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Abstract
We present a new approach for learning programs from noisy
datasets. Our approach is based on two new concepts: a regularized
program generator which produces a candidate program based on a
small sample of the entire dataset while avoiding overfitting, and a
dataset sampler which carefully samples the dataset by leveraging
the candidate program’s score on that dataset. The two components
are connected in a continuous feedback-directed loop.

We show how to apply this approach to two settings: one where
the dataset has a bound on the noise, and another without a noise
bound. The second setting leads to a new way of performing
approximate empirical risk minimization on hypotheses classes
formed by a discrete search space.

We then present two new kinds of program synthesizers which
target the two noise settings. First, we introduce a novel regularized
bitstream synthesizer that successfully generates programs even in
the presence of incorrect examples. We show that the synthesizer
can detect errors in the examples while combating overfitting –
a major problem in existing synthesis techniques. We also show
how the approach can be used in a setting where the dataset grows
dynamically via new examples (e.g., provided by a human).

Second, we present a novel technique for constructing statistical
code completion systems. These are systems trained on massive
datasets of open source programs, also known as “Big Code”. The
key idea is to introduce a domain specific language (DSL) over
trees and to learn functions in that DSL directly from the dataset.
These learned functions then condition the predictions made by the
system. This is a flexible and powerful technique which generalizes
several existing works as we no longer need to decide a priori on
what the prediction should be conditioned (another benefit is that
the learned functions are a natural mechanism for explaining the
prediction). As a result, our code completion system surpasses the
prediction capabilities of existing, hard-wired systems.

Categories and Subject Descriptors I.2.5 [Artificial Intelligence]:
Programming Languages and Software; I.2.2 [Artificial Intelli-
gence]: Automatic Programming; D.2.3 [Software Engineering]:
Coding Tools and Techniques

Keywords Program Synthesis, Big Code, Statistical Code Com-
pletion, Anomaly Detection, Regularization, Noisy Data
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Figure 1. Learning programs from noisy data.

1. Introduction
This paper presents a new approach for learning programs from
noisy datasets. While there has been substantial work over the last
few decades on learning programs from examples (e.g., [18, 19]),
these approaches cannot adequately deal with incorrect input as
they attempt to satisfy all examples, thus overfitting to the data.
This means that when the dataset is noisy, they either fail to return a
program or produce the wrong program. Post-mortem ranking tech-
niques do not help as they simply end up ranking incorrect solu-
tions. Other synthesizers have limited support to discover incorrect
examples when the synthesis procedure on all examples fails [12],
but are specific to a particular domain of programs. The field of ma-
chine learning (ML) has extensively studied the problem of learn-
ing functions from noisy data. However, the space of programs (hy-
potheses in ML terms) is vastly more complex than the usual para-
metric models (e.g., linear separators, neural networks) typically
considered in machine learning. When the hypothesis space is sim-
pler, one can afford to perform optimization over the (continuous,
and potentially convex) parameter space and the entire dataset, an
optimization task that is computationally infeasible in the (discrete)
setting of complex program predictions.

Our work The approach presented in this work, illustrated in
Fig. 1, enables learning of programs from a noisy dataset D of ar-
bitrary size. The technique is based on several new concepts. First,
a dataset sampler carefully selects (small) samples with specific
properties from D. Second, a regularized program generator pro-
duces a program given the selected sample in a way which con-
trols the complexity of the solution and avoids over-fitting. The
two components are linked together in a feedback directed way,
iterating until the desired solution pk is found. As we show in the
paper, this approach can serve as a basis for constructing a range of
prediction engines given a noisy dataset D.

Quantifying noise To systematically instantiate our approach, we
consider both cases for quantifying the noise in the dataset: the case
where we have a bound on the noise and the case where the noise is
arbitrary. In the first case, we also provide optimality guarantees on
the learned program. In the second case, we approach the learning



problem with a fast, scalable algorithm for performing approximate
empirical risk minimization (ERM) [21], bridging the fields of
applied program synthesis and machine learning. Our setting in fact
raises new challenges from a machine learning perspective as here,
ERM is performed not on the whole data at once as in traditional
ML, but on carefully selected (small) samples of it.

Synthesis with noise To illustrate how our concepts apply, we
present two new kinds of synthesizers targeting the different noise
settings. First, we present a synthesizer for bit-stream programs,
called BITSYN, where we dynamically add examples, possibly
with some errors, until we produce the desired program. Second,
for the case of large datasets, we present DEEPSYN, a new kind of
statistical synthesizer that learns probabilistic models from “Big
Code” (a dataset of programs available in repositories such as
GitHub [10]) and makes predictions (i.e., code completion) based
on this model. Our prediction engine generalizes several existing
efforts (e.g., [16, 30]) and is able to make predictions beyond the
capability of these systems. Importantly, as our predictions are
conditioned on program elements, they are easy to understand and
justify to a programmer using DEEPSYN, a capability missing in
approaches where the prediction is based on weights and feature
functions, and is not human understandable.

Detecting noise While not the primary goal, we believe this work
represents a new way for performing anomaly detection: besides
the learned program, the algorithm in Fig. 1 can return the set of
examples dk the program does not satisfy (these represent the po-
tential anomalies). Our approach is unlike prior work which either
assumes the program is already provided [5] or require statistical
assumptions on the data [6].

Main contributions Our main contributions are:

• A new approach for learning programs from noisy datasets of
arbitrary size. The key concepts are a dataset sampler which
carefully samples the dataset, and a regularized program gener-
ator which avoids overfitting, with both components linked in a
feedback directed loop.
• An instantiation of the approach to two settings: one where we

place a bound on the noise in the dataset, and another where the
error bound is unknown.
• Our second instantiation leads to a new way of performing ap-

proximate ERM on hypotheses classes consisting of a discrete
search space (traditionally, ML considers hypotheses classes
defined via a continuous parameterization).
• Two variants of a bit-stream synthesizer, illustrating how to

use our techniques in an interactive programming-by-example
setting as well as anomaly detection.
• A new method for constructing statistical code completion en-

gines from “Big Code” (which deal with the unbounded noise
setting). This method introduces a DSL over trees and learns
loop-free functions in the DSL. The learned functions control
the predictions (and thus, can explain a prediction), generaliz-
ing much prior work where the prediction is “hard-wired”.
• A complete implementation and evaluation of BITSYN and

DEEPSYN, showing their effectiveness in handling a variety of
noise settings, a capability beyond that of existing approaches.

We believe this is the first comprehensive work that deals with
the problem of learning programs from noisy datasets, and repre-
sents an important step in understanding the trade-offs arising when
trying to build program synthesis engines that deal with noise.
Based on the techniques presented here, one can investigate how
to adapt and extend many of the existing programming-by-example
and synthesis engines to deal with noise.

Paper outline The rest of the paper is structured as follows. In
Section 2 we introduce our synthesis algorithm and show some
of its important properties. Then, the paper continues with two
possible settings for the noise: (i) sections 3 and 4 apply our ap-
proach to synthesis with bounded noise on bit-stream programs and
(ii) sections 5, 6 and 7 apply our approach to synthesis with un-
bounded noise for constructing statistical code completion engines
from “Big Code”. In Section 8 we discuss related work. The paper
concludes with Section 9.

We provide additional resources such as source code and test
data online at http://www.srl.inf.ethz.ch/noise.php.

2. General Approach
In this section we present our general approach for learning pro-
grams from datasets with incorrect (noisy) examples. We show how
to instantiate this approach in later sections.

2.1 Problem Formulation
LetD be a dataset consisting of a set of examples and P be the set of
all possible programs. The objective is to discover a program in P
which satisfies the examples in D. In practice however, the dataset
D may be imperfect and contain errors, that is, contain examples
which the program should not attempt to satisfy. These errors
can arise for various reasons, for instance, the user inadvertently
provided an incorrect example in the dataset D, or the dataset
already came with noise (of which the user may be unaware of).

Fundamentally, because we are not dealing with the binary
case of correct/incorrect programs and need to deal with errors,
we introduce a form of a cost (risk) function associated with the
program to be learned from the noisy dataset.

Let r : P(D) × P → R be a cost function that given a dataset
and a program, returns a non-negative real value that determines the
inferiority of the program on the dataset. In machine learning terms,
we can think of this function as a generalized form of empirical risk
(e.g., error rate) associated with the data and the function. In the
special case typically addressed by PBE systems (e.g., [18, 19]), the
function returns either 0 or 1, that is, the program either produces
the desired output for all inputs in the given dataset, or it does not.
Later in the paper, we discuss several possibilities for the r function
depending on the particular application.

Problem statement The learning problem is the following:

find a program pbest = arg min
p∈P

r(D, p)

That is, the goal of learning is to find a program whose cost on
the entire dataset is lowest (e.g., makes the least number of errors,
or minimizes empirical risk as in Section 5). We note that while
in general there could be many programs with an equal (lowest)
cost, for our purposes it suffices to find one of these. It is easy to
instantiate this problem formulation to the specific, binary case of
synthesis from examples, where r returns 1 if some example in D
is not satisfied and 0 otherwise. A challenge which arises in solving
the above problem is that the dataset D may be prohibitively large,
or simply infinite (e.g., may need to continually ask a user for
samples of the dataset) and thus trying to directly learn the optimal
program pbest that satisfies the dataset D may be infeasible.

2.2 Our Solution: Iterative Synthesis Algorithm
The key idea of our solution is to start with a small sample of
the dataset D and to iteratively and carefully grow this sample
in a way which allows finding a good solution with a few, small-
sized samples. Our solution consists of two separate components:
a program generator and a dataset sampler. We continually iterate
between these two components until we reach a fixed point and the
desired program is found.

http://www.srl.inf.ethz.ch/noise.php


Input: Dataset D, initial (e.g. random) dataset ∅ ⊂ d1 ⊆ D
Output: Program p
begin

progs← ∅
i← 0
repeat

i← i+ 1
// Dataset sampling step
if i > 1 then

di ← ds(progs, |di−1|+ 1)
end
// Program generation step
pi ← gen(di)
if found program(pi) then

return pi
end
progs← progs ∪ {pi}

until di = D;
return ”No such program exists”

end
Algorithm 1: Program Synthesis with Noise

Program generator For a finite dataset d ⊆ D, a program gener-
ator is a function gen : P(D)→ P defined as follows:

gen(d) = arg min
p∈P

r(d, p)

To reduce the (expensive) invocation of gen(d), in our predic-
tion algorithm, we aim for a size of the dataset d that is as small as
possible.

Dataset sampler The second component of our approach is what
we refer to as the dataset sampler ds : P(P)× N→ P(D):

ds(progs, n) = d′ with |d′| ≥ n
That is, a dataset sampler takes as input a set of programs (and a

bound on the minimum size of the returned sample) and produces a
set of examples which are then fed back into the generator. We will
see several instantiations of the data sampler later in the paper.

Iterative sampling We connect the program generator and data
sampler components in an iterative loop. The resulting algorithm
is shown in Algorithm 1. At every iteration of the loop, the algo-
rithm checks if the current program pi is a satisfactory solution
and can be returned (in later sections, we discuss instantiations of
found program). If the current program pi is not the right one, we
sample from the dataset D using the current set of explored pro-
grams progs, obtaining the next dataset di. Note that while the
size of the sample di is greater than the size of the previous sample
di−1, there is no requirement that di is a superset of di−1 (i.e., the
sets may be non-comparable). Once we have obtained our new sam-
ple di, we use the sample to generate the new candidate program
pi. In case the program pi is not the desired one, the algorithm
continues and adds pi to the progs set and continues iterating.

2.3 Reduction of Search Space
First, note that Algorithm 1 always terminates if the dataset D is
finite. This is because the size of the dataset di increases at every
step until it eventually reaches the full dataset. However, our goal
is to discover a good program using only a small dataset di.

To achieve this, we leverage the dataset sampler to carefully
pick small datasets. Consider the first dataset d1. Since this dataset
may be random, let us assume that any possible program p1 can
be returned as a result. If p1 was not the desired program, we
would like to select the next dataset d2 to be such that p1 cannot be
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Figure 2. Trimming the space of programs (a) for noise-free
synthesis and (b) for synthesis with noise.

returned at the next step by gen(d2). In general, we would like that
at step i, gen(di) /∈ {pj}i−1

j=1. We illustrate this scenario in Fig. 2
(a). Here, we have three explored programs p1, p2 and p3 which
are pruned away by the current dataset. The figure also shows the
space of remaining candidate programs (in ) that can possibly be
generated by gen. This space excludes all three generated programs
as well as any programs removed as a result of pruning these three.
Indeed, existing synthesis approaches that do not deal with noise
(e.g., [18]) typically prune the search space as shown in Fig. 2(a).

Unlike the noise-free setting where a binary criteria for pruning
a generated program p exists, when the data contains noise, we
cannot immediately decide whether to prune p. The reason is that
even though p may make a mistake on a given example, at an
intermediate point in the algorithm we may not know whether
another, even better program on D exists. What this uncertainty
means is that we may need to keep p in the candidate program
space for longer than a single algorithmic iteration. This raises the
following question: which programs are kept and which ones are
removed from the candidate set?

Reduction of search space To address this question, at every
iteration of the synthesis algorithm, we aim to prune some of the
generated programs (and conversely, keep the remaining ones). In
particular, we keep a generated program p if it is within ε distance
of pbest, that is, r(D, p) ≤ r(D, pbest) + ε. In Fig. 2(b), the area
shaded with around pbest denotes the set of programs within
distance ε of pbest. The space reduction process is illustrated in
Fig. 2(b). Here, the first two explored programs p1 and p2 fall
outside the accepted area and are thus permanently pruned from
the candidate space. The score of the latest generated program p3,
however, is within ε of pbest and is thus kept as a viable candidate
to be returned. At this point, the algorithm can return p3 or keep
searching further, hoping to find better scoring programs than p3.
We also require that ε ≥ 0 ensuring completeness: we always keep
the best program pbest in the candidate space of programs.

In what follows, we describe dataset samplers which enable
pruning of the search space in the manner described above.

2.4 Hard Dataset Sampler (dsH )
We introduce an instance of the dataset sampler ds used in Algo-
rithm 1 as follows:

Definition 2.1 (Hard dataset sampler). A hard dataset sampler is
a function dsH such that for Q ⊆ P, d′ = dsH(Q,min size), it
holds that ∀p ∈ Q. r(D, p) ≤ r(d′, p) and |d′| ≥ min size.

Note that the hard dataset sampler always exists as we can
trivially set d′ = D. For our synthesizer, we always invoke the
hard dataset sampler with Q = progs (the current set of generated
programs). The meaning of the hard dataset sampler is that for all
programs in Q, the cost on the returned dataset d is higher or equal
than on the full dataset D.



In principle, this definition generalizes the concept of providing
more examples in noise-free synthesizers. Without noise, r(d, p)
simply returns 0 if the program p satisfies all examples in d and 1
if p does not satisfy some example in d. The hard dataset sampler
in the noise-free case generates (e.g., by asking questions to the
user) a dataset d′ such that for all explored programs progs, an
unsatisfied example is in d′ if an unsatisfied example exists in D.

Using the hard dataset sampler, we now state a theorem which
ensures that the generated program pi at step i does not appear in a
subset of the explored programs outside certain range beyond pbest.
That is, pi cannot be the same as any previously generated pj that
is outside of the area in Fig. 2(b).

Theorem 2.2. Let E = {p1, . . . , pi−1} be the set of programs
generated up to iteration i of Algorithm 1, where the dataset sam-
pler ds satisfies Definition 2.1.
If ε ≥ r(di, pbest) − r(D, pbest), then pi = gen(di) /∈ E′ where
E′ = { p ∈ E | r(D, p) > r(D, pbest) + ε }
Proof: Let p ∈ E′. Because r(D, p) > r(D, pbest) + ε and from
the definition of ε : ε + r(D, pbest) ≥ r(di, pbest), we know
that r(D, p) > r(di, pbest). Now, because di = ds(E, ) and
ds satisfies Definition 2.1, r(di, p) ≥ r(D, p). Then, we have
shown that r(di, p) > r(di, pbest). Because pi = gen(di) and
gen(di) = arg minp′∈P r(di, p

′), it follows that pi 6= p. Thus, we
prove that pi /∈ E′.

The above theorem is useful when we know the bound ε on the
best program pbest. If we can show a smaller value of ε, the areas
marked in and around pbest will also be smaller and we can
then provably trim the search space further. Using this theorem, we
can stop the synthesis algorithm as soon as we generate a program
pi that is already in the explored set. As a result of the theorem, we
will know that such a pi is within a distance of at most ε from pbest.

In Section 3 we consider a case where ε = 0 and then Theo-
rem 2.2 provides even stronger guarantees at every step of Algo-
rithm 1: all previously generated candidate programs that are not
pbest are eliminated from future consideration. For cases where we
cannot obtain bounds on the best program pbest, we next define a
different dataset sampler.

2.5 Representative Dataset Sampler (dsR)
First, we define a measure of representativeness for dataset d with
respect to the full dataset D on a set of programs Q ⊆ P.

Definition 2.3 (Representativeness measure).

repr(Q,D, d) = max
p∈Q
|r(D, p)− r(d, p)|

The measure of representativeness says how close are the costs
of the programs in Q on the dataset d with respect to their costs on
the full dataset D. The metric is set to the maximum difference in
costs since our goal for the dataset d is to be a representative of D
for all programs. Then, we define a dataset sampler as follows:

Definition 2.4 (Representative dataset sampler).

dsR(Q, size) = arg min
d⊆D,|d|=size

repr(Q,D, d)

Similar to the hard dataset sampler (Definition 2.1), in step i of
Algorithm 1 we always use the set of programs Q = progs.

Analysis Note that the repr measure is a non-negative function
that is minimized by dsR. If d′ = dsR(Q, size) is such that
repr(Q,D, d′) = 0 then the produced dataset is perfectly rep-
resentative. In this case dsR is a hard dataset sampler, because
∀p ∈ Q. r(D, p) = r(d′, p).

The question then is: why do we attempt to achieve r(D, p) =
r(d′, p) instead of r(D, p) ≤ r(d′, p) as in Definition 2.1? If we

perform our analysis using Theorem 2.2, then we must find as small
as possible value ε ≥ 0 such that ε ≥ r(di, pbest) − r(D, pbest).
However, instead of minimizing r(di, pbest)− r(D, pbest), in dsR

we minimize |r(di, pj) − r(D, pj)| for programs pj already ex-
plored up to step i (i.e. j ∈ 1..i−1). Arguably, the incorrect exam-
ples may behave similarly on all programs, but in the general case
we cannot find a bound ε for Theorem 2.2.

Instead, we give a different argument about eliminating some,
but not all of the already explored programs.

Theorem 2.5. Let E = {p1, . . . , pi−1} be the set of programs
generated up to iteration i of Algorithm 1.
Let pk = arg minp∈E r(D, p) be the best program explored so far.
Let δ = repr(Q,D, di) be the representativeness measure of di.
Then pi = gen(di) /∈ E′ where:
E′ = { p ∈ E | r(D, p) > r(D, pk) + 2δ }
Proof: Let p ∈ E′. From Definition 2.3, |r(di, p) − r(D, p)| ≤ δ
and thus r(di, p) ≥ r(D, p)− δ. Using a similar argument for pk,
we obtain that r(di, pk) ≤ r(D, pk)+δ. Then r(di, pk) < r(di, p)
and thus p 6= arg minp′∈P r(di, p

′) and p 6= pi = gen(di).
Note that the setE′ has the same shape as in Theorem 2.2 except

that here we consider pk (best program so far) instead of pbest (best
program globally), and instead of ε we have 2δ.

What this theorem says is that the programs E′ ⊆ E that
were already generated and are worse than pk ∈ E by more than
twice the representativeness measure δ of the dataset di cannot
be generated at step i of Algorithm 1. We can also instantiate
the condition for cutting the space discussed earlier: r(D, p) ≤
r(D, pbest) + ε and visualize Theorem 2.5 in Fig. 2(b) as follows:
take p3 = pk and let x = r(p3,D) − r(pbest,D) be the distance
between pk and pbest. Then take ε = x + 2δ. Thus, programs p1
and p2 are worse than pbest by more than ε and are permanently
removed from the program search space.

In case δ = 0, we can see that all programs in E worse than
the (locally) best program pk ∈ E will be eliminated. Still, this is
a weaker guarantee than for the case where ε = 0 in Theorem 2.2.
Later we will show that dsR works well in practice, but in general
it is theoretically possible that Algorithm 1 with dsR makes no
progress until a dataset of a certain size is accumulated.

2.6 Cost Functions and Regularization
So far, we have placed few restrictions on the cost function r and we
defined the synthesis problem to be such that lower cost is better.
We now list concrete cost functions considered later in the paper:

• num errors(d, p) returns the number of errors a program p
does on a dataset of examples d.

• error rate(d, p) = num errors(d,p)
|d| is the fraction of the ex-

amples with an error. A related metric used in machine learning
is the accuracy, which is 1− error rate.
• Other measures weigh the errors done by the program p on the

dataset d according to their kind (e.g., perplexity is one possible
such measure).

Regularization We also use a class of cost functions known as
regularized cost metrics. If r is a cost metric, its regularized version
is rreg(d, p) = r(d, p)+λ ·Ω(p). Here, λ is a real-valued constant
and Ω(p) is a function referred to as a regularizer. The goal of the
regularizer is to penalize programs which are too complex. Note
that the regularizer does not have access to the dataset d, but only
to the given program p. In practice, using regularization means we
may not necessarily return the program with the least number of
errors if a much simpler program with slightly more errors exists.
In Section 5.1, we justify the use of regularization in the context of
empirical risk minimization.



3. The Case of Bounded Noise
In this section, we show how to instantiate Algorithm 1 for the case
where we can define a bound on the noise that the best program
pbest exhibits.

Definition 3.1 (Noise Bound). We say that εk is a noise bound for
samples of size k if for the program pbest:

∀d ⊆ D.|d| = k ⇒ εk ≥ r(d, pbest)− r(D, pbest)

For example, if r , error rate and D contains at most one
incorrect example, then ε10 = 0.1 is a noise bound, because for any
sample d ⊆ D of size |d| = 10, the error rate is at most 0.1, but the
error rate on the entire datasetD may be lower. Another interesting
case is if r , num errors and pbest has at most K errors on the
examples in D. Then a noise bound for any k is εk = 0 because no
dataset d ⊆ D has more errors than the full dataset D. Note that
using regularization is an orthogonal issue and does not affect the
noise bound, because the regularizer Ω(pbest) cancels out in the
inequality of Definition 3.1.

We can easily instantiate Theorem 2.2 when a noise bound
εk is available by setting ε = εk in the theorem’s precondition
ε ≥ r(di, pbest)− r(D, pbest) (here, k = |di|).
Derived termination criterion Using Theorem 2.2 and the hard
dataset sampler allows us to derive a possible termination criterion
for Algorithm 1. In particular, if our desired program pdesired is
such that r(D, pdesired) ≤ r(D, pbest) + εdesired (i.e., it is worse
than the best program by at most εdesired), then if the following
stopping criterion triggers:

found program(pi) , (pi ∈ progs) ∧ ε|di| ≤ εdesired
the algorithm will produce pdesired.

This criterion follows from Theorem 2.2 because if a program
pi ∈ progs (i.e., it was already explored previously), then pi
was not excluded from the search space and thus it must be that
r(D, pi) ≤ r(D, pbest) + ε|di| (i.e., pi ∈ ).

Bound on the number of errors We next consider an interesting
special case where we know that for the best program pbest, there
are at most K incorrect examples in D that it does not satisfy.
Note that we only need to know a bound, not the exact number
of errors the best program makes. In this case, we propose to use
the following cost function:

rK(d, p) = min(num errors(d, p),K + 1)

That is, we count the number of unsatisfied examples and cap
the cost at K + 1, thus we do not distinguish programs or datasets
with more than K errors. Since we know that the best program has
at most K errors, in Definition 3.1, we can show that εk = 0 (for
any k) is a valid bound. In this case, we can also obtain a stopping
criterion with εdesired = 0 by using:

found program(pi) , pi ∈ progs
Thus, we get the stronger guarantees as in Fig. 2 (a) and ensure

that upon termination the algorithm produces the program pbest.

Discussion We note the meaning of the hard dataset sampler
when r , num errors. Then, the requirement for a program p
of r(d, p) ≥ r(D, p) from Definition 2.1 means that sample di
must contain all errors in D – naturally, this may lead to a dataset
that is too big.

By knowing the cap K and using a cost function r , rK , we
restrict the sampler to always include exactly K + 1 unsatisfied
examples in order to eliminate pi as a candidate for the next step,
because we know that pbest has at most K errors. In this setting,
knowing a boundK in advance allows the dataset sampler to insert
only the necessary number of samples in the small datasets di.

In the next section, we present an implementation of a synthe-
sizer for bitstream programs with a bound on the number of errors
as considered here.

4. BITSYN: Bitstream Programs from Noisy Data
In this section we show how to instantiate the approach presented
earlier to the problem of building a programming-by-example
(PBE) engine able to deal with up to K incorrect input/output ex-
amples in its input data set for the best program pbest. To illustrate
the process, we chose the domain of bitstream programs as they
are well understood and easy to implement, allowing us to focus on
studying the behavior of Algorithm 1 in a clean manner. We believe
many synthesis engines are good candidates for being extended to
deal with noise (e.g., synthesis of floating point functions [28] or
data extraction [20]).

The setting We consider two scenarios: (1) the dataset D is ob-
tained dynamically and the noise is bounded (i.e., up to K errors),
and (2) the dataset D is present in advance and may contain an un-
known number of errors. Interestingly, the second scenario is useful
beyond synthesizing programs, in this case, for anomaly detection.

We created a synthesizer called BITSYN that generates loop-
free bit manipulating code from input/output examples. The pro-
grams generated by BITSYN are similar to those produced in Jha et
al [18]. We use a library of instructions for addition, bitwise logical
operations, equality, less than comparison and combine them into
a program that takes 32-bit integers as input and outputs one 32-bit
integer. The program may use registers to store intermediate val-
ues. The goal of the synthesizer is to take a number of input/output
examples and generate a program.

4.1 Program Generator with Errors
A key quality of BITSYN is that it includes a program generator that
may not satisfy all provided input/output examples. This may serve
multiple purposes as we discuss later. Let us consider the following
example input/output pairs:

d1 = {{2→ 3}, {5→ 6}, {10→ 11}, {15→ 16}, {−2→ −2}}

All examples except for {−2 → −2} describe a function that
increments its input. A problem with existing PBE engines in this
case is that they succeed in generating a program even if it was not
the desired one, e.g. by producing the following code:

pa = return input + 1 + (input >> 8)

Note that providing more examples would not necessarily help
discover or solve this problem. The user may in fact get lucky by
getting into a situation where the synthesizer fails to produce a pro-
gram, however if the hypothesis space of programs (e.g., which
operators is the engine allowed to use) is not very constrained,
this program can overfit to the incorrect examples. Later we quan-
tify this problem. The problem of overfitting to the data (i.e., in-
put/output examples) occurs in multiple mathematical and machine
learning problems where the provided specification does not permit
exactly one solution, for example when dealing with noise.

We combat overfitting by introducing regularization to the cost.
We define a function Ω: P → R+ that punishes overly complex
programs p by returning the number of instructions used. For our
example, Ω(pa) = 3 since pa has three instructions (two + and one
>>). Then, we create a program generator that minimizes:

rreg(d, p) = error rate(d, p) + λ · Ω(p).

The value λ ∈ R is a regularization constant that we choose
in evaluation. The higher the regularization constant is, the more
importance we place on producing small programs. In our example,
if λ > 0.1, the cost rreg of the following pb program will be lower



Number of Number of errors (K)
instructions 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 9

Program Number of input/output examples needed Synthesis time (seconds)

P1 2 4 4 10 7 9 11 14 16 17 22 1.11 1.17 1.98 1.51 1.80 7.33 102.76
P2 2 5 6 6 7 11 12 15 19 20 22 1.21 1.48 1.79 2.70 2.45 12.96 72.37
P3 3 4 4 9 10 8 13 15 16 17 21 1.75 1.81 4.42 8.63 9.20 40.62 156.09
P4 2 2 4 7 8 9 10 13 15 17 19 1.05 1.19 1.56 3.07 4.01 11.34 12.30
P5 2 3 3 9 9 10 10 14 16 20 22 1.08 1.10 1.84 3.45 9.38 11.64 139.75
P6 2 4 5 10 9 10 11 13 17 20 22 1.18 1.51 2.70 3.50 10.60 12.44 91.49
P7 3 5 5 7 9 11 12 15 19 20 22 1.80 2.20 2.77 5.15 12.65 21.62 117.16
P8 3 5 5 10 10 8 12 13 16 20 19 1.90 2.44 4.41 4.47 5.15 26.62 41.46
P9 3 3 timeout 2.58 timeout timeout timeout timeout timeout timeout

Table 1. Number of input/output examples needed by BitSyn to synthesize the correct program (program taken from [18, 35])
depending on the number of errors in the examples as well as the synthesis time with the respective number of errors.

than the cost of pa on the dataset d1:

pb = return input + 1

Implementation We implemented BITSYN using the Z3 SMT
solver [9]. At each query to the SMT solver, we encode the set
of input/output examples d = {xi}ni=1 in a formula based on the
techniques described in [18]. In each formula given to the SMT
solver, we encode the length of the output program (called Ω later)
and we additionally encode a constraint for the number of allowed
errors. Let χi be a formula that is true iff example xi ∈ d is
satisfied. Then, to encode a constraint that allows up to T errors,
we must satisfy the following formula:

Υ ≡ T ≥
n∑

i=1

if χi then 0 else 1

To find the best scoring solution, we make multiple calls to the
SMT solver to satisfy Υ by iterating over the lengths of programs
and the number of allowed incorrect input/output examples T or-
dered according to the cost of the solution and then return the first
obtained satisfiable assignment of instructions.

4.2 Case 1: Examples in D Are Provided Dynamically
A common scenario for programming-by-example engines is when
the input/output examples are obtained dynamically, either by in-
teractively asking the user or by querying an automated reasoning
engine. Ultimately, this means that the entire dataset D is not di-
rectly observable by the program generator (in fact, the dataset may
be infinite). In this case, the synthesizer starts with a space of can-
didate programs and narrows that space by dynamically obtaining
more examples.

For this setting, we designed a hard dataset sampler using the
cost function rK as described in Section 3. Our dataset sampler
attempts to create a dataset di+1 with K + 1 unsatisfied examples
for each program in the set of candidate programs explored so far
progs = {pj}i−1

j=1. Generally, incorrect examples can be readily
obtained automatically from an SMT solver (or another tool). When
the tool is used interactively, the user needs to answer questions
until the desired number of errors is reached (that is, here, the user
takes an active part in the work of the dataset sampler).

Evaluation Our goal was to check if BITSYN can synthesize
the correct program in the presence of errors. Towards this, we
implemented a simulated user that provides examples using a hard
dataset sampler with a known bound on the incorrect examples.
We aimed to answer the following research questions: (1) up to
how many errors does BITSYN scale for synthesizing solutions?,
and (2) how many (more) examples does BITSYN need in order to
compensate for the incorrect examples? For our evaluation, we took

a number of programs from [18], on which an existing synthesizer
without noise could generate solutions within a few seconds. These
are the programs P1-P9 from the Hacker’s Delight book [35], also
evaluated in previous works [13, 18].

We summarize our results in Table 1. For each program, we
tried settings with different numbers of incorrect examples. We first
supplied the incorrect examples and then started supplying correct
examples. In each cell in the left part of Table 1, we list the to-
tal number of input/output examples needed to obtain the correct
result. In the right part of Table 1, we list the time needed to com-
plete each synthesis task. Our results can be summarized in two
areas: (1) overall, adding incorrect input/output examples compli-
cates the program synthesis task. For tasks P1−P8, each synthesis
task completes within our timeout of 300 seconds. Task P9 did not
scale since it needs bit-shift operations and their presence leads to
difficult formulas for the Z3 solver, and (2) the number of necessary
input/output examples overall increases with an increased number
of errors, but only slightly. Further, in some cases, the number of
needed examples stays constant when introducing more errors. This
motivated us to ask the question explored next, which is whether
the tool is useful beyond synthesis, but also for detecting incorrect
examples (i.e., anomaly detection).

4.3 Case 2: All Examples in D Are Given in Advance
As a side question not directly related to Algorithm 1, we wanted
to understand how well the regularized program generator in BIT-
SYN detects incorrect examples in the setting where the datasetD is
fully available. Here, we provide all our examples to a regularized
generator and ask if the unsatisfied examples are exactly the incor-
rect ones. Such a setting of finding a model that describes data and
then detects outliers in the model is called anomaly detection [6].
Note that our approach is very different from recent work [5] which
considers a more restricted case where the program is already fully
available before the process of anomaly detection starts.

Evaluation We evaluate the anomaly detection capability of BIT-
SYN depending on the regularization constant λ and the number of
samples present in D. For this experiment, we created data sets
D of various sizes and introduced an incorrect example in each of
them. Then, we looked at how often the synthesized program did
not satisfy exactly the incorrect examples. We summarize the re-
sults in Fig. 3. The figure visualizes the conditions under which
the anomaly detection is effective on our test programs (P1-P9).
Every cell in the diagram of Fig. 3 says how often a given output
occurs. The cells with denote that the synthesizer successfully
satisfied the provided examples, including the incorrect one. This
case typically occurs with no or low regularization. This means that
synthesizers that fail to take noise into account will easily overfit to
the incorrect example and return valid, but incorrect programs.



No example removed (overfitting to incorrect example)

Too many examples removed (overregularizing for simple programs)

Noisy example correctly detected
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Figure 3. Ability of BitSyn to detect an incorrect example for
programs (P1-P9) depending on total number of examples and
regularization constant λ.

On the other hand, using too much regularization may bias BIT-
SYN towards producing too simple programs that do not satisfy
even some of the correct examples. We denote this with the pat-
tern . The darker a pattern, the more often the corresponding is-
sue occurs. In the white areas of the graph, BITSYN reliably discov-
ers the incorrect input/output example. For this to happen reliably,
our results show that we need a dataset with more than 10 examples
and a regularization constant λ between 0.05 and 0.1.

5. Handling Unbounded Noise
In this section, we investigate the case where we have no bound
on the amount of noise in the dataset D. The key idea is to view
the problem of learning a program from a noisy dataset as an
empirical risk minimization (ERM) task over a discrete search
space of programs. In fact, our approach can be seen as a new way
of performing approximate ERM on a discrete search space.

Next, we first review the concept of ERM and the guarantees
provided by statistical learning theory. In this case, we restrictD to
be a set obtained from a probability distribution S over examples
W , that is,D ⊆ W . In what follows, our cost function r is set to be
the empirical risk function (discussed below). Then, in Section 5.2,
we present our (novel) approach to performing approximate ERM.

5.1 Empirical Risk Minimization
Let ` : P × W → R≥0 be a function, such that for p ∈ P and
w ∈ W , `(p, w) quantifies the loss (amount of inaccuracy) when
applying program p to example w. Later in Section 6.4 we show an
example of a loss function. Our task is to synthesize a program
p∗ ∈ P that minimizes the expected loss on example w drawn
i.i.d. from distribution S (we assume w.l.o.g. S(w) > 0 for all
w ∈ W). I.e., we seek to minimize the risk (defined in terms of the
expectation of the function):

R(p) = Ew∼S [`(p, w)],

i.e. find the program:

p∗ = arg min
p∈P

R(p)

As a concrete example, `(p, w) could be 0 if p produces the “cor-
rect” output forw and 1 if it is incorrect. In this setting,R(p) corre-
sponds to the expected number of mistakes that pmakes on random
example w. Moreover, R(p) = 0 iff it is “correct” (i.e., produces
the correct behavior on all examples in S). As another example, p
could produce real-valued outputs, and `(p, w) could measure the
squared error between the correct output and the actual output.

There are two problems with computing p∗ using the above
approach. First, since S is unknown, the risk R(p) cannot even be
evaluated. Second, even if we could evaluate it, finding the best

program is generally intractable. To address these concerns, we
make two assumptions. First, we assume we are given a sample
D of examples drawn i.i.d. from S. We can approximate the risk
R(p) by the empirical risk, i.e.,

remp(d, p) =
1

|d|
∑
w∈d

`(p, w)

Then, we assume (for now) that we have an “oracle”, an algorithm
that can solve the empirical risk minimization (ERM) problem

pbest = arg min
p∈P

remp(D, p).

The above equation is in fact an instance of the problem stated in
Section 2.1.

Guarantees Standard arguments from statistical learning theory
[21] now guarantee that, for any ε, δ > 0, if our dataset of ex-
amples D is big enough with respect to the space of programs
([23, Chapters 7.3,7.4]), then it holds for the solution pbest that
R(pbest) ≤ R(p∗) + ε, with probability at least 1 − δ (over the
random sampling of the dataset) [23]. Hence, the best-performing
program on the dataset is close (in risk) to the best program over
all of S. This is because under the above conditions, the empirical
risk approximates the true risk uniformly well, i.e., for all p ∈ P it
holds that |R(p)− remp(D, p)| ≤ ε.

Regularization ERM solution can overfit if the dataset is not
large enough [21]. Overfitting means that R(p∗)� R(pbest), i.e.,
the ERM solution has much higher risk than the optimal program.
This often happens when the space of programs P under consider-
ation is very complex, i.e., the solution could overfit by “memoriz-
ing” the training data and fail on other examples. As a remedy, a
common approach is to apply regularization: i.e., instead of mini-
mizing the empirical risk, one modifies the objective function by:

rreg(d, p) = remp(d, p) + λΩ(p)

Hereby, Ω : P → R≥0 is a function (called regularizer), which
prefers “simple” programs. For example, Ω(p) could count the
number of instructions in p, i.e., a program is “simpler” if it con-
tains fewer instructions. Note that the regularizer does not depend
on the data set, it only depends on the program. The regularization
parameter λ, which controls the strength of our simplicity bias, is
usually optimized over using a process called cross-validation. In
the following, we use the notation remp and refer to minimizing it
as ERM, whether or not we are applying regularization.

5.2 Using Representative Dataset Sampler
The complexity of solving ERM is heavily dependent on the size
of the datasetD. This is due to the fact that evaluating remp or rreg
gets more expensive (since we need to sum over more examples).

To enable ERM on the large datasetD, we use Algorithm 1 with
a representative dataset sampler dsR and a program generator that
solves ERM on small datasets. Our goal here is to sample subsets
d1, d2, . . . dm ⊆ D, with the property that solving ERM on these
subsets leads to good solutions in terms of the (intractably large)
dataset D. Our goal upon termination of the synthesis procedure is
to obtain a program pm for which:

remp(D, pm) ∈ [remp(D, pbest), remp(D, pbest) + ε]

Then, recall that R(pbest) ≤ R(p∗) + ε to obtain that the resulting
solution pm will have risk at most 2ε more than p∗. On the other
hand, by exploiting the fact that we can solve ERM much faster on
small datasets di, we can find such a solution much more efficiently
than solving the ERM problem on the full dataset D (which can
also be practically infeasible). This instantiation is a new approach
of performing approximate ERM over discrete search spaces.



6. DEEPSYN: Learning Statistical Code
Completion Systems

In this section we present a new approach for constructing statisti-
cal code completion systems. Such statistical code completion sys-
tems are typically trained on a large corpus of programs (i.e., “Big
Code”) and are used to generate a (probabilistically) likely com-
pletion of a given input program. Currently, the predictions made
by existing systems (e.g., [16, 24, 30]) are “hard-wired” (see Sec-
tion 8 for further discussion), limiting their expressiveness and pre-
cision and requiring changes to this hard-wired strategy for dif-
ferent kinds of predictions. The approach presented here cleanly
generalizes these existing approaches.

While not obvious, we will see that the problem of synthesizing
a program from noisy data appears in this setting as well, and thus
the general framework of synthesis with noise discussed so far also
applies here. However, unlike the first-order setting described in
Section 4 where the data is simply a set of input-output examples
and the learned program tries to explain these examples and predict
new examples, the learned program in this section is second-order.
This means that the learned program does not predict its output
directly from the input, but instead is used as part of a probabilistic
model that performs the final prediction seen by the developer.

6.1 Preliminaries
To fix terminology, we will refer to the program that is to be com-
pleted as a tree (a shortcut for Abstract Syntax Trees). The rea-
son we choose trees as a representation of the program is because
trees provide a reasonable way to navigate over the program ele-
ments. We begin with a standard definition of context-free gram-
mars (CFGs), trees and parse trees.

Definition 6.1 (CFG). A context-free grammar (CFG) is the
quadruple (N,Σ, s, R) where N is a set of non-terminal symbols,
Σ is a set of terminal symbols, s ∈ N is a start symbol,R is a finite
set of production rules of the form α → β1...βn with α ∈ N and
βi ∈ N ∪ Σ for i ∈ [1..n].

In the whole exposition, we will assume that we are given a fixed
CFG: G = (N,Σ, s, R).

Definition 6.2 (Tree). A tree T is a tuple (X,x0, ξ) where X is a
finite set of nodes, x0 ∈ X is the root node and ξ : X → X∗ is
a function that given a node returns a list of its children. A tree is
acyclic and connected graph: every node except the root appears
exactly once in all the lists of children. Finally, no node has the root
as a child.

Definition 6.3 (Partial parse tree). A parse tree is a triple (T,G, σ)
where T = (X,x0, ξ) is a tree, G = (N,Σ, s, R) is a CFG, and
σ : X → Σ ∪ N attaches a terminal or non-terminal symbol to
every node of the tree such that: if ξ(x) = xa1 ...xan (n > 1), then
∃(α→ β1...βn) ∈ R with σ(x) = α and ∀i ∈ 1..n.σ(xai) = βi.

Note that the condition for a partial parse tree requires that the
tree follows the grammar production rules, but does not require all
leaves to be terminal symbols. Let the set of all partial parse trees
be PT . Next, we define what is a tree completion query.

Definition 6.4 (Tree completion query). A tree completion query
is a triple (ptree, xcomp, rules) where ptree = (T,G, σ) is
a partial tree (with T = (X,x0, ξ)), xcomp ∈ X is a node labeled
with a non-terminal symbol where a completion will be performed,
and rules = {σ(xcomp) → βi}ni=1 is the set of available rules
that one can apply at the node xcomp.

Using the above definitions, we can now state the precise prob-
lem that is solved by this section.

ptree = GetProp

PropertyObject

V ar

console

xcomp

rules:

Property → x
Property → y
Property → log
Property → info
...

Figure 4. A tree completion query (ptree, xcomp, rules) corre-
sponding to completion for the code: ”console”.

Problem statement The code completion problem we are solving
can now be stated as follows:

Given a query, select the most likely rule from the set of avail-
able rules and complete the partial tree ptree with it.

For the completions we consider, the right hand side β of each
rule is a terminal symbol (e.g., a single API). In principle, one can
make longer completions by iteratively chaining smaller ones.

Example: Field/API completion Consider the following partial
JavaScript code ”console.” which the user is interested in com-
pleting. The goal of a completion system is to predict the API call
log, which is probably the most likely one for console. Now con-
sider a simplified CFG that can parse such programs (to avoid clut-
ter, we only list the grammar rules):

GetProp → Object Property
Object → V ar | GetProp
V ar → console | document | ... (other variables)

Property → info | log | ... (other properties incl. APIs)

The tree completion query for this example is illustrated in Fig. 4.

6.2 Our Method: Second-order learning
The key idea of our solution is to synthesize a program which
conditions the prediction. That is, rather than statically hard-wiring
the context on which the prediction depends on as in prior work
(e.g., [16, 30]), we use the program to dynamically determine the
context for the particular query. For our example, given a partial
tree ptree and a position xcomp, the program determines that the
prediction of the API call should depend on the context console.

In our setting, a context c ∈ Context is a sequence ranging
over terminal and non-terminal symbols seen in the tree, as well as
integers. That is, Context = (N ∪Σ∪N)∗. We next describe our
method in a step-by-step manner and then elaborate on some of the
steps in more detail.

Step 1: Learn a conditioning program p≈best As a first step,
we will begin by learning the best (conditioning) program p≈best.
Indeed, it is in this first step of learning where the key concepts of
dataset sampling and program generation discussed earlier, arise.

Let d = {Xi, Y i}ni=1 be the training dataset of queries
Xi = (ptreei, xicomp, rules) along with their corresponding com-
pletions Y i ∈ rules. We assume that all examples in d solve the
same task (e.g., API completion) and thus they share rules. The
goal of this step is to synthesize the (approximately) best condi-
tioning program p≈best ∈ PT × X → Context that given a
query returns the context on which to condition the prediction. For
instance, for the example in Fig. 4, a possible program p could pro-
duce p(ptree, xcomp) = [console]. In Section 6.3, we present a
domain-specific language from which the conditioning program is
drawn while in Section 6.4 we elaborate on this step in detail.

Step 2: Learn a probabilistic model P (rule | context) After
p≈best is learned, we use the resulting program to train a proba-
bilistic model. Given our training dataset d as described above, we
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Figure 5. (a) TCond program pa = Left WriteValue executed
on a partial tree producing [console], (b) rules with their
probabilities conditioned on [console], (c) the final completion.

Ops ::= ε | Op Ops

Op ::= WriteOp | MoveOp

WriteOp ::= WriteValue | WritePos | WriteAction

MoveOp ::= Up | Left | DownFirst | DownLast | PrevDFS |

PrevLeaf | PrevNodeType | PrevActor

Figure 6. The TCond language for extracting context from
trees.

next apply p≈best to every query in the training data, obtaining a
new data set (here Qi = (ptreei, xicomp)):

H(d, p≈best) = {(p≈best(Qi), Y
i) | ((Qi, rules), Y

i) ∈ d}

The derived data set consists of a number of pairs where each
pair {(ci, ri)} indicates that rule ri is triggered by context ci ∈
Context. Based on this derived set, we can now train a proba-
bilistic model using MLE training (maximum likelihood estima-
tion) which estimates the true probability P (r | c). The MLE
estimation is standard and is computed as follows:

PH
MLE(r | c) =

|{i | (ci, ri) ∈ H, ci = c, ri = r}|
|{i | (ci, ri) ∈ H, ci = c}|

The MLE simply counts the number of times rule r appears in
context c and divides it by the number of times context c appears.
As we will see later in Section 6.4, MLE learning as described
above is also used in step 1.

Step 3: Dynamic prediction Once we have learned the condition-
ing program p≈best and the probabilistic modelP (rule | context),
we use both components to perform prediction. That is, given a
query (ptree, xcomp, rules), we first compute the context ctx =
p≈best(ptree, xcomp). Once the context is obtained, we can use
the trained probabilistic model to select the best completion (i.e.,
the most likely rule) from the set of available rules:

rule = arg max
r∈rules

PH
MLE(r | ctx)

To illustrate the prediction on an example, consider the query
shown in Fig. 5 (a) (this is the same query as in Fig. 4, repeated here
for convenience). In this example, the program p≈best consists of
two instructions: one moves left in the tree and the other one writes
the element at the current position (we will see exact semantics of
these instructions in Section 6.3). When applied to the given query,
the program produces the context ctx consisting of the sole symbol
console. Once the context is obtained, we can simply look up the
probabilistic model PH

MLE to find the most likely rule given the
context (we list some of the rules and their probability in Fig. 5
(b)). Finally, we complete the query as shown in Fig. 5 (c).

6.3 TCOND: Domain Specific Language for Tree Contexts
We now present a domain specific language, called TCOND, for
expressing the conditioning function p. The language is loop-free
and is summarized in Fig. 6. We next provide an informal introduc-
tion to TCOND. Every statement of the language transforms a state
υ ∈ PT ×X × Context. The state contains a partial tree, a posi-
tion in the partial tree and the (currently) accumulated context. The
partial tree is not modified during program execution but position
and the context may be.

The language has two types of instructions: movement (MoveOp)
and write instructions (WriteOp). The program is executed until
the last instruction and the accumulated context is returned as the
result of the program.

Move instructions change the node in a state as follows:
(ptree, node, ctx)

MoveOp−−−−→ (ptree, node′, ctx). Depending on the
operation, node′ is set to either the node on the left of node (for
Left), to the parent of node (for Up), to the first child of node
(for DownFirst), to the last child of node (for DownLast), to
the last leaf node in the tree on the left of node (for PrevLeaf),
to the previous node in depth-first search traversal order of the
tree (for PrevDFS). When node is a non-terminal symbol, the
PrevNodeType instruction moves to the previous non-terminal
symbol of the same type that is left of node.

Write instructions update the context of a state as follows:
(ptree, node, ctx)

WriteOp−−−−→ (ptree, node, ctx · x), where depend-
ing on the instruction, different value x is appended to the context.
For the WriteValue instruction, the value of the terminal symbol
below node is written (if there is one, otherwise x = −1). For the
WritePos instruction, if parent is the parent node of node, then
x is set to the index of node in the list of the children of parent.

The PrevActor and WriteAction instructions use a simple
lightweight static analysis. If node denotes a memory location
(field, local or global variable, that we call actor), PrevActor
moves to the previous mention of the same memory location in the
tree. Our static analysis ignores loops, branches and function calls
thus previous here refers to the occurrence of the memory location
on the left of node in the tree. WriteAction writes the name of
the operation performed on the object referred by node. In case the
object referred by node is used for a field access, WriteAction
will write the field name being read from the object. In case the
object node is used with another operation (e.g., +), the operation
will be recorded in the context. An example of a program execution
was already discussed for the example in shown in Fig. 5 (more
examples can be seen in Fig. 9 (c), discussed later).

For a program p ∈ Ops, we write p(ptree, xcomp) = ctx to
denote that (ptree, xcomp, ε)

p−→ (ptree, node′, ctx).

6.4 Learning p≈best

We next describe step 1 of our method in greater detail. The key ob-
jective of this step is to synthesize a conditioning program p≈best.
In fact, as we will see in Section 7.4, several existing code com-
pletion systems [16, 30] can be seen as hard-wired programs p for
specific tasks. We now define what it means for a synthesized pro-
gram p to perform well (i.e. we define our cost function r) and then
we describe the program generator and the representative dataset
sampler dsR that we use for Algorithm 1.

Building a probabilistic model As described earlier, we are
given a dataset d = {Xi, Y i}ni=1 of queries Xi where Xi =
(ptreei, xicomp, rules), along with their corresponding comple-
tions Y i ∈ rules. For a program p and a dataset d we can then
derive a new data set by applying the program to every query in
d, obtaining the resulting context, and storing that context and the



given prediction together as a tuple, i.e., Qi = (ptreei, xicomp):

H(d, p) = {(p(Qi), Y
i) | ((Qi, rules), Y

i) ∈ d}
Let us partition the given dataset d into two non-overlapping

parts – dtrain and deval. We then obtain the derived (training)
set Ht(d, p) = H(dtrain, p) from which we build a probability
distribution PHt(d,p)

MLE as outlined earlier.

Scoring the probabilistic model To evaluate the probabilistic
model, we use the measure of perplexity of the derived (evalua-
tion) set He(d, p) = H(deval, p) on the learned model PHt(d,p)

MLE .
Log-perplexity is a measure of how many bits we need to encode
the evaluation data with the model from the training data and pro-
vides insight not only on the error rate, but also how often a result
is at a high rank and is produced with high confidence. In an empir-
ical risk minimization setting, we use the log-perplexity to define
the loss function on a single example (ctx, rule):

`perp(p, (ctx, rule)) = − log2 P
Ht(d,p)
MLE (rule | ctx)

Based on this loss function, we now define regularized empirical
risk rregperp as in Section 5.1:

rregperp(d, p) =
1

|He(d, p)|
∑

w∈He(d,p)

`perp(p, w) + λ · Ω(p),

where Ω is a regularizer function that returns the number of instruc-
tions in p. For all our experiments, we use λ = 0.05.

Program generators and dataset samplers Using the cost func-
tion rregperp(d, p), we can now define the rest of the components
and plug them into Algorithm 1. For our implementation, we use
approximate versions of a program generator and a representative
dataset sampler realized with random mutations and genetic pro-
gramming.

An approximate program generator gen≈ takes a dataset di and
an initial program pi−1. Then, the program generator keeps a list of
candidate programs and iteratively updates the list in the following
manner. First, gen≈ takes one candidate program, then performs
random mutations on the instructions of the program, scores the
modified program on the given dataset di and then it adds it to the
list. Using a genetic-programming like procedure, gen≈ randomly
removes from the list candidate programs that score worse than an-
other candidate program. After a fixed number of iterations, gen≈
returns the best scoring program pi ≈ arg minp∈P rregperp(di, p).

Our approximate dataset sampler dsR≈ keeps tracks of the
costs on the full dataset D for all programs {pj}i−1

j=1 generated
by gen≈. Once a new program pj is generated, dsR≈ computes
rregperp(D, pj). Then, using a genetic-programming like proce-
dure dsR≈ keeps a like of candidate dataset samples and iteratively
updates the list. At each iteration, dsR≈ takes a dataset and ran-
domly resamples its elements (such that the mutated dataset is
⊆ D), scores the dataset and adds it to the list. Then dsR≈ randomly
removes from the list candidate datasets that are less representative
than another candidate dataset. After a fixed number of iterations
dsR≈ returns the dataset di ⊆ D which is approximately the most
representative for progs = {pj}i−1

j=1 according to Definition 2.4.

Termination condition We have chosen a time-based termination
condition. After some fixed time limit for training expires, we
return the (approximately) best learned program p≈best obtained
up to that moment. This is, from the programs p1, ..., pm produced
up to the time limit by Algorithm 1, we return as p≈best the one
that has the best cost on the full dataset D.

Smoothing An important detail for increasing the precision of the
system is using smoothing when computing the maximum likeli-
hood estimate at any stage of the system. In our implementation,

Training data D

sample di ⊆ D

candidate program pi

dsR≈ gen≈

Train full system

D

p≈best

D

Algorithm 1

Figure 7. Overall diagram of learning a statistical code com-
pletion system using DeepSyn.

we use Witten-Bell interpolation smoothing [36]. Smoothing en-
sures our system performs well even in cases when a context was
not seen in the training data. Consider for example looking for the
probability of PMLE(rule | c1c2c3) which is a complex context
of three observations in the tree. If such a context was not seen
in the training data, to estimate reasonable probabilities we back-
off to a simpler context with only c1c2 in it. Then, we expect to see
more dense data in estimating PMLE(rule | c1c2). To enable such
backoff in PMLE(rule | c1c2), at training time PMLE counts the
events conditioned on the full context and conditioned on all the
prefixes of the full context.

6.5 Summary of Approach
To summarize, our approach to learning consists of two steps sum-
marized in Fig. 7. In the first step, we learn the conditioning
program p≈best. That is, given a dataset D, we first use Algo-
rithm 1, gen≈ and dsR≈ to find a program p≈best for which the cost
rregperp(D, p) is minimized. Then, in the second step, we a learn
a probabilistic model PH(D,p≈best)

MLE over the full dataset D and the
program p≈best (discussed earlier).

This model, together with p≈best can then be used to answer
field/API completion queries from the programmer. We show in
Section 7.1 that the speed-up from Algorithm 1 equipped with a
representative dataset sampler lead to high accuracy of the resulting
statistical synthesizer.

7. Evaluation of DEEPSYN
Based on Section 6, we created a statistical code completion system
for JavaScript programs. This is a particularly hard setting for
code completion systems as unlike in other languages (e.g., Java)
where type information is easily available and is of significant help
(e.g., as in [30]), in JavaScript, obtaining precise aliasing and type
information is a difficult task (stressing the prediction capabilities
of the system in the presence of noise, even further). The concrete
task we consider is “dot” completion: given a receiver object, the
completion should predict the field name or the API name that
should be used on the object. All our experiments were performed
on a 2.13 GHz Intel Xeon E7-4830 32-core machine with 256 GB
of RAM, running 64-bit Ubuntu 14.04. To benefit from the amount
of cores, we implemented the gen≈ and dsR≈ procedures to evaluate
multiple candidate programs or datasets in parallel.

To train and evaluate our system, we collected JavaScript
programs from GitHub, removed duplicate files or project forks
(copy of another existing repository) and kept only programs that
parse and are not obfuscated. As a result, we obtained 150, 000
JavaScript files. We used two thirds of the data for learning, and the
last one third only for evaluation.

7.1 Learning p≈best

We now discuss our training procedure. The first question we may
ask is if using Algorithm 1 with a representative dataset sampler
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Figure 8. Effect of various data sampling policies used to find
TCond programs.

(dsR≈) is of any benefit to the speed or precision of the system. To
answer this question, we designed a number of system variants:

• DEEPSYN(gen≈ with dsR≈) is our system as described Fig. 7.
For this system, we start with a random sample of 100 programs
and then through the loop of Algorithm 1, we modify the sam-
ple to be more representative.
• gen≈ on full data is a system that directly optimizes the pro-

gram on the full dataset D. Because each evaluation takes a
long time, this system can only try a smaller number of candi-
date programs and finds only very imprecise programs.
• gen≈ on fixed sample is a system that starts with a random

sample of 100 programs and optimizes the program only on
the small sample. This policy has the time budget to explore a
large number of programs, but is unable to provide reasonable
score for them. It quickly reaches a cap on what can be learned
on the small dataset.
• gen≈ with randomly increasing sample is a system that starts

with a small random sample and iteratively increases its size. It
performs no optimization of the sample for representativeness,
just adds more elements to it.

The results summarized in Fig. 8 illustrate the effectiveness of
each of the four approaches. Each plot gives the rregperp of the
candidate program p≈best found by a system at a given time. Note
that lower values of log-perplexity are better and in fact are expo-
nentially better. The graph shows that our full DEEPSYN system
initially spends time to find the best sample, but then reaches the
best program of all systems. If provided with infinite time, gen≈
on full data will approach the optimal program, but in practice it is
prohibitively slow and has far worse performance.

We note that the synthesizer with randomly increasing sample
appears to find a reasonable program faster than when using dsR≈.
The reason for this is that this procedure did not evaluate its re-
sult on the full dataset dataset (we evaluated the programs after
the procedure completed). If we include the time to evaluate the
candidate programs, this setting would not be as fast as it appears.

Next, we take the best program obtained after one hour of
computation by DEEPSYN and analyze it in detail.

7.2 Precision of DEEPSYN

Once we obtain the best TCOND program, we create a completion
system based on it, train it on our learning dataset and evaluate
it on the evaluation dataset. For each file in the evaluation dataset
we randomly selected 100 method calls and queried our system to
predict the correct completion one at a time. Given the evaluation
dataset of 50, 000 programs, this resulted in invoking the prediction

Size of training data (files)
Task 1K 10K 100K

DOM APIs on document object
correct completion at position 1 63.2% 69.2% 77.0%
correct completion in top 3 90.1% 84.6% 89.9%
correct completion in top 8 83.5% 88.6% 92.9%

Unrestricted API completion
correct completion at position 1 22.6% 34.2% 50.4%
correct completion in top 3 30.8% 44.5% 61.9%
correct completion in top 8 33.6% 47.7% 64.9%

Field (non-API) completion
correct completion at position 1 21.0% 29.7% 38.9%
correct completion in top 3 26.3% 37.0% 48.9%
correct completion in top 8 28.0% 38.8% 51.4%

Table 2. Accuracy of API method and object field completion
depending on the task and the amount of training data.

of 2, 537, 415 methods for any API and 48, 390 methods when
predicting method calls on DOM document object.

The accuracy results are summarized in Table 2. The columns
of the table represent systems trained on different amounts of train-
ing data. The right-most column trains on all 100, 000 JavaScript
programs in the training set and the columns on the left use a subset
of this data. Different rows on Table 2 include information for dif-
ferent tasks. On the task of predicting DOM APIs on the document
object, the APIs are shared across all projects and the accuracy is
higher – the correct completion is the first suggestion in 77% of
the cases. When we extend the completion to any APIs, including
APIs local to each project that the model may not know about, the
accuracy drops to 50.4%. Finally, when used on non-API property
completions, our completion system predicts the correct field name
as a first suggestion in 38.9% of the cases.

7.3 Interpreting p≈best

A key aspect of TCOND programs is that they are easily readable
by a human. The best program is listed with its instructions in Fig. 9
(a). Let us illustrate what this program does on a JavaScript code
completion query from Fig. 9 (b). Going instruction by instruction,
Fig. 9 (c) shows the execution. First, the program moves to the left
of the completion position in the tree (i.e., to the receiver object of
the completion). Then, it moves to the previous usage of the same
object (PrevActor), writes the action being done on the project
(i.e., the name of the field of API invoked). Next, it writes the name
of the variable (if any) and moves to the previous usage of the same
object, etc. Finally, at instruction 9, it cannot move anymore and
the program stops and returns the accumulated sequence so far. For
our example, the program accumulates the following context:

querySelectorAll document querySelectorAll show

7.4 Comparison to Existing Systems
We note that previous works essentially use a hard-coded tree con-
ditioning program. In some of the works immediate context is
used – the non-terminals directly preceding the completion loca-
tion [1, 16]. Other works hardcode the move to the previous API
on the receiver object and condition on the API. Such knowledge
is key in [30] and [24]. In fact, we mimic the behavior of [30] with
a TCOND program and show that our best synthesized program is
superior. The context in [24] is more complex than a sequence (it is
a graph), but in their experiments, even in a simpler setting within
one project they report lower accuracy than our system.

Note that these statistical code completion systems target Java,
which makes it much easier to perform static program analysis
(e.g., type analysis, alias analysis). Despite these differences, we



if (show) {
var cws = document.querySelectorAll(...);
for (var i = 0, slide; slide = cws[i]; i++) {

slide.classList.add("hidden");
}
var iap = document.querySelectorAll(...);
for (var i = 0, slide; slide = iap[i]; i++) {

slide.classList.add("hidden");
}
var dart = document.

... Completion position
}

(b) JavaScript code snippet

p≈best =

Left PrevActor WriteAction WriteValue
PrevActor WriteAction PrevLeaf
WriteValue PrevLeaf WriteValue

(a) TCond program

(c) Execution of p≈best on the AST representation of the code snippet from (b)
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1.Left

2.PrevActor

4.WriteValue

3.WriteAction
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6.WriteAction

7.PrevLeaf
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Figure 9. The (a) p≈best TCond program describing which parts of the code to condition on for an API method completion task,
(b) a JavaScript code snippet on which we want to perform API completion, and (c) a relevant part of the AST representation of
(b) where the execution of the TCond program from (a) is illustrated.

created TCOND programs that mimic the behavior of some of
these for JavaScript API completions. Next, we review these pro-
grams and compare their accuracy to DEEPSYN using the best pro-
gram p≈best in Fig. 9 (a). Recall that the accuracy on predicting
JavaScript APIs for this program is 50.4%.

Hindle et al. [16] use an 3-gram language model on the tokenized
program without doing any semantic analysis. This results in a
predictor for JavaScript APIs with accuracy of 22.2%. The program
that corresponds to this model is:

PrevDFS WriteValue PrevDFS WriteValue

Raychev et al. [30] perform a more complicated conditioning that
depends on the previous APIs of the same object as well as whether
the object was used as a receiver or as a method parameter. This
conditioning is captured in the following program:

Left PrevActor WriteAction WritePos
PrevActor WriteAction WritePos

The accuracy of this program for JavaScript APIs is 30.4%.

Variants of DEEPSYN In addition to the best possible program
p≈best, we include the programs generated by our tool with differ-
ent data sampling procedures.

• gen≈ on full data operates on the full data and within one hour
it could not learn to condition on previous APIs. The program
learned by this synthesis procedure is
Left DownLast WriteValue PrevNodeType DownLast
PrevDFS PrevLeaf WriteValue DownLast PrevLeaf
Left WriteAction PrevNodeType WriteValue

and results in 46.3% accuracy.
• gen≈ on fixed sample only learns a program from a small sam-

ple of 100 programs and results in a simple conditioning that
only depends on a single previous API. The resulting accuracy
for JavaScript API completion is 18.8% with the program
PrevDFS PrevActor WriteAction

• gen≈ with randomly increasing sample iteratively increases
the sample and results in a program that has accuracy of 47.5%
which is lower than our best accuracy of 50.4%. The program
generated by randomly increasing the sample size conditions
on one previous API, but the rest of the program is not optimal

Left PrevActor WriteAction
DownLast PrevActor PrevNodeType WriteAction
WriteValue Left PrevLeaf WriteValue

Summary Overall, we have shown that our approach of learning a
tree conditioning program in a domain specific language (TCOND)
exceeds the accuracy of systems where an expert hard-wired the
prediction, as used in previous systems. The accuracy is achieved
thanks to our general approach – a program generator that predicts
a program from a small dataset (gen≈) and a representative dataset
sampler that makes the small set behave similarly to the large
training data (dsR≈).

8. Related Work
As our work touches on several areas, below we survey some of the
existing results that are most closely related to ours.

Boolean program synthesis Over the last few years, there has
been an increased interest in various forms of synthesis. Examples
of recent techniques include synthesis from examples [18], partial
programs [32] and synchronization [34]. A more detailed survey of
the various approaches can be found here [11]. Generally, however,
these are approaches which attempt to satisfy all provided exam-
ples and constraints. Thus, they typically over-fit to the data, and as
a result, incorrect examples in the data set will lead to incorrectly
learned programs (or no programs at all). Some approaches come
with various fine-tuned ranking functions which assign preference
to the (potentially many) synthesized programs. However, regard-
less of how good the ranking function is, if the data set contains
even one wrong example, then the ranking function will be of lit-
tle use, as it will simply rank incorrect programs. In contrast, our
approach deals with noise and is able to synthesize desirable pro-
grams even in the presence of incorrect examples. It achieves that
via both, the usage of regularizers which combat over-fitting, and
smart, iterative sampling of the entire data set. As we showed in the
paper, a standard all-or-nothing synthesis approach can be extended
to incorporate and benefit from our techniques.

The work of Menon et al. [22] proposes to speed-up the synthe-
sis process by using machine learning features that guide the search
over candidate programs. This approach enables a faster decision



procedure for synthesizing a program, but fundamentally requires
all provided input/examples to be satisfied.

Quantitative program synthesis Another line of work is that of
synthesis with quantitative objectives [7, 33]. Here, it is possible to
specify a quantitative specification (e.g., a probabilistic assertion)
and to synthesize a program that satisfies that weaker specification
while maximizing some quantitative objective. In our setting, one
can think of the dataset D as being the specification, however, we
essentially learn how to relax the spec, and do not require the user
to provide it (which can be difficult). Further, our entire setting is
very different, from the iterative sampling loop, to the fact that even
if the specification can be fully satisfied, our approach need not
satisfy it (e.g., due to regularization constraints). In the future, it
may be useful to think of ways to bridge these directions.

Statistical code completion An emerging research area and one
related to our work is that of learning probabilistic models from a
large set of programs (i.e., “Big Code”) and using those models to
make statistical predictions for how a partial code fragment should
be completed. Existing systems are typically hard-wired to work
with a specific prediction strategy and are based on a simple token
completion via the n-gram language model [16], on tokens with
added annotations [25], other API calls [24, 30], expressions [14],
or tree substitutions in the AST [2]. Unfortunately, these systems
either have very low precision (e.g., [16]) or target restricted sce-
narios (e.g., APIs in [30]). Unlike these techniques, in our approach
the prediction can be conditioned on functions that are expressed
in a DSL and are learned from data, leading to better precision,
and better support for different kinds of completions (as we share
the same learning mechanism for any function in the DSL). Fur-
ther, because the predictions are conditioned on the context built
from evaluating a function, the justification behind a prediction is
understandable to a programmer using the system. Thus, our ap-
proach generalizes some of the existing works, is experimentally
more precise and the predictions are explainable to end users.

Discriminative learning In contrast to the generative learning
performed in this work, some applications may enjoy a much better
speed and precision with a discriminative model that performs clas-
sification without the need to build a probability distribution. One
such case is a model tailored specifically to predicting annotations
or variable names [29]. However, [29] cannot explain its predic-
tions in terms of a program and requires manually provided fea-
ture functions in advance whose weights it learns. Despite not per-
forming discriminative training, our approach essentially learns one
class of feature functions (or one model). A possible way to extend
our work is to enable learning a model that is a linear combination
of several of the best models that we currently learn. The weights of
such a linear combination can be then trained using structured sup-
port vector machine or another discriminative training procedure.
We note that using such a linear combinations of models was ap-
plied in machine translation and is part of the current state-of-the-
art systems [27]. We believe that extending this work to generate a
linear combination of programs is an interesting future work item.

Core sets A core set is a concept in machine learning used to
summarize a large data set into a smaller data set that preserves
its properties. Core sets were successfully applied in the context of
clustering such as k-means [15]. Obtaining core sets from a data set
is a procedure that is manually tailored to the particular problem
at hand (e.g., k-means), that is, there are currently no universal
techniques for constructing core sets for arbitrary programs. In
contrast, our work is not based on a specific algorithm or property
such as k-means. In fact, an ideal outcome of our sampling step
is to compute or approximate a core set of the training data. An
interesting question for future work is to explore the connection
between core sets and our iterative sampling algorithm.

Genetic algorithms Genetic programming has been proposed as
a general approach to explore a large set of candidates in order to
discover a solution that maximizes an objective function [4, 31].
The following work [8] discusses the language design decisions to
encode a program synthesis problem from input/output examples
into genetic programming. Some of the problems studied here in
terms of selecting subset of the evaluation data to score instances
were considered in the context of genetic programming. A tech-
nique known as stochastic sampling [3] reduces the number of eval-
uations by only considering random subsets of the training data. In
our experiments, however, we show that using our strategy of rep-
resentative sampling is superior than using random sampling.

Dataset cleaning A different approach for dealing with noisy
data is to clean up the data beforehand either with a statistical
model [6], or with an already given program [5]. These approaches,
however need additional statistical assumptions about the data or
specification of another program. In contrast, in this work, we
simultaneously build the cleaned dataset and the program.

Probabilistic programs A recent synthesizer PSketch [26] per-
forms synthesis of probabilistic programs by approximating the
program by a mixture of Gaussians. Fundamentally, probabilistic
programs interpret program executions as distributions and then for
the synthesis task is fits parameters to these distributions. Instead,
with our approach we learn deterministic programs that approxi-
mate a dataset well. In general, our idea of a dataset sampler should
be applicable also to learning probabilistic programs from data, but
we leave this as a future work.

Automatic configuration of algorithms ParamILS [17] picks a
configuration of an algorithm based on its performance on a dataset.
Similar to our approach, ParamILS attempts to speed-up the eval-
uation of a configuration by running on a small subset of the full
dataset, but only does so by picking a random sample.

9. Conclusion
We presented a new approach for learning programs from noisy
datasets of arbitrary size. We instantiated our approach to two im-
portant noise settings: the setting where we can place a bound on
the noise and the setting where the dataset contains unbounded
noise. We showed that the second setting leads to a new way of per-
forming approximate empirical risk minimization over hypotheses
classes formed by discrete search spaces. We then illustrated how
to instantiate the different noise settings for building practical syn-
thesizers that are able to deal with noisy datasets.

We first presented a synthesizer for bit-stream programs, called
BITSYN. Our experimental results with BITSYN indicate that in the
setting of bounded noise, our system returns the correct program
even in the presence of incorrect examples (and with only a small
increase in the number of necessary examples compared to the
setting without noise). We also showed that BITSYN is useful
for automatically detecting anomalies, without requiring an input
program or statistical assumptions on the data.

Second, we presented a new technique for constructing statisti-
cal code completion engines based on “Big Code” which general-
izes several existing works. The core idea is to define a DSL over
trees and to learn functions in this DSL from the dataset. These
learned functions then control the prediction made by the statistical
synthesizer. We implemented our technique in a code completion
system for JavaScript, called DEEPSYN, and showed that its pre-
dictions are more precise than existing works.

We believe this is the first comprehensive work that deals with
the problem of learning programs from noisy datasets, and can
serve as a basis for building new kinds of prediction engines that
can deal with uncertainty.
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