𝜎𝑖 (𝜈1, . . . , 𝜈𝑁 ) =
𝑒𝜈𝑖∑𝑁
𝑗=1 𝑒

𝜈𝑗
=

1∑𝑁
𝑗=1 𝑒

𝜈𝑗−𝜈𝑖
.

It is well known that the latter formula is a more numeri-
cally stable way of computing the softmax function. We find
it is also beneficial for defining our abstract transformers:
First, the noise symbols in 𝜈𝑖 can cancel with the ones in 𝜈 𝑗 ,
which reduces the overapproximation introduced through
the abstract transformer for the exponential function (it gets
worse the larger the inputs are). Second, we do not need
the multiplication abstract transformer. Further, this method
ensures that the output is always between 0 and 1, as the
denominator is always positive and greater than 1.

5.3 Softmax Sum Zonotope Refinement
By construction, the outputs 𝑦1, . . . , 𝑦𝑁 of the softmax func-
tion 𝜎 when applied to inputs 𝑥1, . . . , 𝑥𝑁 satisfy

∑𝑁
𝑖=1 𝑦𝑖 = 1,

i.e. they form a probability distribution. Thus, in the multi-
head self-attention, the role of the softmax is to pick some
convex combination of the values 𝑉 , according to the simi-
larity between the query and the keys.

However, this property is not always satisfied for theMulti-
norm Zonotope obtained for 𝑍 produced by the softmax
abstract transformer (Eq. 1). By abuse of notation, we call
this Zonotope 𝑍 . There are many valid instantiations of
the noise symbols such that the Zonotope variables do not
sum to 1, causing non convex combinations of values to be
picked. To address this, we enforce the constraint that the
variablesmust sum to 1, to enforce that a convex combination
is selected and to preserve the semantics of the network in
our abstract domain. This is achieved by excluding from the
Multi-norm Zonotope 𝑍 all invalid instantiations of values,
obtaining a refined Multi-norm Zonotope 𝑍 ′ with lower
volume, that helps to increase verification precision.

We leverage Zonotope constraint methods [17], which
produce refined Zonotopes given some equality constraints.
A three step process is used to refine all Zonotope variables
𝑦1, . . . , 𝑦𝑁 by:

1. computing a refined variable𝑦 ′1 by imposing the equal-
ity constraint 𝑦1 = 1 − (𝑦2 + · · · + 𝑦𝑁 ),

2. refining all other variables 𝑦2, . . . , 𝑦𝑁 to 𝑦 ′2, . . . , 𝑦 ′𝑁 ,
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3. tightening the bounds of the 𝜖𝑖 ’s to a subset of [−1, 1].
Note that we arbitrarily select 𝑦1 as the variable to be refined
first, but any other variable could have been chosen.
We now detail these three steps that lead to a refined

Zonotope 𝑍 ′ with variables 𝑦 ′1, . . . , 𝑦 ′𝑛 that always sum to 1
and have tighter error bounds.

Step 1. Refining 𝑦1. We illustrate the process of obtain-
ing a refined Zonotope with variable 𝑧 ′1, given the equality
constraint 𝑧1 = 𝑧2 for a Zonotope with two variables 𝑧1 and
𝑧2. The final result can then be obtained by instantiating
𝑧2 = 1 − (𝑦2 + . . . + 𝑦𝑁 ) and 𝑧1 = 𝑦1 and finally 𝑦 ′1 = 𝑧 ′1.

While we know that 𝑧1 = 𝑧2 needs to hold, not all instantia-
tions of the noise symbols satisfy this constraint.We can com-
pute a newMulti-normZonotope variable 𝑧 ′1 = 𝑐 ′+®𝛼 ′· ®𝜙+ ®𝛽 ′·®𝜖 ,
such that for all instantiations of noise symbols of 𝑧 ′1, we
have 𝑧1 = 𝑧2 and 𝑧1 = 𝑧 ′1, thereby enforcing the equality
constraints 𝑧1 = 𝑧2. We have

𝑧1 := 𝑐1 + ®𝛼1 · ®𝜙 + ®𝛽1 · ®𝜖 = 𝑐2 + ®𝛼2 · ®𝜙 + ®𝛽2 · ®𝜖 =: 𝑧2.

If we solve for 𝜖𝑘 (any 𝑘 s.t. 𝛽1
𝑘
− 𝛽2

𝑘
≠ 0 works) in the

equation above and substitute it in the equation 𝑧2 = 𝑧 ′1, we
obtain the following constraints for the coefficients of 𝑧 ′1,

𝑐 ′ = 𝑐2 + (𝑐2 − 𝑐1)
𝛽′
𝑘
−𝛽2

𝑘

𝛽2
𝑘
−𝛽1

𝑘

(7)

®𝛼 ′ = ®𝛼2 + ( ®𝛼2 − ®𝛼1)
𝛽′
𝑘
−𝛽2

𝑘

𝛽2
𝑘
−𝛽1

𝑘

(8)

®𝛽 ′𝐼 = ®𝛽𝐼2 + ( ®𝛽𝐼2 − ®𝛽𝐼1)
𝛽′
𝑘
−𝛽2

𝑘

𝛽2
𝑘
−𝛽1

𝑘

, (9)

where 𝐼 are the indices of the other 𝜖 terms (i.e. without 𝜖𝑘 ).

Choosing a Value for 𝛽 ′
𝑘
. In the equations above, we

have one degree of freedom, namely 𝛽 ′
𝑘
. Any value 𝑣 for 𝛽 ′

𝑘

is valid and leads to a valid affine expression 𝑧 ′𝑣 , with the
other coefficients of 𝑧 ′𝑣 being deduced through the equations
above.
To select 𝑣 , we opt to minimize the absolute value of the

noise symbol coefficients, which acts as a heuristic for the
tightness of the zonotope variable:

𝑣∗ = min
𝑣
𝑆 = min

𝑣

[
∥ ®𝛼 ′∥1 + ∥ ®𝛽 ′∥1

]
.

The minimization problem above can be efficiently solved
with O((E𝑝 +E∞) log(E𝑝 +E∞)) complexity, using a method
from [17] described in Appendix A.1. We note that to main-
tain precision, we disallow solutions that lead to the elimi-
nation of one of the ℓ𝑝 -norm noise symbols 𝜙 .

Step 2. Refining 𝑦2, . . . , 𝑦𝑛 . We substitute the expression
for 𝜖𝑘 computed in Step 1 in the affine expressions of the vari-
ables 𝑦2, . . . , 𝑦𝑁 , to obtain the refined Multi-norm Zonotope
variables 𝑦 ′2, . . . , 𝑦 ′𝑁 .

Step 3. Tightening the Bounds of ®𝜖 . The refined sum
constraint 𝑆 = 1 − ∑𝑁

𝑖=1 𝑦
′
𝑖 = 𝑐𝑆 + ®𝛼𝑆 · ®𝜙 + ®𝛽𝑆 · ®𝜖 = 0 can

be further leveraged to tighten the bounds of the ℓ∞ noise
symbols ®𝜖 , with non zero coefficient, by solving for 𝜖𝑚 :

𝜖𝑚 = 1
𝛽𝑚
𝑆

(
𝑐𝑆 + ®𝛼𝑆 · ®𝜙 + ®𝛽𝐼𝑆 · ®𝜖

𝐼
)
,

which implies that the range of 𝜖𝑚 is restricted to [𝑎𝑚, 𝑏𝑚] ∩
[−1, 1] where

𝑎𝑚 = 1
|𝛽𝑚
𝑆
|

(
𝑐𝑆 − ∥ ®𝛼𝑆 ∥𝑞 − ∥ ®𝛽𝑆 ∥1

)
,

𝑏𝑚 = 1
|𝛽𝑚
𝑆
|

(
𝑐𝑆 + ∥ ®𝛼𝑆 ∥𝑞 + ∥ ®𝛽𝑆 ∥1

)
,

Note that because the noise symbol reduction process
assumes all noise symbols ®𝜖 have range [−1, 1], prior to it
a pre-processing step occurs where all noise symbols 𝜖𝑚
with tightened bounds [𝑎𝑚, 𝑏𝑚] ⊂ [−1, 1] are re-written as
𝜖𝑚 =

𝑎𝑚+𝑏𝑚
2 + 𝑏𝑚−𝑎𝑚

2 𝜖new,𝑚 with 𝜖new,𝑚 ∈ [−1, 1].

5.4 Discussion
Next, we discuss the differences between DeepT-Fast and
DeepT-Precise with CROWN-BaF and CROWN-Backward
from [47], respectively.

CROWN-Backward [47] uses the CROWN [60] / DeepPoly
[50] domain to certify robustness of transformer networks.
While it has good precision, backsubstitution through all
multiplications is memory and computationally intensive.
CROWN-BaF [47] has a lower memory footprint and faster
certification times by not performing full backsubstitution
but stopping early.

However, CROWN-BaF loses a significant amount of preci-
sion for multiplication due to the partial backsubstitution. As
our Multi-norm Zonotope domain requires only a forward
pass, but still preserves important relational information be-
tween the variables throughout the network, we introduce
less overapproximation in deeper layers of a network. While
the CROWN / DeepPoly domain used in CROWN-Backward
is more precise but also more expensive compared to the
Zonotope domain used in DeepT, we find that additional
precision at the cost of runtime can be gained by introducing
the DeepT-Precise variant of the dot product transformer.
Further, by periodically reducing the number of noise

symbols, introducing only a small loss of precision we can
increase efficiency for DeepT-Fast and DeepT-Precise in a
more principled way compared to backsubstitution early
stopping as we can explicitly tune the speed/memory vs
precision trade-off per layer.
For softmax, CROWN-Backward and CROWN-BaF over-

approximate 𝑒𝜈𝑖∑
𝑗 𝑒
𝜈𝑗 by concatenating the transformers for the

exponentials, sum, reciprocal and finally multiplication in
that order. Contrary to that, DeepT-Fast and DeepT-Precise
overapproximate the mathematically equivalent but more
favorable formula 1∑

𝑗 𝑒
𝜈𝑗 −𝜈𝑖 , as elaborated in Section 5.2. Fur-

ther, in Section 5.3 we introduce constraints to guarantee
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that the overapproximative softmax outputs constitute a
convex combination, which allows DeepT to gain additional
precision.

6 Experimental Evaluation
In this section, we evaluate the performance and precision
of our methods on a range of networks. Our goal is to prove
local robustness of Transformer networks around given input
sequences. We consider two threat models:
T1 Just one embedded word can be perturbed by an ℓ𝑝-

norm bound perturbation.
T2 Every word in the input sequence can be replaced by

one of its synonyms independently.
The first threat model T1 is used in [47] and is therefore
useful as a direct comparison. The comparison shows that
our methods improve certification rates and scalability to
deeper and wider Transformer networks in general.
The second threat model T2 is used to show that our

methods yield certification results in the space of natural
language processing that can not be obtained using enu-
meration within a reasonable time frame. We capture these
synonym attacks by constructing an ℓ∞ box around the syn-
onym embeddings with the original word embedding, which
is then pushed through the network to check if certification
succeeds. T2 is particularly strong if many words in the se-
quence have multiple synonyms as this results in a large
number of possible combinations.
We focus on the threat models T1 and in Section 6.7 we

focus on T2. We do not handle other threat models like
adding stop words, insertions or deletions of random words.
In Appendix A.2, we investigate the performance of our

Multi-norm Zonotope against ℓ2 norm bound attacks on a
small fully-connected network trained on MNIST [28] and
compare it with [24]. Further, in Appendix A.3, we evaluate
the performance of our certificationmethods on Transformer
networks classifying MNIST images. An ablation study for
the softmax refinement is given in Appendix A.5 and results
for an approach combining DeepT-Fast and DeepT-Precise
are given in Appendix A.6.

6.1 Experimental Setup
We evaluate the certification ability, performance and scala-
bility of our approaches by verifying Transformer networks
of different sizes against perturbations of norm 𝑝 ∈ {1, 2,∞}.
We evaluate two variants of our verifier:

• DeepT-Fast, which uses the faster but more approxi-
mate dot-product abstract transformer, and

• DeepT-Precise, which uses the more precise but less
efficient dot-product abstract transformer for 𝑝 = ∞.

We compare our method against the CROWN approach
[47], the state-of-the-art method for Transformer network
verification. It relies on linear relaxations and applies back-
substitution repeatedly to obtain linear bounds expressed in

Table 1. Certified radius (min and avg) and time (in seconds)
as well as the ratio of their average certified radii.

𝑀 ℓ𝑝
DeepT-Fast CROWN-BaF RatioMin Avg Time Min Avg Time

3
ℓ1 0.036 1.808 28.8 0.036 1.686 9.7 1.07
ℓ2 6.4e-3 0.330 29.2 6.2e-3 0.328 10.6 1.01
ℓ∞ 2.1e-3 0.032 26.2 6.0e-4 0.033 9.7 0.99

6
ℓ1 0.089 1.191 63.6 0.070 0.470 29.8 2.53
ℓ2 0.015 0.212 64.5 0.012 0.083 29.8 2.56
ℓ∞ 1.2e-3 0.021 57.1 1.1e-3 8.0e-3 27.0 2.56

12
ℓ1 0.358 0.512 125.9 1.3e-3 0.018 100.7 28.4
ℓ2 0.074 0.107 129.4 2.6e-4 3.7e-3 106.3 29.3
ℓ∞ 7.3e-3 0.011 113.4 2.5e-5 3.5e-4 87.4 29.8

terms of the input values. We compare against the Backward-
and-Forward (BaF) and Backward variants of the CROWN
verifier, the latter being more precise but considerably slower.
The certification radii are computed using a binary search to
find the highest radius 𝜖 such that the region representing a
ℓ𝑝 perturbation of radius 𝜖 around the input can be verified.

Transformer Networks. A Transformer network gets a
sentence as input and predicts the binary sentiment polarity
of the sentence. Unless otherwise noted, the networks have
𝑀 ∈ {3, 6, 12} layers, an embedding size of 128 and 4 heads.
The hidden layer size of the feed forward networks is 128. In
Section 6.2, we provide additional experiments with wider
networks. In Section 6.3 and Section 6.4 we use an embed-
ding size of 64 and hidden layer size of 64 due to memory
constraints of the baseline. Further, in Section 6.6 we provide
experiments using the standard layer normalization, con-
firming the observation of [47] that division by the standard
deviation harms certification rates.

Dataset. Unless otherwise noted, we train the transform-
ers from scratch on the SST dataset [51] which contains
67349, 872 and 1821 examples in the training, development
and test set, respectively. Additionally experiments using the
larger Yelp dataset [61] are provided in Section 6.2.

Hardware. All our experiments ran on an Nvidia 2080
Ti GPU with 11GB of memory, except for the experiments
presented in Table 4 and Table 5, which ran on an Nvidia
Titan X GPU with 24GB.

Noise Symbol Reduction. DeepT-Fast reduces the num-
ber of ℓ∞ noise symbols at every Transformer network layer
to 14000, while DeepT-Precise reduces the number of ℓ∞
noise symbols to 10000 (Section 5.1). However, for sentences
with 22 words or more, these numbers are halved to lower
memory usage and improve performance. These numbers
were chosen empirically in order to balance precision, speed
and memory use.



Fast and Precise Certification of Transformers PLDI ’21, June 20–25, 2021, Virtual, Canada

Table 2. Certified radius (min and avg), time (in seconds)
and ratio of the average certified radii on the Yelp dataset.

𝑀 ℓ𝑝
DeepT-Fast CROWN-BaF RatioMin Avg Time Min Avg Time

3
ℓ1 0.070 0.415 21.5 0.102 0.573 3.9 0.7
ℓ2 0.070 0.187 21.1 0.023 0.137 3.9 1.4
ℓ∞ 8.3e-3 0.024 20.1 2.4e-3 0.015 4.3 1.6

6
ℓ1 0.037 0.194 48.0 2.4e-9 0.022 19.1 8.7
ℓ2 0.026 0.091 47.9 2.4e-9 5.6e-3 17.4 16.3
ℓ∞ 4.2e-3 0.012 49.7 2.4e-9 5.8e-4 14.6 19.9

12
ℓ1 2.0e-5 0.056 90.0 2.4e-8 3.7e-4 44.1 152
ℓ2 4.9e-6 0.026 99.7 1.0e-8 9.0e-5 46.7 285
ℓ∞ 5.7e-6 2.9e-3 99.1 2.4e-9 9.2e-6 49.6 314

6.2 Fast Verifiers: DeepT-Fast vs CROWN-BaF
First, we compare our tool for fast verification DeepT-Fast
against CROWN-BaF, the tool for fast verification in [47].
The metrics used include the size of the certified radius, the
scaling behavior and the performance. To the best of our
knowledge, this is the first time verification is applied on
more realistically-sized Transformer networks, with 6 and
12 layers [9]; the previous maximum was 3 layers [47]. The
accuracies for the 3, 6 and 12 layer networks are 83.3%, 83.6%
and 83.4% respectively on the SST dataset (Table 1) and 91.4%,
91.5% and 91.5% respectively on the Yelp dataset (Table 2).
As proposed in [47], we evaluate 10 correctly classified

random test examples with sentence lengths not exceeding
32. Given a sentence with embeddings 𝐸, for every position
𝑖 we compute the maximum robustness radius 𝜖 around the
embedding of the 𝑖th word such that all embeddings in it are
correctly classified.

Certification Results. DeepT-Fast achieves larger certi-
fied radii than CROWN-BaF in almost every setting (Table 1,
Table 2). For the deep 12-layer Transformer network, both
verifiers are fast but DeepT-Fast can certify much larger
perturbation regions: on average, the certified radii are 28×
larger on SST and 250× larger on Yelp compared to those
of CROWN-BaF. Thus, DeepT-Fast scales much better than
CROWN-BaF: while the average certified radius decreases
for DeepT-Fast by a factor of 3.5× on SST and 7.5× on Yelp as
the number of layers increases from 3 to 12, for CROWN-BaF
they decrease by a factor of 90× on SST and 1553× on Yelp
on average.

Performance. While CROWN-BaF is faster by a factor
of 2-5 for the smallest Transformer network, the size of
the performance gap shrinks to a factor of 1.25 on SST and
2 on Yelp for the 12-layer network because DeepT-Fast’s
computational complexity scales linearly with the number
of layers while for CROWN-BaF it increases superlinearly.

Overall, these results indicate that DeepT-Fast is the suit-
able choice when the goal is to verify deeper and more prac-
tical Transformer networks.

Table 3. Certified radius (min and avg), time (in seconds)
and ratio of the average certified radii for Transformer net-
works with embedding size of 256 and hidden size of
512. Execution failures are indicated by “-”.

𝑀 ℓ𝑝
DeepT-Fast CROWN-BaF RatioMin Avg Time Min Avg Time

3
ℓ1 0.289 1.070 37.7 0.641 0.969 11.7 1.1
ℓ2 0.055 0.204 37.9 0.114 0.181 11.6 1.1
ℓ∞ 3.7e-3 0.015 35.5 8.4e-3 0.014 11.5 1.1

6
ℓ1 0.040 0.260 89.5 0.028 0.079 41.2 3.3
ℓ2 9.1e-3 0.062 82.4 5.2e-3 0.014 39.7 4.4
ℓ∞ 1.2e-3 6.6e-3 72.9 3.9e-4 1.0e-3 40.9 6.5

12
ℓ1 0.015 0.103 171.8 - - - -
ℓ2 4.5e-3 0.031 160.1 - - - -
ℓ∞ 3.1e-4 3.3e-3 136.3 - - - -

Large Width Transformer Network Results. To evalu-
ate the performance on wider Transformer networks, we
double the embedding size to 256 and quadruple the hidden
layer size to 512. We evaluated on the SST dataset, the ac-
curacies are 83.2%, 83.2% and 83.0% for the 3, 6 and 12 layer
network respectively. The results are given in Table 3.

Due to memory issues, CROWN-BaF failed to verify any-
thing for the wider 12 layer Transformer network. DeepT-
Fast, on the other hand, succeeded due to its tunable noise
symbol reduction, allowing for fine-grained tradeoffs be-
tween precision and memory usage. The results are in agree-
ment with the previous observations.

6.3 The Precision-Performance Tradeoff
To compare the two variants of the dot product abstract
transformer (Section 4.8), we evaluate the certification of
DeepT-Precise and DeepT-Fast against ℓ∞ attacks. Addition-
ally, we compare DeepT-Precise with CROWN-Backward
since they both operate in the regime of more precise but
slower verification (Table 4). Because of the reduced speed,
we only perturb a randomly chosen position per example
sentence instead of evaluating perturbations for all positions.
The accuracies for the 3, 6 and 12 layer networks we evaluate
on are 83.5%, 83.7% and 83.4% respectively.

MemoryUsage of CROWN-Backwards. Since CROWN-
Backward requires for larger sentences more memory than
the 2080 Ti GPU can provide, even in the case of a moder-
ately sized 3 layer Transformer network, we verify a smaller
Transformer network where the embedding size is 64 and the
hidden size 64. We run all verifiers on a 24 GB Nvidia Titan X
GPU to provide a fair timing comparison since the memory
requirements of CROWN-Backward for the downscaled 12
layer Transformer network still exceed the 2080 Ti.

Results. In the trade-off between powerful certification
and performance, DeepT-Fast achieves the fastest results,
DeepT-Precise achieves the highest average precision while
CROWN-Backward is in an intermediate position, albeit it
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Table 4. Certified radius (min and avg) and time (in seconds)
for ℓ∞ perturbations. The results for CROWN-BaF can be
found in Appendix A.4.

𝑀
DeepT-Fast DeepT-Precise CROWN-Backward

Min Avg Time Min Avg Time Min Avg Time
3 0.013 0.034 17.2 0.013 0.038 432.2 0.013 0.037 65.4
6 0.014 0.031 33.8 0.014 0.036 1195.1 0.015 0.033 215.5
12 9.3e-3 0.021 69.0 8.8e-3 0.024 2676.5 9.9e-3 0.022 839.9

Table 5. Certified radius (min and avg) and time (in seconds)
for ℓ𝑝 perturbations.

𝑀 ℓ𝑝
DeepT-Fast CROWN-BaF CROWN-Backward

Min Avg Time Min Avg Time Min Avg Time

3 ℓ1 0.44 1.14 17.3 0.40 0.98 9.2 0.45 1.21 64.7
ℓ2 0.10 0.25 16.1 0.09 0.24 8.7 0.10 0.27 58.0

6 ℓ1 0.47 1.05 35.7 0.44 0.81 24.1 0.48 1.10 218.6
ℓ2 0.10 0.23 34.6 0.10 0.18 22.2 0.11 0.24 203.2

12 ℓ1 0.27 0.61 70.2 0.05 0.18 63.0 0.29 0.66 826.6
ℓ2 0.07 0.15 71.0 0.01 0.05 64.3 0.07 0.16 766.0

has the best minimum certified radius. For the 12-layer Trans-
former network, DeepT-Fast achieves 10% lower certification
compared to CROWN-Backward but it is 12x faster. Com-
pared to DeepT-Precise, it achieves 30% lower certification
but it is 39x faster. DeepT-Precise achieves better precision
than DeepT-Fast despite more noise symbols being elimi-
nated during the noise symbol reduction steps, highlighting
the importance of the dot-product abstract transformer.

6.4 Comparison for ℓ1 and ℓ2 Perturbations
We also compare DeepT-Fast with CROWN-Backward for
ℓ𝑝 where 𝑝 ∈ {1, 2}, as well as with CROWN-BaF (Table 5).

Comparison with CROWN-Backward. DeepT-Fast is
3.7×, 6.0× and 11.2× faster than CROWN-Backward for the
3, 6 and 12 layer Transformer networks respectively while
having lower memory usage, with only a 7% to 9% reduction
in certified radius.

Comparison with CROWN-BaF. DeepT-Fast’s average
certification radii are larger in all settings, especially for the
12 layer Transformer network where the radii are 3.3× larger,
but certification is 2× slower. For the 6 layer Transformer net-
work, the smallest radius computed by CROWN-BaFmatches
the one computed by DeepT-Fast, but DeepT-Fast provides
larger radii for the 3 and 12-layer Transformer networks.

Scalability of DeepT-Fast andCROWN-BaF. As in Sec-
tion 6.3, we rely on small networks due to the compari-
son against CROWN-Backward. Likely due to the reduced
network size, CROWN-BaF verification loses precision less
quickly compared to the first set of experiments, degrading
by a factor of 5.4 (instead of 90) between the 3 layer network

Table 6. Applying the dual norm on the ℓ∞-norm noise
symbols first for the dot product abstract transformer of
DeepT-Fast leads to higher certified radii on average.

𝑀 ℓ𝑝
ℓ∞-norm terms first ℓ𝑝 -norm terms first Avg.

ChangeMin Avg Time Min Avg Time

3 ℓ1 0.036 1.808 28.8 0.036 1.798 26.3 +0.53 %
ℓ2 6.4e-3 0.330 29.2 6.4e-3 0.330 26.7 +0.15 %

6 ℓ1 0.089 1.191 63.6 0.094 1.176 57.3 +1.3 %
ℓ2 0.015 0.212 64.5 0.015 0.212 58.2 +0.24 %

12 ℓ1 0.358 0.512 125.9 0.356 0.508 113.8 +0.88 %
ℓ2 0.074 0.107 129.4 0.074 0.107 117.5 +0.25 %

Table 7. Certified radius (min and avg), time (in seconds)
and ratio of the certified average radii for Transformerswith
standard layer normalization.

𝑀 ℓ𝑝
DeepT-Fast CROWN-BaF RatioMin Avg Time Min Avg Time

3
ℓ1 1.6e-4 0.015 39.7 2.1e-3 4.8e-3 12.1 3.0
ℓ2 4.9e-3 6.7e-3 38.1 1.2e-3 3.7e-3 13.0 1.8
ℓ∞ 8.1e-4 1.2e-3 39.5 2.0e-4 8.6e-4 13.1 1.3

6
ℓ1 1.0e-4 9.3e-3 86.1 4.0e-4 1.3e-3 39.6 7.4
ℓ2 3.4e-3 4.5e-3 86.3 1.3e-4 5.6e-4 40.8 7.9
ℓ∞ 5.5e-4 7.3e-4 85.1 1.5e-5 7.3e-5 41.1 10.1

12
ℓ1 1.2e-4 5.2e-3 150.3 2.9e-9 2.0e-5 152.3 263
ℓ2 3.7e-5 2.4e-3 156.6 7.6e-9 4.6e-6 156.7 530
ℓ∞ 7.6e-8 3.8e-4 164.4 3.9e-9 5.0e-7 189.3 755

and the 12 layer network. This still indicates that DeepT-Fast
scales better compared to CROWN-BaF in width and depth.

6.5 Dual Norm Order
Since the final bound obtained by the DeepT-Fast dot prod-
uct transformer is not symmetric in𝑊 and 𝑉 (Section 4.8),
we evaluated both orders (Table 6) which showed that on
average it is slightly advantageous to apply the dual norm
first on the ℓ∞-norm terms and then on the ℓ𝑝 -norm terms.

6.6 Standard Layer Normalization Results
The certification experiments presented in this work eval-
uate our methods on Transformer networks without the
division by the standard deviation in the layer normaliza-
tion, as described in [47]. They report improved certification
rates without a significant impact on performance. Our ex-
periments (Table 7) confirm the observation of [47]. The
accuracies of the Transformer networks using division are
81.9%, 82.2% and 81.8% respectively for the 3, 6 and 12 layer
Transformer networks. The accuracies are slightly lower
than the accuracies of the Transformer networks without
division by the standard deviation, but the latter has almost
always the larger certification radii.
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Table 8. Comparison between CROWN-BaF and DeepT-Fast
for robustness certification against synonym attacks on 137
sentences. The network accuracy is 81.6%.

Certified Sentences Certified Percentage Time (s)
CROWN-BaF 121 89% 2.60
DeepT-fast 120 88% 2.41

6.7 Certification against Synonym Attacks
We also evaluate our method against threat model T2, where
every word in the input sequence can be replaced by one of
its synonyms independently, making it significantly more
difficult to certify compared to threat model T1. Note, that
the threat model T2 covers also a threat model where only
a fixed number of words can be replaced by synonyms as
T2 is strictly stronger. We focus on sentences of up to 26
words where the number of combinations of synonyms is
at least 32 000, though many considered sentences have
significantly more combinations, because they pose a more
difficult verification challenge as they are the ones for which
enumeration-based methods are considerably slower than
our certification methods.

When comparing the certified robustness rates of DeepT-
Fast against CROWN-BaF (Table 8), we see that the per-
formance is comparable on a 3 layer Transformer network
trained for certifiability using the method provided in [57].
The accuracy is 81.7%. We note that some verified sentences
have millions of combinations and testing all combinations
would take at least 2 orders of magnitude more time. DeepT-
Fast is competitive with CROWN-BaF, even though the train-
ingmethod is tailored to improve the verification success rate
of the CROWNmethod and the small size of the network. The
verifiers could not be evaluated on larger networks because
the certified training method [57] failed for larger networks.
We conjecture that DeepT-Fast would achieve superior ver-
ification compared to CROWN-BaF in the large-network
setting. Table 9 details one of these certifiable sentences with
23 million possible combinations.

6.8 Summary
At a high level, our results indicate that if one is interested
in pushing certification for deeper Transformer networks (as
typically used in practice), then DeepT-Fast would be the pre-
ferred choice as it scales well while being significantly more
precise than current state-of-the-art. If one is interested in
the maximal attainable precision, then DeepT-Precise would
be preferred as it is currently the most precise Transformer
network verifier.

7 Related Work
Next, we discuss related work in both neural network certi-
fication and Transformer networks.

Table 9. Example certifiable sentence with 23 million pos-
sible combinations, along with the synonyms generated by
the attack in [1] for every position. Enumeration-based ver-
ification would take 2 to 3 orders of magnitude more time
compared to our verification method.

Tokens #Synonyms Synonyms
No 3 no, not, without

reason 1 reasons
for 0 ∅

anyone 6 sombody, someone, anybody,
everyone, person, nobody

to 0 ∅
invest 0 ∅
their 0 ∅

hard-earned 0 ∅
bucks 1 money
into 5 at, towards, toward, in, for
a 0 ∅

movie 3 film, films, cinema
which 0 ∅

obviously 5 clearly, naturally, apparently,
plainly, definitely

did 4 did, could, got, do, does
n’t 0 ∅

invest 0 ∅
much 5 very, many, highly, greatly, heavily
into 6 at, under, towards, in, for

itself 6 himself, themselves, ourselves,
myself, yourself, herself

either 0 ∅
. 0 ∅

Neural Network Certification. A wide variety of certi-
fication methods guaranteeing the local robustness of neural
networks around a given input have been proposed in re-
cent years. The certification methods can be grouped into
two categories: the complete, but less scalable methods and
incomplete but more scalable methods.
Among the complete ones, some are relying on SMT-

solvers [6, 12, 26] or mixed-integer linear programming [53].
Incomplete methods rely on a wide range of techniques

including abstract interpretation [15, 48–50], linear relax-
ation [46, 55, 60] and duality [11]. While these methods pro-
vide deterministic guarantees, a recent development in the
space of incomplete verification is randomized smoothing
[8, 29, 30, 45], which provides probabilistic certificates. Due
to their scalability advantages, as they are able to handle
larger networks, we focus in this paper on incomplete verifi-
cation methods with standard deterministic guarantees.
While most work regarding neural network certification

is about ℓ𝑝 robustness, neural networks can also be certified
against semantic perturbation beyond ℓ𝑝 robustness, e.g.,
certification against geometric perturbations on images like
rotations or translations [3, 14, 39, 42] or vector fields [44].

Transformer Networks. Transformer networks [54] are
neural networks designed to process sets or sequences, such
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as sentences, sound or images. The Transformer network ar-
chitecture and the attention mechanisms it introduces have
recently led to major advances in natural language process-
ing [9, 27, 58]. Currently, this type of network and its refine-
ments are the de facto standard for most natural language
processing tasks, similar to convolutional networks for im-
age processing tasks. Further, transformer networks have
recently been successfully used in tasks even beyond natural
language processing, including object detection [7], graph
classification [32] and speech recognition [20], and have also
been combined with existing architectures such as convolu-
tional neural networks to achieve state-of-the-art results in
visual question answering [33] or image synthesis [59].

Adversarial Attacks on Transformer Networks. One
of the early adversarial attacks in the space of NLP was
presented by [1], where the attacker model allowed to ex-
change each word in the input sequence by one of 8 nearest
neighbors in the embedding space. To reduce the number
of false synonyms (words whose embeddings are close but
are not synonyms in the context of the sentence), a simple
language model was used and empirically validated. Later,
[22] successfully attacked Transformer networks by replac-
ing one word in the input sequence with a synonym, and
observed that transformer networks tend to be more robust
than LSTMs. A gradient-ascent based attack was presented
in [5] which uses a FGSM-like attack on the embeddings,
after which each word in the sequence gets replaced by the
word having the embedding closest to the attacked embed-
ding for that word. [23, 31, 34] present attacks tailored to
perturb few words, with the key idea being to only consider
perturbing words that are important for classification.

Transformer Network Certification. While neural net-
work certification has been successfully applied to feed-
forward and convolutional networks classifying images, the
certification of Transformer networks has been considered
only very recently. A first inclination might be to certify
these networks against synonym-based attacks by enumer-
ating all possibilities. This however works only for short
sequences of words where additionally each has only a few
synonyms. As discussed already, [47] certifies robustness
against ℓ𝑝 -norm bound changes in the embedding space for
𝑝 ∈ {1, 2,∞}. The idea here is to certify against changes
in the embedding space, as this should cover synonyms if
the certified radius is large enough. Further, [57] certifies
against synonym attacks for small 1-layer transformer net-
works, where a small subset of words can be replaced by
synonyms. Here, the attacker model is similar to [1], with
the restriction that just a fewwords can be changed. Recently,
[62] used the certified training method presented in [37] to
train Transformer network models to be robust against NLP
attacks performing deletions, insertions and reordering of
words or letters.

While training a network to be empirically more robust is
orthogonal to the robustness certification task addressed in
this paper, we evaluated whether our Multi-norm Zonotopes
could be substituted in the training procedure presented in
[62]. Our experiments showed that direct substitution is not
feasible due to large memory requirements of [37] when
combined with the Multi-norm Zonotope domain. However,
we believe this issue could be solved by applying the COLT
training method [4], which has more favorable memory char-
acteristics. We leave this for future work.

8 Conclusion
We introduced the Multi-norm Zonotope domain, a gen-
eralization of the classical Zonotope designed to model ℓ𝑝
perturbations by adding additional noise symbols bound by
a ℓ𝑝 -norm constraint. We carefully construct a set of abstract
transformers for all operations of the Transformer network
in a manner that balances scalability and precision, includ-
ing the challenging softmax and dot product functions (the
critical operations in self-attention) which require handling
non-linearities applied to multiple terms under perturbation.
Using our new Multi-norm Zonotope domain and its ab-

stract transformers, we built DeepT, the first verifier able to
certify more realistically-sized Transformer networks with
high precision and fast performance. We evaluated the effec-
tiveness, performance and scalability of DeepT for certifying
Transformer networks for binary classification against ℓ𝑝
attacks. Our results show that DeepT achieves fast and ef-
fective certification of Transformer networks, even for deep
12-layer networks. Our method scales well, both in terms
of the number of layers and in terms of the size of the in-
put embeddings, contrarily to state-of-the-art which either
becomes impractically slow or whose certification strength
reduces dramatically for deeper networks.

We also demonstrate, for the first time, successful certifica-
tion for Transformer networks against synonym attacks for
long word sequences having many synonyms, where each
word can potentially be replaced by many substitutes. Our
DeepT verifier achieves an 84% success rate when verifying
a certifiably-pretrained Transformer network for sentences
where enumeration-based methods would take 2 to 3 orders
of magnitude more time.
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A Appendix
A.1 Solving the Minimization Problem
We describe the method from [17] to solve the minimization
problem below with O((E𝑝 +E∞) log(E𝑝 +E∞)) complexity:

𝑣∗ = min
𝑣
𝑆 = min

𝑣


E𝑝∑
𝑖=1

|𝛼𝑖𝑧 | +
E∞∑
𝑗=1

|𝛽 𝑗𝑧 |
 .

[17] relies on two observations. First, since all coefficients
in the minimization can be written in form 𝑟 + 𝑠𝛽𝑘𝑧 with
𝑟, 𝑠 ∈ R (see Eqs. 5-6), the expression to be minimized is of
the form 𝑆 =

∑
𝑡 |𝑟𝑡 + 𝑠𝑡𝛽𝑘𝑧 |. The optimal value 𝑣∗ for 𝛽𝑘𝑧 will

cause one of the |𝑟𝑡 + 𝑠𝑡𝛽𝑘𝑧 | terms to be 0 and therefore 𝑣∗
must equal −𝑟𝑖

𝑠𝑖
for some 𝑖 ∈ [1, E𝑝 + E∞]. The values −𝑟𝑖

𝑠𝑖
are the candidate solutions for the minimization problem
and simply testing them all would lead to an algorithm with
complexity O((E𝑝 + E∞)2).
To improve on this, a second observation is used: each

term |𝑟𝑡 + 𝑠𝑡𝛽𝑘𝑧 | of 𝑆 has a constant negative slope before −𝑟𝑡
𝑠𝑡

and a constant positive slope after it. Therefore, as 𝛽𝑘𝑧 in-
creases the slope of more and more |𝑟𝑡 +𝑠𝑡𝛽𝑘𝑧 | terms becomes
positive, showing that the slope of 𝑆 increases monotoni-
cally with 𝛽𝑘𝑧 . The minimum value of 𝑆 will happen at the
value of 𝛽𝑘𝑧 where the slope of 𝑆 changes from negative to
positive. Since the slope of 𝑆 increases monotonically, we
can run a binary search on 𝛽𝑘𝑧 to efficiently find the value at
which the slope of 𝑆 changes sign, obtaining an algorithm
with O((E𝑝 + E∞) log(E𝑝 + E∞)) complexity. To maintain
precision, we exclude the candidate solutions that lead to
the elimination of one of the ℓ𝑝 -norm noise symbols 𝜙 . This
requires an additional linear search but doesn’t change the
overall complexity of the algorithm.

A.2 Comparison with GeoCert for ℓ𝑝 Perturbations
While this paper focuses on using Multi-norm Zonotopes for
Transformer networks verification, the domain is general
and can be applied to other architectures.We illustrate this by
certifying a small fully-connected DNN for MNIST [28] and
compared it to GeoCert method [24] on ℓ2 perturbations. The
DNN performs binary classification on MNIST [28] images
with digits 1 or 7, and is composed of a feed-forward network
with ReLU nonlinearities and hidden sizes of 10, 50 and 10.

Without any adaptation of our method, we evaluate cer-
tification using Multi-norm Zonotopes and compare it to
GeoCert (Table 10). While the radii are significantly smaller,
the certification is significantly faster. We believe the results
indicate a promising future work item.

A.3 Certifying Visual Transformers for Image
Classification

While originally developed for NLP, Transformer networks
have been successfully applied in computer vision tasks,
such as image classification [10] and object detection [7, 35],

Table 10. Certified radius (min and avg) and time (in sec-
onds) of Multi-norm Zonotope based certification (DeepT)
and GeoCert [24] for perturbations of norm 𝑝 = 2.

Min Avg Time [s]
GeoCert 0.310 1.440 38.01
DeepT 0.022 0.118 2.31

Table 11. Certified radius (min and avg) and time (in sec-
onds) of DeepT-Fast for a Vision Transformers and pertur-
bations of norm 𝑝 ∈ {1, 2,∞}.

Min Avg Time [s]
ℓ1 0.199 0.668 8.3
ℓ2 0.051 0.191 8.2
ℓ∞ 0.004 0.019 8.2

achieving competitive [7, 10] or state-of-the-art performance
[35].
To evaluate the certification capabilities of DeepT in do-

mains other than NLP, we focus on robustness certification
of image classification models. More specifically, our goal
will be to prove that a Vision Transformer network [10]
will correctly classify images even if they have suffered a ℓ𝑝
perturbation, a common threat model in computer vision.

Model and Dataset. The Vision Transformer network
has 1 encoding layer, an embedding size of 64 and the size of
the hidden layer of the feed-forward network is 128. The self-
attention layer has 4 attention heads. The input image is split
into patches of size 7x7, each being mapped through a linear
layer to an embedding of size 64 after which a positional
encoding is added. We evaluate on 100 randomly selected
images of the MNIST dataset [28]. The network achieves
95.54% test accuracy.

Results. We report the size of certified radius and the
performance of DeepT when certifying against ℓ1, ℓ2 and ℓ∞
perturbations in Table 11.

A.4 Complete Results for the
Precision-Performance Tradeoff

Table 12 contains the full results for the experiment of Section
6.3 which additionally contains the results for the CROWN-
BaF verifier. DeepT-Fast achieves larger average certified
radii than CROWN-BaF in all settings, with the certification
gap increasing substantially for deeper networks, but is 1.5-
4.4 times slower, with the performance gap reducing for
deeper networks.

A.5 Evaluating the Softmax Sum Refinement
We perform an ablation study to evaluate the effect of the
Zonotope refinement using the softmax sum constraint. We
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Table 12. Certified radius (min and avg) and time (in seconds) for DeepT-Fast, CROWN-BaF, DeepT-Precise and CROWN-
Backward for ℓ∞ perturbations.

𝑀
DeepT-Fast CROWN-BaF DeepT-Precise CROWN-Backward

Min Avg Time Min Avg Time Min Avg Time Min Avg Time
3 0.013 0.034 17.2 0.013 0.033 3.9 0.013 0.038 432.2 0.013 0.037 65.4
6 0.014 0.031 33.8 0.014 0.025 10.6 0.014 0.036 1195.1 0.015 0.033 215.5
12 9.3e-3 0.021 69.0 1.9e-3 6.3e-3 44.9 8.8e-3 0.024 2676.5 9.9e-3 0.022 839.9

Table 13. Refining the Zonotope by using the softmax sum
constraint in the DeepT-Fast verifier leads to higher certified
radius. The results are rounded, but the improvement is
computed using the full precision floating point numbers.
Experiments ran on a 1080 Ti with 11GB of RAM.

𝑀 ℓ𝑝
With Constraint Without Constraint ChangeMin Avg Time Min Avg Time

3
ℓ1 0.037 1.808 21.8 0.037 1.807 20.1 +0.04%
ℓ2 6.44e-3 0.330 22.1 6.37e-3 0.330 20.6 +0.22%
ℓ∞ 2.18e-3 0.032 21.7 6.07e-4 0.032 20.1 +0.49%

6
ℓ1 0.095 1.211 52.4 0.089 1.200 48.0 +0.94%
ℓ2 0.015 0.215 52.7 0.015 0.214 48.9 +0.88%
ℓ∞ 2.03e-3 0.021 50.6 1.36e-3 0.021 47.2 +1.50%

12
ℓ1 0.358 0.514 105.1 0.360 0.501 99.6 +2.62%
ℓ2 0.074 0.107 109.0 0.075 0.105 102.4 +2.80%
ℓ∞ 7.29e-3 0.011 102.5 7.31e-3 0.010 96.6 +3.21%

Table 14. Certified radius (min and avg) and time (in sec-
onds) for the DeepT verifier that combines DeepT-Precise
and DeepT-Fast, and CROWN-Backward for ℓ∞ perturba-
tions.

𝑀
Combined DeepT verifier CROWN-Backward
Min Avg Time Min Avg Time

6 0.014 0.034 227.0 0.015 0.033 289.4
12 9.1e-3 0.023 423.7 9.9e-3 0.022 818.8

compare the DeepT-Fast verifier with and without the refine-
ment. We observe that the refinement leads to the certifica-
tion radii improvements that increases with the depth on the
neural network (Table 13). The improvement is small (0.04%-
0.49%) for the 3 layer Transformer networks but increases
to 2.62%-3.21% for the 12 layer Transformer networks, at a
5-9% performance cost.

A.6 Combining DeepT-Fast and DeepT-Precise
By using the more precise abstract transformer for the dot
product only in the last layer of the Transformer network and
the faster version in the remaining layers, we obtain a verifier
that is both faster andmore precise on average than CROWN-
Backward for the 6 and 12 layer Transformer networks (Table
14). For these networks, reduction to 5000 and 7000 noise
symbols is applied in the last layer, and reduction to 14000
and 20000 noise symbols in the remaining layers.
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