
This work is licensed under a Creative Commons “Attribution 4.0 International” license.

Unqomp: Synthesizing Uncomputation
in Quantum Circuits

Anouk Paradis
ETH Zurich, Switzerland
anouk.paradis@inf.ethz.ch

Benjamin Bichsel
ETH Zurich, Switzerland

benjamin.bichsel@inf.ethz.ch

Samuel Steffen
ETH Zurich, Switzerland
samuel.steffen@inf.ethz.ch

Martin Vechev
ETH Zurich, Switzerland
martin.vechev@inf.ethz.ch

Abstract
A key challenge when writing quantum programs is the
need for uncomputation: temporary values produced during
the computation must be reset to zero before they can be
safely discarded. Unfortunately, most existing quantum lan-
guages require tedious manual uncomputation, often leading
to inefficient and error-prone programs.

We present Unqomp, the first procedure to automatically
synthesize uncomputation in a given quantum circuit. Un-
qomp can be readily integrated into popular quantum lan-
guages, allowing the programmer to allocate and use tempo-
rary values analogously to classical computation, knowing
they will be uncomputed by Unqomp.

Our evaluation shows that programs leveraging Unqomp
are not only shorter (-19% on average), but also generate more
efficient circuits (-71% gates and -19% qubits on average).

CCS Concepts: • Hardware → Logic synthesis; • Com-
puter systems organization→ Quantum computing.

Keywords: Quantum Circuits, Uncomputation, Synthesis
ACM Reference Format:
Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev.
2021. Unqomp: Synthesizing Uncomputation in Quantum Circuits.
In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’21), June

20–25, 2021, Virtual, Canada. ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/3453483.3454040

1 Introduction
Quantum programs often produce temporary values during
execution. However, in contrast to classical values, the mere

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’21, June 20–25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454040

𝑅

𝐿

𝐴 𝐴†

𝐿†

𝐴 𝐴†

(a) Modular Uncomputation.

synthesized

𝑅

𝐿

𝐴

Unqomp

𝐿† 𝐴†

(b) Efficient Uncomputation.

Figure 1. Manual yet modular uncomputation is inefficient.

existence of temporary quantum values can lead to unex-
pected side effects on the remainder of the program state
due to the phenomenon of quantum entanglement. Prevent-
ing such side effects typically requires resetting temporary
quantum values to zero before discarding them, in a process
called uncomputation [5].

Synthesizing Uncomputation. This need for uncompu-
tation is a major roadblock preventing programmers from
writing correct, efficient, and intuitive quantum programs.

Such programs construct quantum circuits to be run on
a quantum computer. Ideally, uncomputation would be syn-
thesized automatically during circuit construction, allowing
the programmer to simply omit it. Unfortunately, existing
uncomputation synthesizers are restricted to quantum pro-
grams consisting exclusively of classical operations (e.g.,
[3, 13, 17, 21]).

Recently, Silq [6] addressed uncomputation in quantum
programs by introducing a type system which statically
checks that temporary values can be uncomputed. How-
ever, Silq does not explicitly synthesize uncomputation as
it does not include a compiler. Likewise, ReQWire [21] can
verify that manually provided uncomputation is safe, but
cannot synthesize it.

Consequently, most quantum languages require tedious
manual uncomputation by explicitly reversing all opera-
tions applied to temporary values, sometimes aided by (un-
safe) convenience functions (e.g., ApplyWith, with_computed, dis-
cussed in §8). However, this manual approach leads to ten-
sion between modularity and efficiency, discussed next.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.1145/3453483.3454040
https://doi.org/10.1145/3453483.3454040

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

Modular Programs. Generally, writing complex quan-
tum programs requires a modular approach, in particular
when developing libraries. Indeed, a quantum library func-
tion 𝐿 typically uncomputes all its internal temporary values,
without exposing them to the caller. The programmer can
then use 𝐿’s inverse 𝐿† to uncompute the result of 𝐿. If 𝐿
computes a temporary value using an auxiliary function 𝐴,
𝐿 can in turn leverage 𝐴† to uncompute the result of 𝐴.

We visualize a call tree resulting from this modular ap-
proach in Fig. 1a, where a function 𝑅 uses the library 𝐿

and later uncomputes its result using 𝐿†, which internally
recomputes 𝐴. Note that if 𝐿 did not encapsulate the uncom-
putation of 𝐴, it would have to expose the output of 𝐴 to be
uncomputed by the user of 𝐿, thus breaking modularity.

Inefficient Circuits. While the above modular construc-
tion facilitates correct uncomputation, it often results in
inefficient circuits. This is a critical problem, as near-future
quantum computers only support a limited number of qubits
and are subject to noise limiting the number of gates [19].

In the example of Fig. 1a, 𝐴 is uncomputed in 𝐿 only to be
recomputed again in 𝐿†. This redundant work (highlighted
as) increases exponentially with the depth of the call tree,
becoming prohibitive for complex programs.

In contrast, Fig. 1b shows the call tree of an equivalent but
more efficient computation, which avoids recomputing 𝐴.
Achieving this without exposing the output of 𝐴 and thus
breaking modularity of 𝐿’s implementation is only possible
if uncomputation is synthesized during circuit construction.

SacrificingModularity. In some cases, programmers sac-
rifice modularity for efficiency and manually build call trees
similar to Fig. 1b. However, the resulting code is error-prone
and may introduce other sources of inefficiencies (see §7).

These downsides are exacerbated by the fact that erro-
neous uncomputation is particularly hard to detect. For ex-
ample, programmers often reuse the same physical qubit to
first hold temporary value 𝑎 and later temporary value 𝑏,
in which case incorrectly uncomputing 𝑎 may corrupt the
computation involving 𝑏.

This Work: Unqomp. To enable writing modular yet ef-
ficient quantum programs, we introduce Unqomp, the first
procedure to automatically synthesize uncomputation.

Technically, Unqomp relies on the fundamental insight
that a temporary value can be safely uncomputed by invert-
ing the operation that computed it, if the original computa-
tion can be described classically and depends on values that
can be reused for uncomputation [6]. Unfortunately, whether
these values are available for uncomputation can depend on
the exact order in which operations are applied, even though
these operations often commute. To address this challenge,
Unqomp operates on circuit graphs, a representation of quan-
tum circuits which does not enforce unnecessary ordering
constraints among operations.

Evaluation Results. Unqomp is designed such that it
can be readily integrated into existing quantum languages
currently requiring manual uncomputation (see §4).

Our evaluation demonstrates that integrating Unqomp
into Qiskit [2] allows writing code that is shorter (19% on
average), more modular (preventing bugs existing in current
implementations), and often significantly more efficient (71%
fewer gates and 19% fewer qubits on average). We reported
a set of efficiency issues revealed by our evaluation to the
Qiskit developers, who have since addressed them. Even com-
pared to the resulting enhanced version of Qiskit, Unqomp
allows for significant improvements (57% for gates and 19%
for qubits). Furthermore, when used on purely classical ex-
amples, Unqomp significantly outperforms other approaches,
saving 40% of gates and 41% of qubits on average when com-
pared to Quipper.

Main Contributions. Our main contributions are:
• Unqomp, a procedure synthesizing automatic uncom-

putation for quantum circuits (§4).
• A formalization of circuit graphs, Unqomp’s internal

representation of quantum circuits (§5).
• A correctness theorem for Unqomp and its proof (§6).
• An end-to-end implementation1 and a thorough evalu-

ation of Unqomp on common quantum algorithms (§7).

2 Background
We now introduce basic concepts of quantum computation
used in this work. We refer readers unfamiliar with quantum
computation to [16] for an excellent in-depth introduction.

2.1 Quantum States
Qubit. The basic unit of information in quantum comput-

ing is a qubit. The state 𝜑 of a single qubit 𝑥 is described by a
linear combination (called superposition) 𝜑 = 𝛾0 |0⟩𝑥 +𝛾1 |1⟩𝑥 ,
with complex coefficients 𝛾0, 𝛾1 ∈ C. We say 𝜑 lies in the
Hilbert spaceH𝑥 ({0, 1}) with basis |0⟩𝑥 , |1⟩𝑥 . In the follow-
ing, we will omit the subscript 𝑥 indicating the qubit name
whenever that name is not relevant.

Tensor Product and Entanglement. The state of a sys-
tem with multiple qubits is described using the tensor prod-
uct ⊗. For instance, the state 𝜑 of a system with two qubits
𝑥,𝑦 is inH𝑥 ({0, 1}) ⊗ H𝑦 ({0, 1}) = H𝑥𝑦 ({0, 1}2). We write

𝜑 = 𝛾0 |0⟩𝑥 ⊗ |0⟩𝑦+𝛾1 |0⟩𝑥 ⊗ |1⟩𝑦+𝛾2 |1⟩𝑥 ⊗ |0⟩𝑦+𝛾3 |1⟩𝑥 ⊗ |1⟩𝑦
with 𝛾𝑖 ∈ C. For readability, we often abbreviate |𝑎⟩𝑥 ⊗ |𝑏⟩𝑦
by |𝑎⟩𝑥 |𝑏⟩𝑦 or |𝑎𝑏⟩𝑥𝑦 .

The state of a system with multiple qubits is unentangled
if it can be factorized into the tensor product of the state
of each qubit, and entangled otherwise. For instance, the
unentangled state 𝜑1 = 1√

2 |00⟩ + 1√
2 |10⟩ can be written as

1https://github.com/eth-sri/Unqomp/tree/pldi2021

https://github.com/eth-sri/Unqomp/tree/pldi2021

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

(a) Example circuit. (b) Example circuit storing a temporary value into 𝑎. (c) Uncomputing temporary value.

Figure 2. Uncomputation in an example quantum circuit, inspired by [24].

𝜑1 =
1√
2

(|0⟩ + |1⟩) ⊗ |0⟩. In contrast, 𝜑2 =
1√
2 |00⟩ + 1√

2 |11⟩
is entangled as it cannot be factorized.

Measurement. While the state of a qubit cannot be di-
rectly observed, we can gain information about it by per-
forming a measurement. The outcome of a measurement is
probabilistic: measuring qubit 𝑥 in state 𝜑 =

∑
𝑣∈{0,1} 𝛾𝑣 |𝑣⟩𝑥

yields 𝑣 ′ ∈ {0, 1} with probability ∥𝛾𝑣′ ∥2. To ensure the prob-
abilities of all possible outcomes sum up to one, we make
the standard assumption that 𝜑 is normalized, meaning that
∥𝜑 ∥2 = ∑

𝑣∈{0,1} ∥𝛾𝑣 ∥2 = 1.
Importantly, measurement affects the state: whenever a

measurement of qubit 𝑥 yields 𝑣 ′, the state collapses to |𝑣 ′⟩𝑥 .
Due to entanglement, this collapse can lead to side effects on
the state of other qubits that are not measured. Specifically,
consider the state

∑
𝑣∈{0,1} 𝛾𝑣 |𝑣⟩𝑥 ⊗𝜑𝑣 over qubit 𝑥 and addi-

tional qubits incorporated in the (normalized) term𝜑𝑣 . When
measuring qubit 𝑥 in this state yields 𝑣 ′, the state collapses to
|𝑣 ′⟩𝑥⊗𝜑𝑣′ , also affecting the state of the remaining qubits. For
example, if measuring 𝑥 in state 𝜑 = 1√

2 |00⟩𝑥𝑦 + 1√
2 |11⟩𝑥𝑦

yields 1, the state after measurement collapses to |11⟩𝑥𝑦 .

2.2 Quantum Circuits
Quantum programs construct quantum circuits (see Fig. 2b)
to be run on a quantum computer.

Wires. Quantum circuits represent each qubit as a wire,
depicted as horizontal lines named 𝑥 and 𝑎 in Fig. 2b. For
example, initializing 𝑥 to 1√

2 (|0⟩ + |1⟩) and 𝑎 to |0⟩ yields
the initial state 𝜑 ′0 in Fig. 2b.

Gates. Circuits manipulate qubits using linear unitary op-
erators called gates, which may span multiple wires. For ex-
ample, the first gate • in Fig. 2b is the controlled NOT gate,
called 𝐶𝑋 . It flips the second qubit (⊕) if the first qubit (•)
is 1. More formally: 𝐶𝑋𝑥𝑦 |𝑎𝑏⟩𝑥𝑦 = |𝑎⟩𝑥 ⊗ |𝑎 ⊕ 𝑏⟩𝑦 , where ⊕
is the XOR operation. Like every gate, 𝐶𝑋 is linear and this
definition hence extends naturally to arbitrary superposi-
tions. For example, in Fig. 2b, 𝐶𝑋𝑥𝑎

(
𝜑 ′0
)
= 𝜑 ′1. The second

gate applied in Fig. 2b is the Hadamard transform 𝐻 , which
maps |0⟩ to |0⟩+ |1⟩√

2 and |1⟩ to |0⟩−|1⟩√
2 . The second qubit 𝑎 is not

modified by 𝐻𝑥 . For example, 𝐻𝑥

(
𝜑 ′1
)
= 𝜑 ′2. Finally, Fig. 2b

applies a measurement to the qubit 𝑥 , shown as .

Controls and Targets. The qubits involved in a gate can
generally be divided into two groups. First, the controls (de-
picted as • in circuits) are preserved by the gate (see also [16,
§4.3]). The other qubits, which may be modified by the gate
depending on the controls, are called targets.

Formally, a gate 𝑈 controlled by one2 qubit 𝑥 maps state∑
𝑎∈{0,1}

𝛾𝑎 |𝑎⟩𝑥 ⊗ 𝜑𝑎 to
∑

𝑎∈{0,1}
𝛾𝑎 |𝑎⟩𝑥 ⊗ 𝜑 ′𝑎 ,

preserving the coefficients 𝛾𝑎 of control 𝑥 , and only modify-
ing the remainder of the state 𝜑𝑎 to 𝜑 ′𝑎 , where the mapping
𝜑𝑎 ↦→ 𝜑 ′𝑎 may depend on 𝑎.

In this work, we only consider gates with exactly one tar-
get and zero or more controls. For example,𝐶𝑋 is controlled
by its first qubit (•) and targets the second qubit (⊕). The
gate 𝐻 targets only one qubit and has no controls. As single
qubit gates and 𝐶𝑋 are universal for quantum computation,
considering only one target is not a restriction [16, §4.5.2].

Qfree Gates. Silq [6] introduced the concept of qfree gates,
called classical in ReQWire [21]. Qfree gates are particularly
relevant as these can be automatically uncomputed (see §6.3).

Intuitively, a gate 𝑈 is qfree if it can be expressed on
classical bits. More precisely, for a gate𝑈 with one2 control 𝑐
and target 𝑡 , 𝑈 is qfree if its semantics can be described in
terms of a function 𝑓 : {0, 1} × {0, 1} → {0, 1} as

|𝑖⟩𝑐 |𝑘⟩𝑡
𝑈𝑐𝑡↦−−→ |𝑖⟩𝑐 |𝑓𝑖 (𝑘)⟩𝑡 , (1)

writing 𝑓𝑖 (𝑘) for 𝑓 (𝑖, 𝑘) and 𝑎
𝑈↦−→ 𝑏 when 𝑈 (𝑎) = 𝑏. For a

gate 𝑈 with no controls, the above definition simplifies to

|𝑘⟩𝑡
𝑈↦−→ |𝑓 (𝑘)⟩𝑡 , (2)

for some 𝑓 : {0, 1} → {0, 1}.
Examples of qfree gates include the identity 𝐼 with se-

mantics 𝐼 |𝑎⟩ = |𝑔(𝑎)⟩ where 𝑔 is the identity and 𝐶𝑋 with
semantics 𝐶𝑋 |𝑎⟩ |𝑏⟩ = |𝑎⟩ |𝑓𝑎 (𝑏)⟩ for 𝑓𝑎 (𝑏) := 𝑎 ⊕ 𝑏. In con-
trast, the Hadamard transform 𝐻 is not qfree.

2The definition generalizes naturally to multiple controls.

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

3 Problem Statement
Next, we motivate why uncomputation is critical and for-
mally define the problem statement addressed by this work.

Effect of Temporary Values. To observe the effect of
temporary values that are not uncomputed, first consider
Fig. 2a, which applies 𝐻 to 𝑥 in initial state 𝜑0 and mea-
sures 𝑥 , yielding 0 with probability 1. This circuit is extended
to Fig. 2b, which copies3 𝑥 into an additional temporary qubit
𝑎 (called ancilla). To this end, Fig. 2b initializes 𝑎 to |0⟩ yield-
ing 𝜑 ′0 = 𝜑0 ⊗ |0⟩𝑎 , and applies 𝐶𝑋 to flip the value of 𝑎 if 𝑥
is one. The resulting state 𝜑 ′1 highlights the flipped value in
red (see Fig. 2b). At a high level, because 𝑥 is not modified by
𝐶𝑋 (𝑥 is a control), the two circuits should not differ in their
effect on 𝑥 . However, measuring 𝑥 yields different results,
as we mathematically demonstrate in Fig. 2b: the measure-
ment now returns 0 or 1 with probability 1

2 . This difference
is caused by the existence of 𝑎, which is entangled with 𝑥

due to the 𝐶𝑋 gate (see 𝜑 ′1).
We note that in this toy example, copying 𝑥 into 𝑎 is point-

less, as the copy is never used. However, we can easily imag-
ine this copy being required in the remainder of the com-
putation (not shown). This is a common pattern in practice,
where ancillae store intermediate computation results.

Uncomputation. If we want to avoid the side effect of 𝑎
onto 𝑥 , we need to disentangle 𝑎 from the remainder of the
state before measuring 𝑥 . This can be achieved by uncom-
puting 𝑎, which resets 𝑎 to its initial, unentangled state |0⟩.
Mathematically, this amounts to transforming 𝜑 ′2 to

1
2 (|00⟩𝑥𝑎 + |00⟩𝑥𝑎 + |10⟩𝑥𝑎 − |10⟩𝑥𝑎) = |00⟩𝑥𝑎 . (3)

To this end, we can insert another 𝐶𝑋 gate (the self-inverse
of 𝐶𝑋) as shown in Fig. 2c (dashed box). This gate reverts
the original 𝐶𝑋 gate, thus uncomputing ancilla 𝑎. Then, the
result of the measurement is again 0 with probability 1, as
expected.

Goal: Synthesizing Uncomputation. The goal of this
work is to automate the process of uncomputation. Given a
(quantum) circuit 𝐶 and a list of ancilla qubits 𝐴, our goal is
to create a new circuit with the same effect as 𝐶 , except that
ancilla qubits are brought back to |0⟩, as in Eq. (3).

The procedure Unqomp presented in this work achieves
this goal, formalized in Thm. 3.1 below. Thm. 3.1 repre-
sents circuit 𝐶 as a circuit graph 𝐺 (discussed shortly), and
describes the effect of 𝐺 on an initial state by the seman-
tics ⟦𝐺⟧.

3Note that copying using 𝐶𝑋 does not violate the no-cloning theorem.

Theorem 3.1 (Correctness). Let Unqomp(𝐺,𝐴) = G for cir-

cuit graph 𝐺 with 𝑛 qubits of which 𝑚 are ancilla qubits.

Without loss of generality, assume that those ancillae 𝐴 =(
𝑎 (1) , . . . , 𝑎 (𝑚)

)
are the first𝑚 qubits of 𝐺 . If

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦𝐺⟧↦−−−→

∑
𝑘∈{0,1}𝑚

𝛾𝑘 |𝑘⟩𝐴 ⊗ 𝜙𝑘 , then (4)

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦G⟧↦−−−→

∑
𝑘∈{0,1}𝑚

𝛾𝑘 |0 · · · 0⟩𝐴 ⊗ 𝜙𝑘 . (5)

Because G resets ancillae to state |0 · · · 0⟩, they are unen-
tangled with the remainder of the state, and can hence be
safely discarded without unexpected side effects.

We note that Thm. 3.1 implicitly assumes that 𝐺 contains
no measurement. In particular, in Fig. 2,𝐺 would correspond
to Fig. 2b without the measurement, andG would correspond
to Fig. 2c without the measurement.

4 Overview
We now provide an overview of Unqomp, following Fig. 3.

Unqomp for Circuit-Based Languages. At a high level,
Fig. 3 shows how Unqomp can be readily integrated into
circuit-based programming languages such as Qiskit [2] (in
the example), Cirq [23], Q# [22], or Quipper [13]. Such lan-
guages describe quantum programs (see Fig. 3a) which are
then compiled to quantum circuits (see Fig. 3b).

Relying on Unqomp, we can extend Qiskit to Qiskit++,
which allows declaring ancilla qubits at allocation time (see
Lin. 2 in Fig. 3a). Qiskit++ (i) constructs the circuit without
uncomputation, (ii) transforms the circuit to a circuit graph
(§5.2), (iii) runs Unqomp to uncompute the ancilla qubits (§6),
and (iv) compiles the result back to a circuit (§5.4). We note
that the resulting circuit may be subject to post-processing
such as decomposing the circuit into universal gates.

Next, we walk through the steps in Fig. 3 in more detail.

Adder Circuit without Uncomputation. The circuit in
Fig. 3b (constructed from Fig. 3a) is an adder circuit which
takes as input two qubits 𝑥 and 𝑦 representing the binary
encoding of the number 𝑥 + 2𝑦. The circuit adds to this
number the value of qubit 𝑏 using a temporary carry qubit 𝑐 .

First, the circuit computes the value of 𝑐 , which is initial-
ized with |0⟩, using the 𝐶𝐶𝑋 gate •• (a natural generaliza-
tion of the 𝐶𝑋 gate to two controls) to change 𝑐 to 1 iff both
𝑥 and 𝑏 are 1. Next, the circuit flips the value of 𝑥 if 𝑏 is 1,
correctly determining the least significant qubit of the result.
Finally, the circuit flips the value of 𝑦 if the carry 𝑐 is 1. Note
that this circuit does not perform uncomputation of 𝑐 .

Finding the Uncomputation Position. In order to un-
compute 𝑐 , we have to revert the 𝐶𝐶𝑋 gate computing 𝑐 . As
a naive attempt, we could try to append the inverse gate of
𝐶𝐶𝑋 (which is𝐶𝐶𝑋 again) at the end of the circuit in Fig. 3b.

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

1 [b,x,y]=QuantumRegister(3)

2 [c]=AncillaRegister(1)

3 r=QuantumCircuit(b,x,y,c)

4 r.ccx([b,x],c); r.cx(b,x)

5 r.cx(c,y) Qiskit++

𝑏 • •
𝑥 •
𝑦
𝑐 •

init init init init

𝐶𝐶𝑋

𝐶𝑋 𝐶𝑋

𝑏0 𝑥0 𝑐0 𝑦0

𝑐1

𝑥1
𝑦1

init init init init

𝐶𝐶𝑋

𝐶𝑋 𝐶𝐶𝑋 𝐶𝑋

𝑏0 𝑥0 𝑐0 𝑦0

𝑐1

𝑥1
𝑦1𝑐★0

𝑏 • • •
𝑥 • •
𝑦
𝑐 •

(a) Code

(c) Circuit graph w/o uncomputation. (d) Circuit graph with uncomputation.
(b) Circuit w/o
uncomputation.

(e) Circuit with
uncomputation.

§5.2

§6 §5.4

list of ancillae

Figure 3. Overview of Unqomp: A circuit incrementing 𝑥 + 2𝑦 by 𝑏, with carry 𝑐 .

Unfortunately, this does not correctly uncompute 𝑐 : the com-
putation of 𝑐 is controlled by 𝑥 , whose value may change by
the end of the circuit due to the 𝐶𝑋 gate targeting 𝑥 .

A key challenge of uncomputation is therefore finding the
position in the circuit to insert the inverse gate 𝑔† uncomput-
ing a gate 𝑔. This position must be (i) after all gates involving
the computed value (here, after the𝐶𝑋 gate controlled by 𝑐),
but (ii) before any other gates targeting any qubit involved in
𝑔† (here, before the𝐶𝑋 gate targeting 𝑥). In Fig. 3b, satisfying
(i–ii) is only possible when reordering the two 𝐶𝑋 gates. In
Fig. 3e, we have reordered the 𝐶𝑋 gates, and inserted the
uncomputation gate 𝐶𝐶𝑋 in-between.

Crucially, reordering the 𝐶𝑋 gates in this example yields
an equivalent circuit with the same semantics—on the same
input state, the circuit produces the same output state.

4.1 Circuit Graphs
To avoid the need for gate reorderings, we introduce an
alternative circuit representation called circuit graph, which
abstracts different gate orderings with the same semantics.

Fig. 3c shows the circuit graph 𝐺 corresponding to Fig. 3b.

Nodes and Edges. For every qubit in the circuit, the cir-
cuit graph contains an init node indicating the circuit’s input
(here:𝑏0, 𝑥0,𝑦0, and 𝑐0). The remaining nodes represent gates.
For example, 𝑐1 represents the𝐶𝐶𝑋 gate from Fig. 3b, which
targets 𝑐 (indicated by a target edge→) and is controlled by
𝑏 and 𝑥 (indicated by control edges •→).

Anti-dependency Edges. Any linearization of gate nodes
in 𝐺 can be interpreted as a quantum circuit applying the
corresponding gates in the specified order. In order to ensure
that all such circuits have equivalent semantics, we intro-
duce additional ordering constraints using anti-dependency

edges d.
For instance, the anti-dependency edge 𝑐1 d 𝑥1 in Fig. 3c

indicates that the 𝐶𝐶𝑋 gate must be applied before the 𝐶𝑋
gate targeting 𝑥 . This is critical, because the former uses the
value of its control qubit 𝑥 , which is modified by the latter.

Note that 𝐺 does not enforce an ordering between gate
nodes 𝑥1 and 𝑦1, implicitly accounting for the fact that we
can swap these without affecting the semantics of the circuit.

4.2 Uncomputation
We now show how Unqomp leverages the circuit graph in
Fig. 3c to uncompute the carry qubit 𝑐 , yielding Fig. 3d.

One Step of Unqomp. First, Unqomp determines the last
gate targeting 𝑐 , which is the 𝐶𝐶𝑋 gate in 𝑐1 (). Second,
Unqomp checks that 𝐶𝐶𝑋 is qfree (otherwise, it returns an
error). We discuss this necessity in §6.2.

Next, Unqomp inserts a node applying the inverse of𝐶𝐶𝑋
(which is again 𝐶𝐶𝑋) into the graph (). We refer to this
new node as 𝑐★0 because it resets the state of 𝑐 to its state
after 𝑐0. We control 𝑐★0 by the same controls as 𝑐1 ().

Finally, Unqomp checks that the resulting graph does not
contain any cycles (otherwise, it would return an error).
This check takes into account anti-dependency edges, which
are also updated in Fig. 3d. In particular, edge 𝑦1 d 𝑐★0
ensures that the uncomputation node 𝑐★0 comes after gate
node 𝑦1 controlled by 𝑐1, while edge 𝑐★0 d 𝑥1 ensures that
uncomputation node 𝑐★0 comes before gate node 𝑥1 targeting
the control 𝑥0 of 𝑐★0 .

Multiple Uncomputation Steps. If more than one gate
was applied to 𝑐 , Unqomp would execute multiple uncompu-
tation steps as described above, one for each gate targeting 𝑐 .
For instance, assume that two gates 𝑈1,𝑈2 are applied to 𝑐 .
The circuit graph then contains three nodes for this qubit:

init 𝑈1 𝑈2
𝑐0 𝑐1 𝑐2

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

Unqomp steps through all gates applied to ancilla qubits,
in reverse order. To process 𝑐2, it checks that 𝑈2 is qfree,
inserts 𝑐★1 controlled by the same nodes as 𝑐2, and links it
to the latest node operating on 𝑐 , yielding 𝑐2 → 𝑐★1 . Next,
Unqomp processes 𝑐1, checking that it is qfree, inserting 𝑐★0
controlled by the same nodes as 𝑐1, and adding an edge from
the latest node operating on 𝑐 , yielding 𝑐★1 → 𝑐★0 as shown
below:

init 𝑈1 𝑈2 𝑈
†
2 𝑈

†
1

𝑐0 𝑐1 𝑐2 𝑐★0𝑐★1

5 Circuit Graphs
We now provide a more formal introduction to circuit graphs.
In particular, we discuss their motivation and definition (§5.1),
show how a circuit is transformed to its graph representa-
tion (§5.2), provide semantics for circuit graphs (§5.3), and
show how a circuit graph is compiled back to a circuit (§5.4).

5.1 Motivation and Definition
We start by motivating the need for circuit graphs and pre-
senting their formal definition.

Gate Ordering. As discussed in §4, quantum circuits typi-
cally enforce an unnecessarily restrictive order on their gates.
In contrast, circuit graphs abstract away irrelevant ordering
constraints: instead of enforcing a total order, circuit graphs
use edges to record only the relevant ordering constraints
between gate nodes, inducing a partial order on gates.

Specifically, circuit graphs reflect the fact that any two
adjacent gates can be reordered, unless the qubit targeted
by one of them is involved in the other gate (as a control or
as a target). We illustrate this in Fig. 4, where we show two
equivalent circuits and their shared circuit graph representa-
tion. In particular, the circuit graph does not contain an edge
between gate nodes 𝑈 and 𝑉 , allowing them to be ordered
arbitrarily. Formally, this equivalence can be derived from
the properties of control qubits (see §2.2).

Circuit Graphs. A circuit graph is a directed acyclic
graph 𝐺 = (𝑉 , 𝐸). Its nodes 𝑉 = 𝑉init ∪ 𝑉gates consist of
init nodes 𝑉init and gate nodes 𝑉gates. The set 𝑉init contains
an init node for each qubit accessed during the computation.
For 𝑣 ∈ 𝑉init, we define qbit(𝑣) to be the qubit modeled by 𝑣 .
The set 𝑉gates contains one node for each gate in the circuit.
We define gate(𝑣) to be the gate represented by 𝑣 ∈ 𝑉gates,
and qbit(𝑣) to be the qubit targeted by gate(𝑣). For example,
in Fig. 3c, the init node 𝑏0 models the qubit 𝑏 in Fig. 3b, and
gate node 𝑐1 models the 𝐶𝐶𝑋 gate targeting 𝑐 .

The edges 𝐸 are divided into target (visualized as →),
control (•→), and anti-dependency edges (d). Target edges
represent input-output relationships, control edges represent
additional dependencies, and anti-dependency edges specify
implicit ordering constraints on gate nodes. In general, anti-
dependency edges can always be reconstructed from target

• •
•

𝑈

𝑉

• •
•

𝑈

𝑉

≡
init

init

init 𝑈

init 𝑉

=∧

Figure 4. Valid gate reordering.

and control edges. Specifically, circuit graphs contain an anti-
dependency edge 𝑡 d 𝑐 whenever there exists a node 𝑐 ′ such
that 𝑐 ′ •→ 𝑡 and 𝑐 ′→ 𝑐 . This anti-dependency edge models
the ordering constraint that 𝑡 must be applied before 𝑐 .

Valid Circuit Graphs. A circuit graph is valid if it repre-
sents an actual quantum circuit. More precisely,𝐺 = (𝑉 , 𝐸) is
valid iff (i) its init nodes have no incoming target edge while
gate nodes have exactly one, (ii) all its nodes have at most
one outgoing target edge, (iii) its anti-dependency edges can
be reconstructed from its control and target edges according
to the rule discussed above, (iv) the number of incoming
control edges of each gate node 𝑣 ∈ 𝑉gates equals the number
of controls of gate(𝑣), and (v)𝐺 is acyclic. Consequently, the
target edges should form disjoint paths starting at init nodes.

In the following, we only consider valid circuit graphs. All
operations discussed in this work preserve validity.

Naming Convention. We usually respect the following
naming convention: for qubit 𝑎, 𝑎0 is the init node and 𝑎𝑖
the 𝑖th gate node targeting 𝑎. For example, in Fig. 3c, node 𝑐1
is the first gate targeting 𝑐 . Further, we refer to gate nodes
inserted by Unqomp as 𝑎★𝑖 , indicating that 𝑎★𝑖 restores the
state of qubit 𝑎 after node 𝑎𝑖 .

5.2 From Circuits to Circuit Graphs
We now describe how to transform a given circuit into its
circuit graph representation.

Building a Circuit Graph. To construct a circuit graph
from a circuit, we first create an init node for each qubit.

Then, we process the gates in order. When processing a
gate 𝑈 , we add a fresh node 𝑢 representing 𝑈 to 𝑉gates. To
determine the incoming target edge at𝑢, let𝑞 be the qubit tar-
geted by𝑈 . We then introduce a target edge 𝑣 → 𝑢, where 𝑣
is the node corresponding to the latest gate targeting 𝑞, or
the init node for 𝑞 if we are processing the first gate target-
ing 𝑞. Similarly, to determine incoming control edges at 𝑢,
we consider each control qubit 𝑐 of the gate. We introduce a
control edge 𝑣 •→ 𝑢, where 𝑣 is the node corresponding to
the latest gate targeting 𝑐 , or the init node for 𝑐 .

Finally, we introduce anti-dependency edges based on the
inserted target and control edges (see §5.1).

Example. When processing the first𝐶𝑋 gate in Fig. 3b, we
introduce gate node 𝑥1 and add edge 𝑥0 → 𝑥1. Because this

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

gate is controlled by qubit 𝑏 represented by init node 𝑏0, we
further add edge 𝑏0 •→𝑥1 to the graph. The anti-dependency
edge 𝑐1 d 𝑥1 exists due to 𝑥0 •→ 𝑐1 and 𝑥0 → 𝑥1.

5.3 Circuit Graph Semantics
We now define the semantics of circuit graphs. We first de-
fine the semantics of individual nodes, and then extend this
semantics to whole circuit graphs.

States. The init nodes𝑉init = {𝑣1, . . . , 𝑣𝑛} of a circuit graph
specify the qubits of the system. The state of this system is
inH𝑞1,...,𝑞𝑛 ({0, 1}𝑛), where 𝑞𝑖 := qbit(𝑣𝑖).
Semantics of Gate Nodes. The semantics ⟦𝑣⟧ of a gate

node 𝑣 ∈ 𝑉gates is defined according to the semantics of
gate(𝑣), where the target and control edges ending at 𝑣 de-
termine the involved target and control qubits, respectively.
For example, the semantics of 𝑥1 in Fig. 3c is ⟦𝑥1⟧ = 𝐶𝑋𝑏𝑥 .

Semantics of Circuit Graphs. The semantics of a circuit
graph 𝐺 = (𝑉 , 𝐸) is the composition of the semantics of its
gate nodes, according to the partial order specified by its
edges. More precisely, we first select an arbitrary lineariza-
tion L(𝐺) of the gate nodes 𝑉gates ⊆ 𝑉 consistent with the
partial order induced by 𝐸. Then, we compose the node se-
mantics in this order by function composition. Importantly,
the resulting semantics is independent of the choice ofL(𝐺).

For example, for the circuit graph 𝐺 in Fig. 3b, we can
select L(𝐺) = (𝑐1, 𝑥1, 𝑦1), yielding the semantics:

⟦𝐺⟧ = ⟦𝑦1⟧ ◦ ⟦𝑥1⟧ ◦ ⟦𝑐1⟧ .

5.4 Compilation to Circuit
We now discuss how circuit graphs are compiled to circuits.
As visualized in Fig. 3, this step is applied after introducing
uncomputation in the circuit graph (discussed in §6). As such,
the steps performed here are not part of the transformation
covered by Thm. 3.1, which for instance assumes a constant
number of ancillae.

CCXGatesOptimization. Before the actual compilation,
we run a simple optimization pass suggested in [4, §6]: we
replace every 𝐶𝐶𝑋 gate targeting an ancilla qubit by a more
efficient Margolus gate, which has the same semantics as
𝐶𝐶𝑋 , except that it maps |111⟩ to − |110⟩ instead of |110⟩.
This so-called phase change does not affect the semantics of
the whole circuit, as Unqomp ensures that all replaced 𝐶𝐶𝑋

gates are paired with a gate uncomputing it, which, when
also replaced, reverts the phase change.

This optimization is already selectively leveraged by ex-
perts. For instance, Qiskit uses Margolus gates in its library
implementation of the MCX gate. In our case, by leverag-
ing the uncomputation information available in the circuit
graph, we can effortlessly extend this optimization to all

uncomputed 𝐶𝐶𝑋 gates in a circuit.

𝑎1 |0⟩ |0⟩
𝑏 𝐻 • • • • 𝐻

𝑎2 |0⟩ |0⟩

(a) Naive compilation.

𝑎 |0⟩
|0⟩

|0⟩
𝑏 𝐻 • • • • 𝐻

(b) Efficient compilation.

≡

Figure 5. Reusing qubits.

Linearization. To compile 𝐺 = (𝑉 , 𝐸) to a circuit after
applying the optimization above, we first prepare a wire for
each init node and then select a linearization L(𝐺) yielding
(𝑣1, . . . , 𝑣𝑛). Next, we insert gate(𝑣1), . . . , gate(𝑣𝑛) into the
circuit according to this linearization, determining the tar-
get and control qubits involved in gate(𝑣𝑖) by the incoming
target and control edges at 𝑣𝑖 .

For example, compiling Fig. 3d using the linearization
(𝑐1, 𝑦1, 𝑐

★
0 , 𝑥1) yields the circuit in Fig. 3e.

Reusing Qubits. Unfortunately, this strategy allocates a
wire for each ancilla qubit in 𝐺 . This is unnecessarily waste-
ful, as a wire holding a correctly uncomputed ancilla is in
unentangled state |0⟩ and can be safely reused to hold an-
other ancilla without introducing unexpected side effects.

For example, Fig. 5a shows the result of uncomputing
qubits 𝑎1 and 𝑎2 in a toy circuit, where dotted boxes indicate
gates inserted by Unqomp. The resulting circuit requires 3
wires in total. In contrast, Fig. 5b shows a more efficient com-
pilation which only requires 2 wires by reusing the same wire
to hold both ancillae. This is possible because the lifetimes
of the two ancillae do not overlap.

Final Nodes. To track the lifetime of ancillae, we intro-
duce final nodes, which mark the end of the computation
involving a qubit. Specifically, for every node 𝑢 ∈ 𝑉 with
no outgoing target edge, we add to 𝐺 a final node 𝑣 , a tar-
get edge 𝑢 → 𝑣 , and any induced anti-dependency edges.
Additionally, we extend the linearization to L+ (𝐺), which
includes init, gate, and final nodes, respecting the partial
order induced by 𝐸. As a result, in L+ (𝐺), the qubit corre-
sponding to a final node is not involved in any gate at any
later position.

Greedy Ancilla Allocation. To reduce the number of
wires, we employ a simple but effective greedy strategy
reusing wires whenever possible. Specifically, we process
the nodes in 𝑉 in the order L+ (𝐺). The init and final nodes
allow us to track the start and end of a qubit’s lifetime. Upon
visiting an ancilla init node, we greedily try to allocate it on a
wire that holds an ancilla qubit which is no longer alive and
thus must have been uncomputed by Unqomp. If no such
wire exists, we allocate a fresh wire.

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

This approach is an instantiation of linear scan register al-
location [18], which is provably optimal for a fixed lineariza-
tion [8, §17]. As finding an optimal linearization is computa-
tionally expensive, we next introduce a greedy heuristic to
select a linearization that performs well empirically (see §7).

LinearizationHeuristic. To select a linearizationL+ (𝐺),
we slightly modified Kahn’s algorithm [14]—a standard al-
gorithm which creates a linear order of 𝐺 ’s vertices by itera-
tively removing vertices that have no incoming edges.

Specifically, when selecting the next node to be removed
from 𝐺 , we de-prioritize ancilla init nodes and only select
them if no other choice exists. As a consequence, L+ (𝐺)
greedily completes computations involving ancillae before
allocating new ancillae, whenever possible.

Discussion: Graph Coloring. Unfortunately, graph col-
oring allocation (e.g., [1, §8]) cannot be readily adapted for
circuit graphs as they enforce fewer ordering constraints
between operations than control flow graphs, meaning that
we cannot definitively determine if two given ancillae are
live simultaneously. Hence, recording pairwise conflicts is
insufficient: even if each pair of ancillae (𝑎, 𝑏), (𝑏, 𝑐) and
(𝑐, 𝑎) can be allocated on the same wire, allocating all three
of them on the same wire may be impossible.

6 Synthesizing Uncomputation
In this section, we formalize Unqomp (§6.1), discuss the con-
ditions it checks to ensure uncomputation is possible (§6.2),
and sketch Unqomp’s correctness proof (§6.3).

6.1 Unqomp
Alg. 1 formalizes Unqomp, which takes a circuit graph 𝐺

and a list of ancilla qubits to be uncomputed (Lin. 1), and
returns, if possible, 𝐺 extended by gate nodes uncomputing
the ancilla qubits. The following discussion complements
our informal presentation of Unqomp on the example in §4.

All Steps. To uncompute a given list of ancillae on circuit
graph𝐺 = (𝑉 , 𝐸), Unqomp iterates over a linearizationL(𝐺)
in reverse order (Lin. 3–5), introducing an uncomputation
step for every gate node targeting an ancilla.

Single Step. The core of Unqomp is the procedure Uncom-
puteStep (Lin. 6), which takes a circuit graph𝐺 = (𝑉 , 𝐸) and
a gate node 𝑎𝑛 to be uncomputed. It first checks that the gate
of 𝑎𝑛 is qfree (Lin. 7). It then determines the last gate node 𝑎★𝑛
targeting qbit(𝑎𝑛) (Lin. 8), which restores the state of qubit 𝑎
after 𝑎𝑛 and will be the target of the inserted uncomputation.
We note that if this is the first uncomputation step on qubit 𝑎,
then 𝑎★𝑛 = 𝑎𝑛 , as in our overview example (Fig. 3). Otherwise,
𝑎★𝑛 was inserted by Unqomp in a previous step.

In Lin. 9, UncomputeStep determines the nodes control-
ling 𝑎𝑛 , which are required for controlling the uncompu-
tation. Note that some of those control nodes 𝑐 may have

Algorithm 1 Unqomp: Synthesizing uncomputation.
1: procedure Unqomp(𝐺 , 𝑎 (1) , . . . , 𝑎 (𝑛) : qubits)
2: (𝑣1, . . . , 𝑣𝑛) ← L (𝐺) ⊲ linearization of gate nodes
3: for all 𝑣 in (𝑣𝑛, . . . , 𝑣1) do ⊲ iterate in reverse order
4: if qbit(𝑣) ∈ {𝑎 (1) , . . . , 𝑎 (𝑛) } then ⊲ gates operates on ancilla
5: 𝐺 ← UncomputeStep(𝐺 , 𝑣)

return𝐺

6: procedure UncomputeStep(𝐺 , 𝑎𝑛 : gate node) ⊲𝐺 = (𝑉 , 𝐸)
7: assert gate(𝑎𝑛) is qfree
8: 𝑎★𝑛 ← last gate node targeting qbit(𝑎𝑛)
9: ctrls← {𝑐 ∈ 𝑉 | 𝑐 •→ 𝑎𝑛 ∈ 𝐸 } ⊲ controls of 𝑎𝑛

10: for all 𝑐 ∈ ctrls do ⊲ in ctrls, replace 𝑐 by 𝑐★ wherever possible
11: if 𝑐★ ∈ 𝑉 then ctrls← ctrls \ {𝑐 } ∪ {𝑐★}
12: 𝑎★

𝑛−1 ← Inverse(𝑎𝑛) ⊲ fresh node with inverse gate
13: 𝐸𝑢 ← {𝑐 •→ 𝑎★

𝑛−1 | 𝑐 ∈ ctrls} ∪ {𝑎★𝑛 → 𝑎★
𝑛−1 } ⊲ fresh edges

14: 𝐸𝑎 ← {𝑣 d 𝑎★
𝑛−1 | 𝑎★𝑛 •→ 𝑣 ∈ 𝐸, 𝑣 ∈ 𝑉 }∪ ⊲ anti-dependencies

15: {𝑎★
𝑛−1 d 𝑣 | 𝑐 → 𝑣 ∈ 𝐸, 𝑐 ∈ ctrls}

16: 𝐺𝑢 ←
(
𝑉 ∪ {𝑎★

𝑛−1 }, 𝐸 ∪ 𝐸𝑢 ∪ 𝐸𝑎
)

⊲ adding uncomputation
17: assert𝐺𝑢 has no cycles
18: return𝐺𝑢

already been uncomputed by a previous step of Unqomp.
In this case, as 𝑐 and 𝑐★ can be used interchangeably, Un-
computeStep replaces the former by the latter whenever
possible (Lin. 11). This is helpful as using 𝑐★ is more likely
to result in a cycle-free graph than using 𝑐 (see App. B).

Next, UncomputeStep constructs the gate node 𝑎★𝑛−1 and
edges 𝐸𝑢 to be inserted into 𝐺 . Specifically, the gate node
𝑎★𝑛−1 applies the inverse gate of 𝑎𝑛 (Lin. 12), targets 𝑎★𝑛 , and
is controlled by ctrls (Lin. 13). UncomputeStep further gen-
erates the anti-dependency edges induced by the new edges
(Lin. 14), and constructs the new graph 𝐺𝑢 by inserting all
new gates and edges into 𝐺 (Lin. 16).

Finally, UncomputeStep reports an error if 𝐺𝑢 contains a
cycle (Lin. 17), and returns 𝐺𝑢 otherwise (Lin. 18).

6.2 Incompleteness
Unfortunately, uncomputation is mathematically impossible
in some cases. Fig. 6 exemplifies the two fundamental reasons
for this. In both examples, satisfying Thm. 3.1 would require
constructing a circuit graph G which produces the invalid
state 0 =

∑
𝑘∈{0,1}𝑛 0 · |𝑘⟩. As no quantum circuit can produce

this state, uncomputation is impossible in these cases, forcing
Unqomp to return an error.

Non-qfree. In Fig. 6a, the underlying problem is that gate
𝐻 applied to ancilla 𝑎 is not qfree and therefore mixes basis
states: it turns the basis state |1⟩𝑎 (the result of applying 𝑋

to the initial state |0⟩𝑎) into superposition 1√
2

(|0⟩𝑎 − |1⟩𝑎) .
Replacing |1⟩𝑎 by |0⟩𝑎 in this state (as required by Thm. 3.1)
then yields the invalid state 0. Therefore, Unqomp only un-
computes qfree gates, as asserted in Lin. 7 of Alg. 1.

Cyclic Dependency. Fig. 6b demonstrates that even for
circuits containing only qfree gates, uncomputation may not
be possible. The underlying problem in the example is that
inserting an uncomputation gate would result in a cyclic

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑎 𝑋 𝐻

𝐺1 (as circuit)
|0⟩𝑎

⟦𝐺1⟧↦−−−−→ 1√
2
(|0⟩𝑎 − |1⟩𝑎)

|0⟩𝑎
⟦G1⟧↦−−−−→ 1√

2
(|0⟩𝑎 − |0⟩𝑎)

= 0

(a) Ancilla 𝑎 is modified by the non-qfree gate 𝐻 .

𝑎 •
𝑥 •

𝐺2 (as circuit)
1√
2
(|00⟩𝑎𝑥 − |01⟩𝑎𝑥

) ⟦𝐺2⟧↦−−−−→ 1√
2
(|00⟩𝑎𝑥 − |10⟩𝑎𝑥

)
1√
2
(|00⟩𝑎𝑥 − |01⟩𝑎𝑥

) ⟦G2⟧↦−−−−→ 1√
2
(|00⟩𝑎𝑥 − |00⟩𝑎𝑥

)
= 0

(b) Uncomputing ancilla 𝑎 would result in a cyclic dependency.

Figure 6. Ancilla qubits that cannot be uncomputed.

dependency: the uncomputation node for 𝑎 would have to be
(i) before the 𝐶𝑋 gate targeting 𝑥 , as it uses the initial value
of 𝑥 , but also (ii) after it, as this gate uses the updated value
of 𝑎. Therefore, Unqomp asserts that the generated circuit
graph contains no cycles (Lin. 17 in Alg. 1).

Conservative Criteria. We note that Unqomp may re-
turn an error even though uncomputation would be possible
in principle, as the criteria it checks (Lin. 7 and 17 in Alg. 1)
are conservative. For example, applying gate 𝐻 to an ancilla
twice has no effect on its state (as 𝐻 is self-inverse), but trig-
gers an error in Unqomp as 𝐻 is not qfree. In such rare cases,
the programmer may revert to manual uncomputation, at
the costs discussed in Fig. 1.

We note that this is not a concern in practice: in our
evaluation (§7), Unqomp was able to uncompute all tempo-
rary values, except when they involved temporary changes
of controls. This problem appeared for MCX gates with
negated controls, present in two of our examples (Adder
and WeightedAdder, see §7). To resolve this issue, we en-
sured that Unqomp treats these problematic gates as atomic
qfree gates.

6.3 Correctness of Unqomp
Next, we discuss the key insights in our proof of Thm. 3.1.

Theorem 3.1 (Correctness). Let Unqomp(𝐺,𝐴) = G for cir-

cuit graph 𝐺 with 𝑛 qubits of which 𝑚 are ancilla qubits.

Without loss of generality, assume that those ancillae 𝐴 =(
𝑎 (1) , . . . , 𝑎 (𝑚)

)
are the first𝑚 qubits of 𝐺 . If

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦𝐺⟧↦−−−→

∑
𝑘∈{0,1}𝑚

𝛾𝑘 |𝑘⟩𝐴 ⊗ 𝜙𝑘 , then (4)

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦G⟧↦−−−→

∑
𝑘∈{0,1}𝑚

𝛾𝑘 |0 · · · 0⟩𝐴 ⊗ 𝜙𝑘 . (5)

Outline. We first prove Thm. 3.1 in a restricted setting,
where (i) there is only a single ancilla 𝑎 targeted by a single
gate 𝑈 , (ii) the controls 𝑐 of 𝑈 are in a basis state |𝑖⟩, and
(iii) the gate𝑈 occurs first in the computation, while (iv) the

Figure 7. Effect of uncomputation on quantum state.

gate 𝑈 † uncomputing 𝑈 occurs last. Then, we discuss how
our full proof avoids these restrictions.

Proof Sketch. The key insight of our proof is that if an an-
cilla is computed using a qfree gate𝑈 , it can be uncomputed
as long as its controls are still available.

Fig. 7 shows how the qfree gate 𝑈 and its uncomputation
affect the quantum state. First, the effect of 𝑈 follows Eq. (1)
in §2, updating qubit 𝑎 to |𝑓𝑖 (0)⟩. Then, any remaining gates
preserve both 𝑎 (as 𝑈 is the only gate targeting 𝑎) and 𝑐 (as
any gate targeting the control 𝑐 of 𝑈 † must be after 𝑈 † due
to anti-dependency edges). Finally, applying 𝑈 † restores the
state of ancilla qubit 𝑎 to

��𝑓 −1
𝑖 (𝑓𝑖 (0))

〉
= |0⟩.

This concludes our proof as the first, second to last, and
last states in Fig. 7 correspond to the left hand side of Eq. (4),
the right hand side of Eq. (4), and the right hand side of
Eq. (5), respectively.

Full Proof. We provide a full proof in App. B. It (i) han-
dles multiple ancillae and multiple gates by induction on
the number of gate nodes in 𝐺 , (ii) naturally extends to con-
trols in superposition, (iii) accounts for gates before 𝑈 and
after 𝑈 †, and (iv) takes into account that nodes 𝑐 and 𝑐★ can
be used interchangeably (see Lin. 11 in Alg. 1).

7 Evaluation
We now present an extensive experimental evaluation of
Unqomp on common quantum algorithms.

Implementation. We implemented our approach as a lan-
guage extension called Qiskit++, which integrates Unqomp
into Qiskit as visualized in Fig. 3. Qiskit++ allows annotating
ancilla qubits in a Qiskit program at allocation time (e.g., see
Lin. 2 in Fig. 3a) and uncomputes these automatically. Like
Qiskit, Qiskit++ is written in Python.

Research Questions. Our evaluation addresses the fol-
lowing research questions, where Q1 and Q2 analyze the
input Qiskit++ code and Q3 evaluates the compilation result.
Q1 Code Length: Does Unqomp reduce the amount of code,

compared to manual uncomputation?
Q2 Modularity: Does Unqomp allow writing more modular

and hence less complex code?
Q3 Efficiency: Does Unqomp yield more efficient circuits

in terms of gates and qubits?

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

Table 1. Comparing code complexity with and without Un-
qomp. The table shows the lines of code (incl. relative differ-
ence), whether ancilla allocation is modular (M), and whether
uncomputation is implicit (U). Algorithms marked with c are
from Cirq [7], while all other algorithms are from Qiskit [20].

Original with Unqomp
Algorithm lines M U lines diff M U

Adder c 31 ✓ 28 −10% ✓ ✓

Deutsch-Jozsa 13 ✓ ✓ 12 −8% ✓ ✓

Grover 46 ✓ ✓ 31 −33% ✓ ✓

IntegerComparator 45 38 −16% ✓ ✓

MCRY 7 4 −43% ✓ ✓

MCX 16 ✓ 13 −19% ✓ ✓

Multiplier c 13 11 −15% ✓ ✓

PiecewiseLinearR 43 29 −33% ✓ ✓

PolynomialPauliR 120 118 −2% ✓ ✓

WeightedAdder 70 42 −40% ✓ ✓

7.1 Evaluated Algorithms
To address these questions, we evaluated Unqomp on 10
quantum algorithms shown in Tab. 1. We used the imple-
mentations from Qiskit 0.22.0 [20] and Cirq v0.9.1 [7], where
we re-implemented Cirq examples in Qiskit.

Algorithms. Each quantum algorithm is represented by
a Python function which, given some parameters such as the
input size, constructs a circuit implementing the algorithm.
For example, the MCX (multi-controlled NOT) function ac-
cepts a parameter 𝑛, and constructs a circuit which takes in-
puts (𝑐1, . . . , 𝑐𝑛, 𝑡) to compute (𝑐1, . . . , 𝑐𝑛, 𝑡 ⊕ (𝑐1& . . .&𝑐𝑛)).

Deutsch-Jozsa [16, §1.4.4] and Grover [16, §6] are well-
known quantum algorithms. Given an integer 𝑣 , IntegerCom-
parator flips a target qubit if the number encoded in a list
of control qubits is greater than 𝑣 . Given 𝑛 and an angle 𝜃 ,
MCRY (multi-controlled Y rotation) rotates a target qubit by
𝜃 in the𝑌 basis if all of𝑛 control qubits are 1. For parameter𝑛,
Multiplier computes the binary representation of 𝑥 ·𝑦 for two
numbers 𝑥 and 𝑦 encoded in 𝑛 qubits each. Similarly, Adder
computes 𝑥 + 𝑦. Given 𝑛 and a piecewise linear function 𝑓 ,
PiecewiseLinearR rotates a target qubit by the angle 𝑓 (𝑐) in
basis 𝑌 , where 𝑐 is encoded using 𝑛 control qubits. In Polyno-
mialPauliR, the function 𝑓 is polynomial. Finally, given 𝑛 and
a list 𝑣1, . . . , 𝑣𝑛 of classical values, WeightedAdder computes∑
𝑐𝑖𝑣𝑖 for control qubits 𝑐𝑖 .
For our Qiskit++ implementations of these algorithms,

we simply removed the parts performing uncomputation or
manually passing ancillae (see §7.3) and instead annotated
ancilla qubits to enable automatic uncomputation.

Uncomputation Synthesis Time. We ran the Qiskit++
compilation pipeline on a commodity laptop with 8 GB of
RAM and 8 CPU cores at 2.40 GHz. For all algorithms pre-
sented in Tab. 1, our implementation of Unqomp required
less than 1 second to introduce uncomputation.

c1 = QuantumRegister(n)

c2 = QuantumRegister(n - 1)

g1 = MCXGate(len(c1))

g2 = MCXGate(len(c2))

a = QuantumRegister(max(

g1.num_ancillae,

g2.num_ancillae))

c.append(g1, c1, t, a)

c.append(g2, c2, t, a)

(a) Ancilla reuse in Qiskit.

c1 = QuantumRegister(n)

c2 = QuantumRegister(n - 1)

a = QuantumRegister(n - 2)

c.mcx(c1, t, a)

c.mcx(c2, t, a)

(b) Hardcoded qubits.

c1 = QuantumRegister(n - 1)

c2 = QuantumRegister(n)

c.mcx(c1, t)

c.mcx(c2, t)

(c) Modularity in Qiskit++.

Figure 8. Exposing ancillae to the caller in Qiskit. We
shorten c.append(MCXGate(len(c)), c, t, a) to c.mcx(c, t, a).

7.2 Q1: Code Length
Tab. 1 compares the code lengths of the Qiskit (original) and
Qiskit++ (with Unqomp) implementations for each algorithm.
We observe that Unqomp consistently reduces the number
of code lines, by up to 43%.

Most Qiskit algorithm implementations include explicit
uncomputation code, which reverts all gates applied to the
ancillae (see non-ticked in column U). This is not required
in Qiskit++, leading to a significant code reduction. For ex-
ample, in WeightedAdder, 39% of the source code lines deal
with explicit uncomputation, which can be omitted using Un-
qomp. Explicitly inserting uncomputation not only increases
code length but may also require rewriting the actual com-
putation. For example, the original implementation of Adder
is convoluted by re-ordered gates and interleaved uncompu-
tation (cp. Fig. 3e). In contrast, uncomputation in Unqomp is
implicit and ancillae are uncomputed automatically.

The Deutsch-Jozsa and Grover implementations do not
include any uncomputation as they leverage phase kickback
for the oracle evaluation. We note that the oracle circuit
(which may perform uncomputation internally) is provided
as a parameter to these algorithms and hence not part of the
code considered here. For this reason, Unqomp cannot save
any lines for Deutsch-Jozsa. The significant reduction for
Grover originates from a modularity issue discussed next.

7.3 Q2: Modularity
Next, we compare the modularity of ancilla allocation. Over-
all, we find that Qiskit functions often break modularity,
while Qiskit++ allows for modular code.

Exposing Ancillae in Qiskit. Qiskit functions expose
the number of required ancillae to the caller using a field
num_ancillae and rely on the caller to allocate them. This al-
lows developers to manually reuse ancillae across functions,
relying on correct uncomputation within the functions. For

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

Table 2. Percentage of gates and qubits (qbs) saved by
Unqomp, where higher numbers are better. Implementa-
tions marked with ∗ were improved in Qiskit due to our
bug reports (see Footnote 4). Entries in parenthesis re-
quire manual intervention, and ✗ indicates that Quipper’s
classical_to_reversible_optim is not applicable.

Qiskit Quipper
gates qbs gates qbs

Algorithm all 𝐶𝑋 all 𝐶𝑋

Adder 34 35 0 56 62 17
Deutsch-Jozsa 0 0 0 (38) (50) (5)
Grover 0 0 0 (40) (50) (5)
IntegerComparator 31 48 0 41 51 0
MCRY 99.5 99.5 −4 ✗ ✗ ✗

MCRY ∗ 48 48 −4 ✗ ✗ ✗

MCX 0 0 0 41 51 5
Multiplier 36 38 2 −25 −25 34
PiecewiseLinearR 41 42 29 ✗ ✗ ✗

PolynomialPauliR 81 86 11 ✗ ✗ ✗

PolynomialPauliR ∗ 44 45 11 ✗ ✗ ✗

WeightedAdder 43 55 −12 52 53 78
WeightedAdder ∗ 30 33 −12 52 53 78
WeightedAdder alt. impl. 31 46 0 48 50 82
WeightedAdder alt. impl. ∗ 16 20 0 48 50 82

example, Fig. 8a shows a code snippet where the developer
allocates the required ancillae a for two MCX gates.

While this construction respects modularity, it requires the
developer to manually reuse qubits and tediously combine
the ancilla requirements of multiple functions to determine
the number of ancillae to allocate. This creates significant
overhead: for instance, a third of the lines in the original
Grover implementation deal with ancilla management. In-
deed, this construction is only used for few examples in our
benchmark (see ticked ✓ in column M of Tab. 1).

Breaking Modularity. To reduce developer overhead,
Qiskit functions are often implemented in a non-modular
manner (see column M), where ancilla requirements are
hard-coded using hand-crafted formulas relying on explicit
knowledge about the implementation of called functions. As
a typical example, Fig. 8b allocates exactly 𝑛 − 2 ancillae for
MCX using knowledge of its internal implementation and of
the length of both c1 and c2.

Clearly, this increases coupling and leads to issues if li-
brary implementations are changed. Indeed, we found multi-
ple inefficient usages of MCX and MCRY in the Qiskit library,
allocating more ancillae than necessary for those gates due
to a change in their default implementation. We reported
three such issues to the developers, who have fixed them
recently. 4 Fixing these issues further ensured that using the

4https://github.com/Qiskit/qiskit-terra/issues/4786 for MCRY
https://github.com/Qiskit/qiskit-terra/issues/5320 for WeightedAdder
https://github.com/Qiskit/qiskit-terra/issues/5321 for PolynomialPauliR

c.ccx(c0, c1, a0)

c.ccx(c2, a0, r)

c.h(c0)

(a) Separable qfree section.

c.ccx(c0, c1, a0)

c.ccx(c2, a0, a1)

c.cry(a1, r, 2)

(b) Non-qfree gate on ancilla.

Figure 9. Limitation of Classical Uncomputation. Variables
c0, c1, c2, r are qubits and a0, a1 are ancillae. The call
c.ccx(c0, c1, a0) applies a CCX gate with controls c0, c1 and
target a0, while c.cry(a0, r, 2) applied a controlled rotation
with control a0, target r, and angle 2.

“v-chain” variant of MCX requires only a low number of basic
gates by using all allocated ancillae, as we discuss in §7.4.

Modularity in Qiskit++. In contrast to Qiskit, Qiskit++
allows allocating ancillae in a modular manner, as indicated
by ✓ in column M of Tab. 1. A library function can locally
allocate ancilla qubits for internal use, without exposing
them to the caller of the function. Both caller and library can
rely on Unqomp to automatically uncompute ancillae, and
efficiently allocate and reuse qubits. For example, in Fig. 8c,
the caller does not need to know about the ancillae in MCX.

7.4 Q3: Efficiency
We now compare the efficiency of circuits generated by
Qiskit++ to circuits generated by Qiskit and Quipper, where
Quipper is only applicable for classical programs, i.e., pro-
grams only consisting of qfree operations. Overall, we find
that Qiskit++ circuits are often significantly more efficient.

Approach. For all algorithms, we ran the full compila-
tion pipeline as shown in Fig. 3, followed by Qiskit’s de-
composition into the two basic gates 𝐶𝑋 and 𝑈 3 as post-
processing, using the “v-chain” variant of MCX. Further,
we instantiated the oracle circuit in Grover and Deutsch-
Jozsa with an MCX gate. For the comparison to Quipper,
we manually translated the algorithms to Quipper using the
classical_to_reversible_optim construct to insert uncomputa-
tion. We then applied the Qiskit decomposition discussed
above to the resulting circuits.

We show the resulting reduction from Qiskit to Qiskit++
and Quipper to Qiskit++ for gates and qubits in Tab. 2. For
completeness, Tab. 2 also shows the reduction in 𝐶𝑋 gates
only (which are typically more expensive than 𝑈 3 gates),
with analogous results.

Limitations of Classical Uncomputation. As shown
in Tab. 2, the uncomputation offered by Quipper is severely
limited: as classical_to_reversible_optim only supports clas-
sical programs, the presence of non-qfree gates prevents
directly applying it on Deutsch-Jozsa, Grover, MCRY, Piece-
wiseLinearR, and PolynomialPauliR. However, when ancillae
are only used in qfree parts of the circuit, it is possible to iso-
late those qfree parts and apply classical_to_reversible_optim

https://github.com/Qiskit/qiskit-terra/issues/4786
https://github.com/Qiskit/qiskit-terra/issues/5320
https://github.com/Qiskit/qiskit-terra/issues/5321

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

10 20 30 40
Input Size

0

1

2

3

#
ga

te
s

×103 MCRY

10 20 30
Input Size

0

1

2

#
ga

te
s

×104 WeightedAdder

4 6 8 10 12
Input Size

0.0

0.5

1.0

1.5

#
ga

te
s

×104 PiecewiseLinearR

2 4 6 8 10
Breakpoints

0.0

0.5

1.0
#

ga
te

s

×104 PiecewiseLinearR

2.5 5.0 7.5 10.0 12.5
Polynomial degree

0

1

2

#
ga

te
s

×104 PolynomialPauliR

5 10
Recursion Depth

0.0

0.5

1.0

#
ga

te
s

×105 RecursiveSeq

(a) Gate Counts.

10 20 30 40
Input Size

0

25

50

75

#
qu

bi
ts

MCRY

10 20 30
Input Size

0

20

40

#
qu

bi
ts

WeightedAdder

4 6 8 10 12
Input Size

0

10

20

30

#
qu

bi
ts

PiecewiseLinearR

2 4 6 8 10
Breakpoints

0

10

20

30

#
qu

bi
ts

PiecewiseLinearR

2.5 5.0 7.5 10.0 12.5
Polynomial degree

0

10

20

#
qu

bi
ts

PolynomialPauliR

5 10
Recursion Depth

0

25

50

75

#
qu

bi
ts

RecursiveSeq

(b) Qubit counts.

Figure 10. Gates and qubits for different algorithm parameters using Qiskit++ (; this work) and Qiskit (). Some
implementations were improved as a result of our bug reports (see Footnote 4), shown as . For WeightedAdder, we show
an alternative Qiskit++ implementation () trading gates for qubits. Lower values are better.

to these, before combining them with the non-qfree parts
of the algorithm. For example, Fig. 9a shows an extract of
the Grover implementation for input size 3. The ancilla a0 is
only used in the first two lines. Thus, we can apply Quipper
classical_to_reversible_optim to the circuit generated by those
two lines, and append to its result the gate corresponding
to the third line. This strategy allows applying Quipper un-
computation to Grover and Deutsch-Jozsa. However, this
approach not only requires manual intervention but also
results in less efficient circuits (see Tab. 2).

When ancillae are used in parts of the circuit that are not
purely qfree—as shown for instance in Fig. 9b on the code for
MCRY with input size 3—the above separation is not possible.
This is the case for MCRY, PiecewiseLinearR and Polynomi-
alPauliR. Thus, Quipper cannot synthesize uncomputation
for these examples (see ✗ in Tab. 2).

7.4.1 Reduction in Gate Count. For all but three algo-
rithms, Qiskit++ significantly reduces the number of gates
compared to Qiskit, by up to 99.5%. These extremely high
savings are partially due to a regression bug in Qiskit (see
Footnote 4), which Unqomp helps to avoid. Even for algo-
rithms not affected by this regression, or after fixing this
regression (∗ in Tab. 2), Qiskit++ allows for significant sav-
ings of up to 48%. On the three algorithms where Qiskit++
does not outperform Qiskit, both yield circuits with identical

size. Being well-studied quantum algorithms, the implemen-
tations of Grover and Deutsch-Jozsa have been manually
optimized by experts to reduce gate and qubit counts. Simi-
larly, MCX has been heavily studied and optimized [4].

Compared to Quipper, Qiskit++ almost always produces
fewer gates, with savings of up to 66%. Quipper outperforms
Qiskit++ only on Multiplier, due to an optimization pass per-
formed by Quipper but not Qiskit++. In particular, Quipper
applies constant propagation and can for example remove
CCX gates if one of their controls is known to be 0. We note
that this optimization is orthogonal to our work and could in
principle be integrated in Qiskit++ as well. When disabling
the optimization in Quipper, Qiskit++ consistently produces
fewer gates than Quipper.

Origin ofReductions. Overall, the gate savings of Qiskit++
can be explained by (i) redundant uncomputation in the orig-
inal implementation (see Fig. 1) and (ii) 𝐶𝐶𝑋 gate optimiza-
tions performed during our compilation (see §5.4).

Redundant uncomputation concerns MCRY, Piecewise-
LinearR, PolynomialPauliR, and WeightedAdder, as these
examples rely on libraries for integrating sub-components
in a modular manner.
𝐶𝐶𝑋 gate optimizations lead to significant gains for all

algorithms, except for those where no savings were observed.
Note that this optimization is already partially applied in the

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

baseline Qiskit implementations (manually to MCX, and indi-
rectly to all examples that use MCX). Consistently applying
this optimization to the Qiskit baseline would be virtually im-
possible without Unqomp: it would require knowing which
CCX gates are later uncomputed, which is impossible to de-
termine for library functions computing values which may
or may not be used as ancillae.

For Quipper, an additional source of gate savings lies in the
more fine-grained control allowed by Qiskit++. Algorithms
must be implemented as Haskell functions in Quipper. Hence,
many optimizations, such as temporarily changing the value
of an input argument in-place, cannot be used.

Asymptotic Gains. Fig. 10a shows the effect of varying
some circuit parameters for selected algorithms: efficiency
gains often increase with increasing complexity. Even after
the fixes following our bug reports (Footnote 4), Unqomp
allows for a significant reduction in all shown algorithms.

Gate Explosion for Recursive Calls. As visualized in
Fig. 1, using library functions in Qiskit leads to redundant
uncomputation. We now demonstrate that this effect is arbi-
trarily amplified by nested library calls. As a consequence, we
should expect Unqomp to yield even larger efficiency gains
when quantum algorithms become increasingly complex.

We implemented a toy algorithm RecursiveSeq that com-
putes the sequence 𝑥𝑛+1 = 2𝑥𝑛 + 1 according to its recursive
definition: the function computing 𝑥𝑛+1 uses a recursive func-
tion call to compute 𝑥𝑛 on an ancilla 𝑎 and returns 2𝑎 + 1.
We implemented this algorithm in Qiskit by explicitly per-
forming uncomputation in each recursive call. In Qiskit++,
uncomputation is automatic. As shown in Fig. 10a, this leads
to an exponential increase of gate counts for Qiskit, while
the count only increases linearly for Qiskit++. This suggests
that more generally, Unqomp allows significant efficiency
gains for complex algorithms with deep call trees.

7.4.2 Reduction in Qubit Count. Tab. 2 also compares
the number of qubits for the implementations, and Fig. 10b
shows the impact of varying algorithm parameters on the
number of qubits.

Overall, Quipper yields significantly higher qubit counts.
Compared to Qiskit, Qiskit++ results in an identical num-
ber of qubits for many algorithms, showing that Unqomp’s
ancilla allocation (§5.4) can often compete with manual allo-
cation. Furthermore, for some examples, Unqomp yields a
significant reduction in qubits, indicating that a completely
manual approach fosters errors and missed optimizations.

For RecursiveSeq, Unqomp finds a non-trivial qubit alloca-
tion that is hard to detect manually, and thus only requires a
constant number of qubits.

For PolynomialPauliR, the number of qubits in Qiskit++
remains constant for polynomial degrees 𝑑 above 8, while
it increases linearly for Qiskit. This is due to the Qiskit im-
plementation allocating 𝑑 qubits in a hard-coded fashion

Table 3. Comparing Unqomp to related approaches.

Approach/Language Autom. Uncomp. Circuit

Quipper [13] (qfree) ✓

Revs [17] (qfree) ✓

ReVerC [3] (qfree) ✓

ReQWire [21] (qfree) ✓

Silq [6] ✓ ✗

Unqomp (this work) ✓ ✓

(see §7.3). However, a detailed analysis of the code shows that
the number of required ancillae is actually only min(𝑑, 𝑛),
where 𝑛 is the input size. In contrast to Qiskit, Unqomp au-
tomatically finds this improved, non-trivial qubit allocation.
Similarly, for PiecewiseLinearR, Unqomp finds a more effi-
cient qubit allocation, using 𝑛 ancillae for an input size 𝑛,
instead of 𝑛 + 𝑏, where 𝑏 is the number of breakpoints.

Trading off Qubits and Gates. Unfortunately, the gate
count reduction for WeightedAdder comes at the cost of more
qubits. This is a result of Unqomp performing uncomputation
later in the circuit than the Qiskit implementation, which
prevents some qubit reuse. Still, using a slightly modified al-
ternative Qiskit++ implementation, we can trade Unqomp’s
gate savings for fewer qubits, resulting in identical qubit
counts (see Tab. 2). Similarly, for MCRY, Qiskit++ requires
exactly one more qubit than the original Qiskit implementa-
tion, as it uses slightly different code—instead of two MCX
gates it uses only one MCX with its uncomputation and an
extra ancilla qubit. This trade-off is only interesting when
using automatic uncomputation: as MCX uses a lot of in-
ternal auxiliary values, modular manual uncomputation is
quite expensive, while automatic uncomputation is cheap,
as illustrated in Fig. 1. This cheap uncomputation allows
Qiskit++ to produce half as many gates as Qiskit, at the cost
of only one extra qubit.

8 Related Work
We now discuss existing works related to Unqomp both in
terms of (i) our goal of synthesizing uncomputation, and
(ii) key aspects of our approach to address this goal.

Automatic Uncomputation. Tab. 3 summarizes exist-
ing approaches to handle automatic uncomputation. As dis-
cussed next, these approaches differ from Unqomp in that
they either do not provide a compilation to circuits, or only
apply to classical computation. We note that ReQWire [21]
can additionally prove that a manually provided uncompu-
tation is safe. However, it cannot automatically synthesize
uncomputation, except for purely classical circuits. Tab. 3
omits SQUARE [9] as it does not synthesize uncomputation:
SQUARE expects the programmer to manually provide and
mark the uncomputation code blocks for each ancilla, and
then saves qubits or operations by interleaving those blocks.

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

operation ErroneousUncomputation(x : Qubit) : Unit

{

use ancilla = Qubit();

ApplyWith(CopyX, ModifyX, (x, ancilla));

// Error: Ancilla is not in zero state

}

operation CopyX(x : Qubit, ancilla : Qubit) : Unit is Adj

{

CNOT(x, ancilla);

}

operation ModifyX(x : Qubit, ancilla : Qubit): Unit is Adj

{

CNOT(ancilla, x);

// Error: modifies x which is needed for uncomputation

}

Figure 11. ApplyWith producing erroneous uncomputation.

Silq: Enable Safe Uncomputation. Silq is the closest
work to Unqomp in that it also promises automatic uncompu-
tation and relies on analogous high-level insights for ensur-
ing correctness, namely the notion of qfree gates and controls

(cp. §6.3). However, while Silq’s type system ensures that
safe uncomputation is possible for all temporary values, Silq
does not provide a compiler that synthesizes this uncom-
putation. In contrast, Unqomp synthesizes uncomputation,
which allows extending arbitrary circuit-based languages
(such as Qiskit [2]) to support automatic uncomputation.
We can view Unqomp as a key step towards compiling Silq,
which in particular requires automatically generating safe
uncomputation.

Qfree Programs. Quipper [13], Revs [17], ReverC [3],
and ReQWire [21] support automatic uncomputation only
for classical programs, i.e., programs that only use qfree func-
tions. Further, ReverC only uncomputes boolean expressions,
meaning it is not applicable to any of our examples in Tab. 1.
In contrast, only Silq and Unqomp support uncomputation
in quantum programs that interleave qfree with non-qfree
operations. Only supporting qfree computations is a severe
restriction—half of the programs we evaluated (see §7) are
not fully qfree. Further, the proposed workflow for these
approaches is to compile the classical part of a quantum pro-
gram and then insert the result into the resulting quantum
circuit. However, this workflow cannot always be applied, as
shown in Fig. 9, and generally results in inefficient circuits,
analogously to Fig. 1.

Convenience Functions. Various quantum languages of-
fer convenience functions that simplify manual uncompu-
tation, such as ApplyWith in Q# [22] or with_computed in
Quipper [13]. However, relying on these features cannot

guarantee the resulting uncomputation is safe, as incorrectly
using them does not result in an error.

For example, Fig. 11 shows Q# code using ApplyWith to
uncompute 𝑎 in Fig. 6b. As uncomputing 𝑎 is physically im-
possible (see §6.2) and ApplyWith performs no static checks,
this program results in an incorrect circuit whose error is
only detected at runtime (i.e., during simulation).

In addition to being unsafe, convenience functions are
often tedious to use. For instance, ApplyWith cannot be used
in combination with for-loops, forcing even expert Q# devel-
opers to resort to manual uncomputation in some cases. 5

Finally, convenience functions often generate inefficient cir-
cuits, as explained in Fig. 1.

CircuitGraphs. Various existing works have represented
circuits in terms of circuit graphs. In classical computation,
dependency graphs have long been used to represent com-
putations without enforcing irrelevant ordering constraints
(see e.g., [12], [1, §5.2]). Naturally, works in this domain do
not discuss quantum computations or quantum circuits.

Multiple works in quantum computation operate on graph-
based circuit representations. However, as none of them
are geared towards uncomputation, their graphs (i) do not
distinguish between target, control, and anti-dependency
edges [10, 11, 15], (ii) are often limited to only a few types
of gates [10, 11], and (iii) are not suitable for inserting (un-
computation) gates because they do not contain enough
information to reconstruct the circuit they represent [15].

Ancilla Allocation. Our approach to ancilla allocation
(§5.4) is an instantiation of linear scan register allocation [18],
with one key simplification: instead of a fixed number of reg-
isters (and the option of spilling to the heap), we have an
unlimited number of potential ancillae. The cost of a spe-
cific allocation is hence simply the number of ancillae used,
instead of the cost of the operations on spilled registers, al-
lowing for an optimal allocation given a graph linearization.

9 Conclusion
We presented Unqomp, a procedure synthesizing automatic
uncomputation for quantum circuits, using an internal rep-
resentation in terms of circuit graphs. Unqomp can be read-
ily integrated into existing quantum languages, which we
demonstrated by extending Qiskit to Qiskit++.

Our evaluation showed that Unqomp reduces the amount
of code, improves code modularity, and yields substantially
more efficient circuits in terms of number of gates and qubits.

5For an example, see https://github.com/microsoft/QuantumKatas/
blob/7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/
ReferenceImplementation.qs#L73

https://github.com/microsoft/QuantumKatas/blob/7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/ReferenceImplementation.qs#L73
https://github.com/microsoft/QuantumKatas/blob/7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/ReferenceImplementation.qs#L73
https://github.com/microsoft/QuantumKatas/blob/7ba83e55703fda4ff945fc6e89050f4ee179e5bc/RippleCarryAdder/ReferenceImplementation.qs#L73

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

References
[1] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. 2006. Compil-

ers: Principles, Techniques, and Tools (2nd edition ed.). Addison Wesley,
Boston.

[2] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Lu-
ciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-
Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen,
Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, An-
drew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente
González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan
Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert
Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-
Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe
Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi,
Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev,
Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques,
Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay,
Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Ro-
dríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James
O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Vik-
tor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Ray-
mond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel,
Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Sir-
aichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Taka-
hashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing,
Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot,
Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher
Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and
Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum
Computing. https://doi.org/10.5281/zenodo.2562110

[3] Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017. Veri-
fied Compilation of Space-Efficient Reversible Circuits. In CAV’17.
Vol. 10427. Cham, 3–21. https://doi.org/10.1007/978-3-319-63390-9_1

[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter. 1995. Elementary
gates for quantum computation. Physical Review A 52, 5 (Nov. 1995),
3457–3467. https://doi.org/10.1103/PhysRevA.52.3457 arXiv: quant-
ph/9503016.

[5] Charles H Bennett. 1973. Logical Reversibility of Computation. IBM
Journal of Research and Development 17, 6 (Nov. 1973), 525–532. https:
//doi.org/10.1147/rd.176.0525

[6] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev.
2020. Silq: a high-level quantum language with safe uncomputation
and intuitive semantics. In Proceedings of the 41st ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. 286–300.
https://doi.org/10.1145/3385412.3386007

[7] Cirq Development Team. 2020. Cirq Circuit Examples. https://github.
com/quantumlib/Cirq Accessed: 2020-10-29.

[8] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. 2009. Introduction to algorithms. MIT press.

[9] Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana
Franklin, Margaret Martonosi, and Frederic T. Chong. 2020. SQUARE:
Strategic Quantum Ancilla Reuse for Modular Quantum Programs via
Cost-Effective Uncomputation. 2020 ACM/IEEE 47th Annual Interna-

tional Symposium on Computer Architecture (ISCA) (May 2020), 570–583.

https://doi.org/10.1109/ISCA45697.2020.00054 arXiv: 2004.08539.
[10] Lucas Dixon and Ross Duncan. 2009. Graphical Reasoning in Compact

Closed Categories for Quantum Computation. arXiv:0902.0514 [cs]

(Feb. 2009). http://arxiv.org/abs/0902.0514 arXiv: 0902.0514.
[11] Ross Duncan and Simon Perdrix. 2010. Rewriting Measurement-Based

Quantum Computations with Generalised Flow. In Automata, Lan-

guages and Programming (Lecture Notes in Computer Science), Samson
Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der
Heide, and Paul G. Spirakis (Eds.). Springer, Berlin, Heidelberg, 285–
296. https://doi.org/10.1007/978-3-642-14162-1_24

[12] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Pro-
gram Dependence Graph and its Use in Optimization. ACM Transac-

tions on Programming Languages and Systems 9, 3 (July 1987), 319–349.
https://doi.org/10.1145/24039.24041

[13] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter
Selinger, and Benoît Valiron. 2013. Quipper: a scalable quantum pro-
gramming language. In PLDI’13. ACM Press, Seattle, Washington, USA.
https://doi.org/10.1145/2491956.2462177

[14] Arthur B Kahn. 1962. Topological sorting of large networks. Commun.

ACM 5, 11 (1962), 558–562. https://doi.org/10.1145/368996.369025
[15] Atsushi Matsuo and Shigeru Yamashita. 2012. Changing the Gate Order

for Optimal LNN Conversion. In Reversible Computation (Lecture Notes

in Computer Science), Alexis De Vos and Robert Wille (Eds.). Springer,
Berlin, Heidelberg, 89–101. https://doi.org/10.1007/978-3-642-29517-
1_8

[16] Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum computa-

tion and quantum information (10th anniversary ed ed.). Cambridge
University Press, Cambridge ; New York.

[17] Alex Parent, Martin Roetteler, and Krysta M. Svore. 2015. Reversible
Circuit Compilation with Space Constraints. arXiv:1510.00377 [quant-
ph] (Oct. 2015). http://arxiv.org/abs/1510.00377 arXiv: 1510.00377.

[18] Massimiliano Poletto and Vivek Sarkar. 1999. Linear scan register
allocation. ACM Transactions on Programming Languages and Systems

(TOPLAS) 21, 5 (1999), 895–913. https://doi.org/10.1145/330249.330250
[19] John Preskill. 2018. Quantum Computing in the NISQ era and beyond.

Quantum 2 (2018), 79.
[20] Qiskit Development Team. 2020. Qiskit Circuit Library. https://qiskit.

org/documentation/apidoc/circuit_library.html Accessed: 2020-10-27.
[21] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic.

2019. ReQWIRE: Reasoning about Reversible Quantum Circuits. Elec-
tronic Proceedings in Theoretical Computer Science 287 (Jan. 2019), 299–
312. https://doi.org/10.4204/EPTCS.287.17 arXiv: 1901.10118.

[22] Krysta Svore, Martin Roetteler, Alan Geller, Matthias Troyer, John
Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov,
Mariia Mykhailova, and Andres Paz. 2018. Q#: Enabling Scalable
Quantum Computing and Development with a High-level DSL. In
Proceedings of the Real World Domain Specific Languages Workshop

2018 on - RWDSL2018. ACM Press, Vienna, Austria. https://doi.org/10.
1145/3183895.3183901

[23] Google AI Quantum Team. 2017. Cirq. (2017). https://github.com/
quantumlib/Cirq

[24] Umesh Vazirani. 2013. Quantum Mechanics and Quan-
tum Computation (CS191x). Online Lecture (Lecture 7).
https://www.youtube.com/watch?v=XPkKRBk71TY&list=PLDAjb_
zu5aoFazE31_8yT0OfzsTcmvAVg&index=30

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1145/3385412.3386007
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://doi.org/10.1109/ISCA45697.2020.00054
http://arxiv.org/abs/0902.0514
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/978-3-642-29517-1_8
https://doi.org/10.1007/978-3-642-29517-1_8
http://arxiv.org/abs/1510.00377
https://doi.org/10.1145/330249.330250
https://qiskit.org/documentation/apidoc/circuit_library.html
https://qiskit.org/documentation/apidoc/circuit_library.html
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://www.youtube.com/watch?v=XPkKRBk71TY&list=PLDAjb_zu5aoFazE31_8yT0OfzsTcmvAVg&index=30
https://www.youtube.com/watch?v=XPkKRBk71TY&list=PLDAjb_zu5aoFazE31_8yT0OfzsTcmvAVg&index=30

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

A Operations on Circuit Graphs
In this section, we introduce the operations of circuit graph
splitting and composition. These are key operations in our
proof of Thm. 3.1 of Unqomp (see App. B).

A.1 Splitting
At a high level, the split operation divides a circuit graph 𝐺

into two graphs 𝐺1 and 𝐺2 such that all gates in 𝐺2 can be
evaluated after 𝐺1. The graph 𝐺2 is extended by missing init
nodes for all qubits involved in 𝐺2.

Splitting Example. Fig. 12c shows the graphs 𝐺1 and 𝐺2
obtained by splitting 𝐺 along the indicated cut. The graph
𝐺1 is simply the subgraph induced by {𝑎0, 𝑏0, 𝑎1, 𝑏1}. The
graph 𝐺2 includes the node 𝑏1 because of the edge 𝑏1 → 𝑏2
in 𝐺 . While 𝑏1 is a gate node in 𝐺1, it is an init node in 𝐺2.
The anti-dependency edge 𝑎1 d 𝑏2 is not present in neither
graph.

Splitting Formalization. More formally, consider an ar-
bitrary graph cut (𝑉 ′,𝑉 ′′) in the circuit graph 𝐺 = (𝑉 , 𝐸),
such that there are no edges in 𝐸 from a node in𝑉 ′′ to a node
in 𝑉 ′. That is, we partition the nodes 𝑉 into 𝑉 ′ and 𝑉 ′′ such
that all nodes in 𝑉 ′′ come after all nodes in 𝑉 ′ according to
the partial order induced by 𝐸. Fig. 12b illustrates such a cut
for 𝑉 ′ = {𝑎0, 𝑏0, 𝑎1, 𝑏1} and 𝑉 ′′ = {𝑐0, 𝑐1, 𝑏2}.

The operation Split(𝐺,𝑉 ′,𝑉 ′′) first checks whether the
given cut satisfies the above constraints and returns an error
if not. Otherwise, it returns two graphs𝐺1 and𝐺2, where𝐺1
is the subgraph induced by 𝑉 ′, and 𝐺2 is the graph induced
by 𝑃 ∪𝑉 ′′, where 𝑃 ⊆ 𝑉 ′ are the control and target parents
of nodes in 𝑉 ′′. The nodes 𝑃 are init nodes in 𝐺2. Formally,
the graph 𝐺2 = (𝑉 (2) , 𝐸 (2)) is built as follows.

𝑉
(2)

gates = 𝑉gates ∩𝑉 ′′

𝑉
(2)

init = (𝑉init ∩𝑉 ′′) ∪ 𝑃
𝑃 := {𝑢 ∈ 𝑉 ′ | ∃𝑣 ∈ 𝑉 ′′. (𝑢 → 𝑣) ∈ 𝐸 ∨ (𝑢 •→ 𝑣) ∈ 𝐸}

𝐸 (2) are the edges from 𝐸 induced by 𝑉
(2)

init ∪𝑉
(2)

gates

We note that for 𝑢 ∈ 𝑃 , 𝑢 is an init node in 𝐺2 but may be a
gate node in 𝐺1. In both graphs, qbit(𝑢) is the same qubit.

A.2 Composing
The composition operation𝐺1•𝐺2 can be thought of as the in-
verse of Split. It composes two graphs𝐺1 = (𝑉 (1) , 𝐸 (1)) and
𝐺2 = (𝑉 (2) , 𝐸 (2)) such that init nodes in 𝐺2 are merged with
the “output nodes” in 𝐺1, and any missing anti-dependency
edges are introduced.

Composing Example. Fig. 12b shows the graph 𝐺 ob-
tained by composing 𝐺1 and 𝐺2. Node 𝑏1 ∈ 𝑉 (1)gate is merged
with 𝑏1 ∈ 𝑉 (2)init to the gate node 𝑏1 ∈ 𝑉gate (see highlighted).
This corresponds to evaluating the 𝐻 gate in 𝐺1 first, before

using the result as an input to the 𝐻 gate in 𝐺2. The anti-
dependency edge 𝑎1 d 𝑏2 is not present in 𝐺1 or 𝐺2, but
introduced during composition.

Composing Formalization. For any node 𝑢, we say that
𝑢 is a last node if 𝑢 is the last node along the target edge
path including 𝑢. In other words, 𝑢 is the last gate node
targeting qbit(𝑢). Upon composing𝐺1 and𝐺2, we merge the
last nodes in 𝐺1 with the corresponding init node in 𝐺2 (if
any such node exists). More formally, we union the graphs
and perform an edge contraction along the following set of
edges 𝐸 ′: 6

𝐸 ′ =
{
(𝑢, 𝑣0) ∈ 𝑉 (1) ×𝑉 (2)init

���� qbit(𝑢) = qbit(𝑣0),
𝑢 is a last node

}
.

When contracting an edge (𝑢, 𝑣0), we retain the node 𝑢 and
discard 𝑣0. In particular, if 𝑢 is a gate node in 𝐺1, it is a gate
node in 𝐺 . The resulting set of edges 𝐸 is extended by any
missing anti-dependency edges.

Semantics of Composed Graphs. A key property of the
composition operation is the natural composition of seman-
tics. More precisely, it is ⟦𝐺1 •𝐺2⟧ = ⟦𝐺2⟧ ◦ ⟦𝐺1⟧ for any
circuit graphs 𝐺1,𝐺2. This follows from the definition of cir-
cuit graph semantics, that allows any total order respecting
the edges of 𝐺1 • 𝐺2 when defining its semantics. As the
definition of composition makes sure that there are no edges
from nodes in𝑉 (2) to nodes in𝑉 (1) , we can pick a total order
on 𝐺1 •𝐺2 such that all nodes in 𝐺1 come before all nodes
in 𝐺2. The composition of the gates semantics then yields
⟦𝐺1 •𝐺2⟧ = ⟦𝐺2⟧ ◦ ⟦𝐺1⟧.

B Correctness Proof of Unqomp
In the following, we provide a proof for Thm. 3.1:

Theorem 3.1 (Correctness). Let Unqomp(𝐺,𝐴) = G for cir-

cuit graph 𝐺 with 𝑛 qubits of which 𝑚 are ancilla qubits.

Without loss of generality, assume that those ancillae 𝐴 =(
𝑎 (1) , . . . , 𝑎 (𝑚)

)
are the first𝑚 qubits of 𝐺 . If

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦𝐺⟧↦−−−→

∑
𝑘∈{0,1}𝑚

𝛾𝑘 |𝑘⟩𝐴 ⊗ 𝜙𝑘 , then (4)

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦G⟧↦−−−→

∑
𝑘∈{0,1}𝑚

𝛾𝑘 |0 · · · 0⟩𝐴 ⊗ 𝜙𝑘 . (5)

Proof. Our proof proceeds by induction on the number of
gate nodes in 𝐺 and relies on the operations from App. A.

Base Case. In the base case,𝐺 and therefore alsoG consist
of zero gate nodes, and Thm. 3.1 follows because the left-
hand side and the right-hand side of Eq. (4) and Eq. (5) are
all the same.
6Technically, we would need to temporarily rename nodes occurring in
both graphs, such that the graph union leaves the graphs disconnected.

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑎

𝑏 𝐻 • • 𝐻

𝑐

(a) Circuit

init init init

𝐻

𝐶𝑋 𝐶𝑋

𝐻

𝑎0 𝑏0 𝑐0

𝑏1

𝑎1
𝑐1

𝑏2(b) Graph 𝐺

init init

𝐻

𝐶𝑋

init

init

𝐶𝑋

𝐻

𝑏1

𝑎1
𝑐1

𝑏2

𝑏1

𝑎0 𝑏0 𝑐0

+
(c) Graphs 𝐺1, 𝐺2

transform

compile

split

compose

Figure 12. Operations on circuit graphs.

Induction Step. For the induction step, we consider graph
𝐺 with 𝑛 + 1 gate nodes. We then select the first gate node 𝑣
according to the total order in Lin. 3, and split 𝐺 according
to (𝐺𝑣,𝐺−𝑣) = Split(𝐺, {𝑣},𝑉 \{𝑣}). Note that the induction
hypothesis holds for 𝐺−𝑣 with Unqomp(𝐺−𝑣, 𝐴) = G−𝑣 , as
𝐺−𝑣 consists of 𝑛 gate nodes.

Case I. If qbit(𝑣) ∉ 𝐴, then ⟦𝑣⟧ preserves 𝐴, and hence

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦𝑣⟧↦−−−→ |0 · · · 0⟩𝐴 ⊗ 𝜒

⟦𝐺−𝑣⟧↦−−−−−→
∑

𝑘∈{0,1}𝑛
𝛾𝑘 |𝑘 ⟩𝐴 ⊗ 𝜙𝑘 .

We then use the induction hypothesis to show Eq. (5) by

|0 · · · 0⟩𝐴 ⊗ 𝜑
⟦𝑣⟧↦−−−→ |0 · · · 0⟩𝐴 ⊗ 𝜒

⟦G−𝑣⟧↦−−−−−→
∑
𝑘

𝛾𝑘 |0 · · · 0⟩𝐴 ⊗ 𝜙𝑘 .

Case II. If qbit(𝑣) ∈ 𝐴, then 𝑣 = 𝑎𝑛 and Unqomp inserted
a gate node 𝑎★𝑛−1 into G. In the following, we refer to 𝑎★𝑛−1
as 𝑣†, because 𝑣† uncomputes 𝑣 .

Then, consider a split of G into subgraphs 𝐺𝑣 (containing
gate node 𝑣), G□𝑣† (containing gate nodes before 𝑣†), G𝑣†
(containing gate node 𝑣†), and G𝑣†□ (containing all other gate
nodes). Omitting gate nodes inserted by Unqomp from G𝑣†□
and G𝑣†□ yields graphs 𝐺𝑣†□ and 𝐺𝑣†□, respectively. Overall,
this yields two decompositions of 𝐺 and G, respectively:

𝐺 = 𝐺𝑣 •𝐺−𝑣 = 𝐺𝑣 •𝐺□𝑣† •𝐺𝑣†□ and (6)
G = 𝐺𝑣 • G□𝑣† • G𝑣† • G𝑣†□ . (7)

First, we show the semantics of 𝐺 , according to the graph
split of 𝐺 in Eq. (6). Here, 𝑎 is the qubit targeted by 𝑣 , 𝐶
are non-ancilla control qubits of 𝑣 , 𝐴′ are ancilla qubits con-
trolling 𝑣 , and 𝐴′′ are other ancilla qubits. Further, to avoid
notational clutter, we write 000 for 0 · · · 0 in the following.∑

𝑖

𝛾𝑖 |𝑖 ⟩𝐶 |000⟩𝐴′ |0⟩𝑎 |000⟩𝐴′′ ⊗𝜑 (1)𝑖
(8)

⟦𝐺𝑣⟧↦−−−−→
∑
𝑖

𝛾𝑖 |𝑖 ⟩𝐶 |000⟩𝐴′
��𝑓𝑖,000 (0)〉𝑎 |000⟩𝐴′′ ⊗𝜑 (1)𝑖

(9)

�
𝐺
□𝑣†

�
↦−−−−−−→

∑
𝑖

𝛾𝑖 𝜓𝑖 (10)

�
𝐺
𝑣†□

�
↦−−−−−−→

∑
𝑖

𝛾𝑖

∑
𝑖′ 𝑗𝑘𝑙

𝛾
(3)
𝑖𝑖′ 𝑗𝑘𝑙

��𝑖′〉
𝐶
| 𝑗 ⟩𝐴′ |𝑘 ⟩𝑎 |𝑙 ⟩𝐴′′ ⊗𝜑 (3)𝑖𝑖′ 𝑗𝑘𝑙 (11)

Eq. (9) follows by observing that 𝑣 is qfree and controlled
by 𝐶 and 𝐴′. Eq. (10) and Eq. (11) describe arbitrary quan-
tum states that can be generated from Eq. (9) by a linear
transformations.

Now, we show the semantics of 𝐺𝑣 • G□𝑣† • G𝑣†□:∑
𝑖

𝛾𝑖 |𝑖 ⟩𝐶 |000⟩𝐴′ |0⟩𝑎 |000⟩𝐴′′ ⊗𝜑 (1)𝑖
(12)

⟦𝐺𝑣⟧↦−−−−→
∑
𝑖

𝛾𝑖 |𝑖 ⟩𝐶 |000⟩𝐴′
��𝑓𝑖,000 (0)〉𝑎 |000⟩𝐴′′ ⊗𝜑 (1)𝑖

(13)

�
G
□𝑣†

�
↦−−−−−−→

∑
𝑖

𝛾𝑖 |𝑖 ⟩𝐶 ⊗ 𝜒𝑖 (14)

�
G
𝑣†□

�
↦−−−−−−→

∑
𝑖

𝛾𝑖

∑
𝑖′ 𝑗𝑘𝑙

𝛾
(3)
𝑖𝑖′ 𝑗𝑘𝑙

��𝑖′〉
𝐶
|000⟩𝐴′

��𝑓𝑖,000 (0)〉𝑎 |000⟩𝐴′′ ⊗𝜑 (3)𝑖𝑖′ 𝑗𝑘𝑙 (15)

Eq. (13) follows analogously to Eq. (9). Eq. (14) is an arbitrary
quantum state generated from Eq. (13) by preserving 𝐶 . We
note that 𝐶 must be preserved, as G□𝑣† only contains nodes
occurring before 𝑣†, and no gate node targeting a control
qubit 𝐶 can come before 𝑣†. To get to Eq. (15), we use the
induction hypothesis and Eq. (11). To apply the induction
hypothesis here, we first need to show thatG□𝑣†•G𝑣†□ = G−𝑣 .
Using Lemma B.1, we can pick a total order on 𝐺 such that 𝑣
is first. We can then assume that this total order was used to
get G, and the same total order minus 𝑣 was used by Alg. 1,
Lin. 3 to get G−𝑣 from 𝐺−𝑣 . Each step of uncomputation on
𝐺 and 𝐺−𝑣 would then have been exactly the same up until
the uncomputation of 𝑣 that inserted 𝑣† in G, that is to say
G−𝑣 is exactly G without 𝑣 and 𝑣†, and all edges pointing to
and from those nodes i.e., G−𝑣 = G□𝑣† • G𝑣†□ .

In order to apply the induction hypothesis in the case
where 𝑓𝑖,000 (0) ≠ 0, we strengthen Thm. 3.1 to not only hold
for ancillae initialized to 0 · · · 0, but for arbitrary bit strings
𝑏1 · · ·𝑏𝑛 ∈ {0, 1}𝑛 (our proof naturally generalizes to this
case).

Next, we observe that G𝑣†□ neither targets 𝑎 (as 𝑣† is the
last node operating on 𝑎) nor 𝐴′. The latter is because all
ancilla controls of 𝑣 must be init nodes 𝑎′0 (as 𝑣 is the first
node). Now, if 𝑎′0 is not the last node on qubit 𝑎′, it must
be targeted by a gate node 𝑎′1, such that 𝑣 d 𝑎′1. According
to Lin. 3, 𝑎′1 has then been uncomputed before 𝑣 , and 𝑣† is
hence controlled by 𝑎′★0 , which is the last operation on qubit
𝑎′.

PLDI ’21, June 20–25, 2021, Virtual, Canada Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev

From this, we conclude that 𝜒𝑖 must be of the form
𝜒𝑖 =

∑
𝑙

𝛾
(4)
𝑖𝑙
|000⟩𝐴′

��𝑓𝑖,000 (0)〉𝑎 |𝑙 ⟩𝐴′′ ⊗𝜑 (4)𝑖𝑙
. (16)

This allows us to derive the semantics of G by continuing
from Eq. (14) as:�

G
□𝑣†

�
↦−−−−−−→

∑
𝑖

𝛾𝑖

∑
𝑙

𝛾
(4)
𝑖𝑙

|𝑖 ⟩𝐶 |000⟩𝐴′
��𝑓𝑖,000 (0)〉𝑎 |𝑙 ⟩𝐴′′ ⊗𝜑 (4)𝑖𝑙

(17)

�
G
𝑣†

�
↦−−−−−→

∑
𝑖

𝛾𝑖

∑
𝑙

𝛾
(4)
𝑖𝑙

|𝑖 ⟩𝐶 |000⟩𝐴′ |0⟩𝑎 |𝑙 ⟩𝐴′′ ⊗𝜑 (4)𝑖𝑙
(18)

�
G
𝑣†□

�
↦−−−−−−→

∑
𝑖

𝛾𝑖

∑
𝑖′ 𝑗𝑘𝑙

𝛾
(3)
𝑖𝑖′ 𝑗𝑘𝑙

��𝑖′〉
𝐶
|000⟩𝐴′ |0⟩𝑎 |000⟩𝐴′′ ⊗𝜑 (3)𝑖𝑖′ 𝑗𝑘𝑙 (19)

Here, Eq. (17) follows by plugging Eq. (16) into Eq. (14). Then,
Eq. (18) follows because gate(𝑣†) = gate(𝑣)† inverts the
actions of 𝑣 . Finally, Eq. (19) follows analogously to Eq. (15),
by observing that no gate node in G𝑣†□ relies on the value
of 𝑎.

Observing that Eq. (19) demonstrates Eq. (5) concludes the
proof. □

Lemma B.1. For a given circuit graph and set of ancillae,

for any choice of total order in Alg. 1, Lin. 3, the result of the

Unqomp procedure will be the same.

Proof. We first prove a restriction of this lemma: for a given
circuit graph and set of ancillae, for two total orders in Alg. 1
that only differ by a swap of two adjacent nodes, the result
of the Unqomp procedure will be the same.

Take such a circuit graph𝐺 , set of ancillae𝐴 and two total
orders <1 and <2. <1 and <2 are the same except for two
nodes 𝑣 and 𝑤 : 𝑣 <1 𝑤 but 𝑤 <2 𝑣 . We now consider the
application of Unqomp using those two total orders on𝐺 and
𝐴. Up to the uncomputation of 𝑣 and 𝑤 , both applications
of the procedure are exactly the same and fail iff the other
fails. Besides, as both <1 and <2 respect the edges of 𝐺 yet
order 𝑣 and 𝑤 differently, we know that there is no path in
𝐺 between 𝑣 and 𝑤 . Specifically, 𝑣 and 𝑤 target different
qubits, and cannot be controls of one another. Hence in both
applications of the procedure, 𝑣★,𝑤★ and their updated ctrl

sets are the same. After the uncomputation of both 𝑣 and
𝑤 , the resulting graphs hence have the same nodes and set
of control and target edges. They are exactly the same, and
have cycles iff the other has one as well. The rest of the
uncomputation is then again the same, concluding the proof
of the restricted lemma.

Using the restricted lemma, we can prove the more general
one: for any two total orders on 𝐺 , we can go from one to

the other through swap of adjacent nodes, and applying the
restricted lemma at each step.

□

C Evaluation Details
For the code comparison, no comments or blank lines were
counted. All programs contain the initialization of quantum
registers and circuits, and an extra line for uncomputation
when necessary.

For circuit size comparison to Qiskit, the parameters for
each of the examples are:
• Adder: 12 qubits for each operand, and 12 for the result

as well
• Deutsch-Jozsa: 10 control qubits, MCX as an oracle,

returning true iff the value is 1111111111;
• Grover’s algorithm: 10 control qubits, MCX as an ora-

cle, returning true iff the value is 1111111111;
• IntegerComparator: 12 control qubits, comparing to
𝑖 = 40;
• MCRY: 12 control qubits, rotation angle 𝜃 = 2;
• MCX: 12 control qubits;
• Multiplier: 12 qubits for each operand, and 12 for the

result as well
• PiecewiseLinearR: 12 control qubits, function break-

points are [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14], both coefficients
and offsets are [1, 2, 3, 4, 3, 4, 3, 4, 5, 6, 4];
• PolynomialPauliR: 8 control qubits, polynomial coeffi-

cients are [1, 2, 3, 4, 5, 4, 1, 2, 3, 4, 5];
• WeightedAdder: 12 control qubits, values for sum are
[1, 2, 3, 2, 5, 6, 5, 3, 4, 5, 8, 2];

For circuit size comparison to Quipper, the parameters for
each of the examples are:
• Adder: 4 qubits for each operand, and 4 for the result

as well
• Deutsch-Jozsa: 10 control qubits, MCX as an oracle,

returning true iff the value is 1111111111;
• Grover’s algorithm: 10 control qubits, MCX as an ora-

cle, returning true iff the value is 1111111111;
• IntegerComparator: 4 control qubits, comparing to
𝑖 = 4;
• MCX: 10 control qubits;
• Multiplier: 4 qubits for each operand, and 4 for the

result as well
• WeightedAdder: 4 control qubits, 6 for the output, val-

ues for sum are [15, 15, 15, 15];
The complete gate and qubits counts used in Tab. 2 are

shown in Tab. 4 and Tab. 5.

Unqomp: Synthesizing Uncomputation inQuantum Circuits PLDI ’21, June 20–25, 2021, Virtual, Canada

Table 4. Number of gates and qubits in Qiskit and Unqomp circuits

Benchmark Qiskit library Unqomp

qubits all gates CX gates qubits all gates CX gates
Adder 36 706 310 36 464 200
Deutsch-Jozsa 19 181 54 19 181 54
Grover 19 8562 2550 19 8562 2550
IntegerComparator 24 390 126 24 270 66
MCRY 23 49144 24568 24 202 68
MCRY ∗ 23 392 132 24 202 68
MCX 23 195 66 23 195 66
Multiplier 60 10812 4656 59 6972 2868
PiecewiseLinearR 35 14082 4926 25 8328 2870
PolynomialPauliR 18 76361 37192 16 14863 5124
PolynomialPauliR ∗ 18 26729 9244 16 14863 5124
WeightedAdder 24 5406 2394 27 3090 1086
WeightedAdder ∗ 24 4446 1626 27 3090 1086
WeightedAdder alt. impl. 24 5406 2394 24 3738 1302
WeightedAdder alt. impl. ∗ 24 4446 1626 24 3738 1302

Table 5. Number of gates and qubits in Quipper and Unqomp circuits.

Benchmark Quipper Unqomp

qubits all gates CX gates qubits all gates CX gates
Adder 23 388 150 19 171 57
Deutsch-Jozsa 20 293 109 19 181 54
Grover 20 14262 5150 19 8562 2550
IntegerComparator 8 111 37 8 66 18
MCX 20 271 109 19 159 54
Multiplier 29 552 226 19 692 284
WeightedAdder 87 2630 948 19 1300 448
WeightedAdder alt. impl. 87 2630 948 16 1372 472

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum States
	2.2 Quantum Circuits

	3 Problem Statement
	4 Overview
	4.1 Circuit Graphs
	4.2 Uncomputation

	5 Circuit Graphs
	5.1 Motivation and Definition
	5.2 From Circuits to Circuit Graphs
	5.3 Circuit Graph Semantics
	5.4 Compilation to Circuit

	6 Synthesizing Uncomputation
	6.1 Unqomp
	6.2 Incompleteness
	6.3 Correctness of Unqomp

	7 Evaluation
	7.1 Evaluated Algorithms
	7.2 Q1: Code Length
	7.3 Q2: Modularity
	7.4 Q3: Efficiency

	8 Related Work
	9 Conclusion
	References
	A Operations on Circuit Graphs
	A.1 Splitting
	A.2 Composing

	B Correctness Proof of Unqomp
	C Evaluation Details

