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Abstract
Operations of concurrent objects often employ optimistic
concurrency-control schemes that consist of a traversal fol-
lowed by a validation step. The validation checks if concur-
rent mutations interfered with the traversal to determine
if the operation should proceed or restart. A fundamental
challenge is to discover a necessary and sufficient validation
check that has to be performed to guarantee correctness.
In this paper, we show a necessary and sufficient condi-

tion for validating traversals in search trees. The condition
relies on a new concept of succinct path snapshots, which are
derived from and embedded in the structure of the tree. We
leverage the condition to design a general lock-free mem-
bership test suitable for any search tree. We then show how
to integrate the validation condition in update operations
of (non-rebalancing) binary search trees, internal and exter-
nal, and AVL trees. We experimentally show that our new
algorithms outperform existing ones.
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1 Introduction
Concurrent data structures are critical components of many
systems [26]. However, implementing them correctly and
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efficiently remains a difficult task [11]. This task is partic-
ularly challenging for search trees whose traversals may
be performed concurrently with modifications that relocate
nodes. Thus, a major challenge in designing a concurrent
traversal operation is to ensure that target nodes are not
missed, even if they are relocated. This challenge is ampli-
fied when a concurrent data structure is optimized for read
operations and traversals are expected to complete without
costly synchronization primitives (e.g., locks, CAS). Recent
work offers various concurrent data structures optimized for
lightweight traversals [1, 2, 4, 6–10, 12–14, 18, 19, 22, 25, 27].
However, they are mostly specialized solutions, supporting
standard operations, that cannot be applied directly to other
structures or easily extended with customized operations
(e.g., rotations). Thus, when customized tree operations are
needed, programmers resort to general locking protocols.
Unfortunately, these protocols yield non-scalable solutions.
We present a necessary and sufficient condition for path

traversal validation for search trees (PaVT). PaVT is applica-
ble to any search tree, including internal (all nodes have pay-
loads) and external trees (only leaves have payloads). Infor-
mally, the PaVT condition states that to determine whether a
certain key is in the tree, it suffices to observe only a limited
number of nodes that are the succinct path snapshot (SPS) of
the path leading to this key. Moreover, concurrent updates
may modify this path and the traversal may still complete
successfully if it has found the correct snapshot (Sec. 4).

We leverage PaVT to design a lock-free membership test
(Sec. 5). To validate the PaVT condition efficiently, we extend
nodes with their SPS, which precisely characterizes the path
by which they are reached from the root of the tree. The
existence of the SPS allows us to validate a lock-free traversal
(e.g., a lookup operation) – and to linearize that traversal
with respect to concurrent mutations – by verifying, locally,
that the SPS matches the path just taken by the traversal.
We then show how to use PaVT in updates (Sec. 6). An

update starts with a traversal and before validating, it blocks
concurrent updates to the snapshot (with a local lock) to
enable updates to proceed safely, if validation succeeds. We
show that this approach provides simple algorithms for in-
sertion and removal in binary search trees (BSTs).

Finally, we empirically evaluate the effectiveness of PaVT
(Sec. 7). We observe that SPSs impose only modest space
overhead and that maintaining them during tree mutations
imposes only modest time overhead. We also experimentally
show that the PaVT-ed BST and PaVT-ed AVL tree outper-
form existing solutions.

https://doi.org/10.1145/3178487.3178503
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2 Preliminaries and Challenges
The PaVT condition guides how to efficiently traverse in
search trees. Search trees consist of nodes. Each node n has
one or more keys, denoted by n.k1,n.k2, ... (or simply n.k
if there is one key) andm fields f1, ..., fm pointing to other
nodes. We assumem ≥ 2. In addition to them fields, a node
has access to its parent via n.P . Membership tests in trees
look for a key k and return a boolean indicating whether k
is in the tree. They start with a traversal that begins at the
root and proceeds to other nodes by repeatedly checking
conditions corresponding to the fields. The traversal termi-
nates when reaching ⊥ (i.e., null) or when no condition is
met. At this point, the membership test determines (tests)
whether k is in the tree. In a sequential setting, k is in the
tree if and only if the traversal has not reached ⊥.
Examples Fig. 1 shows examples for search trees. An in-
ternal binary search tree (BST) consists of nodes storing a
single key k and having two fields, L and R. Traversals begin
at n=root and proceed to the node pointed to by n.L, if n , ⊥
and k<n.k, or to n.R, if n , ⊥ and n.k<k. An external BST is
similar to internal BST except that payloads are kept only
at the leaves and the inner nodes serve as routing nodes;
thus, their keys often duplicate keys found at the leaves. A
ternary search tree consists of nodes storing at most two
keys k1,k2 and having three fields: L, M, and R. Traversals
begin at n=root and proceed to the node pointed to by n.L, if
n , ⊥ and k<n.k1, to n.M, if n , ⊥ and n.k1<k<n.k2, or to n.R,
if n , ⊥ and n.k2<k . A 2-D tree consists of nodes storing two
dimensional pairs, (x ,y), accessed by n.x and n.y. Each node
has two fields: L and R. Nodes also store the dimension they
represent: x or y, where subsequent nodes represent different
dimensions. A traversal for (x ,y) proceeds as follows. For
nodes representing the dimension x, the condition of L is
n.x > x and of R is n.x ≤ x , and for nodes representing y,
the conditions are n.y > y and n.y ≤ y (resp.). A trie consists
of nodes storing words and having an edge for each charac-
ter. The parent of a node with wordw is the node with the
largest prefix ofw (that is notw).
The Challenge of Concurrent Traversals In a concurrent
setting, inferring whether a key is in the tree based solely
on the traversal may be incorrect, since the traversal may
have read an inconsistent state of the tree. To illustrate this,
consider two threads A and B traversing the internal BST
depicted in Fig. 1(a). Assume A looks for 9 and pauses after
reading 12. Then, B executes a removal of 4 by relocating 9
in place of 4. When A resumes, it observes that 12 is a leaf,
indicating the traversal has ended. However, inferring from
this traversal that 9 is not in the tree is clearly incorrect.
Thus, in a concurrent setting, another step is added after
the traversal and before the test: a validation check. This
check determines whether the state the traversal observed is
consistent enough for the test. If not, the operation restarts.
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Figure 1. Succinct path snapshots (SPSs) in several trees.

Goal: Synchronization Free Traversals In this work, we
design two building blocks – a traversal and a validation
check – which do not require synchronization primitives.
An immediate result is a lock-free membership test. We fur-
ther show that these building blocks can be integrated into
updates. Updates begin like membership tests but may write
to the tree depending on the test result (indicating whether
an update is required). For correctness, they require that the
test result will not change while they write. We show that
this can be guaranteed by acquiring locks just before our
validation check, and not during the traversal. This imme-
diately benefits performance since traversals usually read
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a large number of nodes (unlike our validation check and
typical updates) and thus having to synchronize on these
nodes would incur a significant overhead.

In the rest of the paper, we assume the following:
• Each node has a marked flag, which is used (as com-
mon) to first logically remove a node before physically
changing the tree layout. The flag of a newly created
node is false. When a node is removed from the tree
(and eventually becomes unreachable), its marked flag
is set to true. For simplicity’s sake, marked flags are
never toggled back to false. If a node’s marked flag is
false, the node is said to be logically in the tree.
• Nodes’ keys are immutable. Thus, updating a node’s
key is possible only by creating a new node, linking it
in place of the old one, and marking the old one. This
property enables us to never recheck nodes’ keys but
rather check whether nodes are logically in the tree.
• Nodes that are logically in the tree are always reach-
able, even during modifications.

We further assume sequential consistency, though we be-
lieve our results can be extended in a straightforward fashion
to weaker memory models.

3 Overview
In this section, we informally explain the PaVT condition.

In general, a validation check determines whether a previ-
ously traversed path is still suitable for the key being looked
for or not, due to concurrent mutations. For example, in the
internal BST in Fig. 1(a), the path: P = (4,R), (12,L), (9,L) is
suitable for the keys k ∈ {5, ..., 8} but not for any other key.
More precisely, a path is suitable for a key k if the condition
associated with every node-field in the path (e.g., < n.k or
> n.k , in a BST) is met by k . To continue our example, for
every key k ∈ {5, ..., 8}, the conditions k > 4, k < 12, and
k < 9 are met. For any other key, at least one of these con-
ditions is violated. For example, for k = 3, k > 4 is violated.
Our main insight leverages the transitivity of the checked
conditions to identify, for every path, a minimal set of node-
field pairs, which is necessary and sufficient to guarantee
that the path is suitable for a key k . This set consists of the
maximal nodes with respect to the different conditions. We
call this set the succinct path snapshot (SPS). In our example,
the SPS is {(4,R), (9,L)}. Correctness follows since for every
node-field pair (n, f ) of the path, there is a pair (n′, f ) in the
SPS whose condition implies that the condition of (n, f ) is
met by k . In our example, for (4,R) and (9,L), clearly there
is a pair in the SPS whose condition implies their condition,
and as for (12,L), the pair (9,L) implies its condition: for any
key k for which k < 9, the condition k < 12 also holds.
The SPS is defined for any path in any search tree. For

example, consider a search(6) traversing the external BST
in Fig. 1(b). The suitable path is (3,R), (9,L), (9,L) and the

SPS is {(3,R), (9,L)} (for the lower 9). The PaVT condi-
tion holds: for every node-field pair in the path, there is
a pair in the SPS whose condition implies its condition,
for example, for the routing node (9,L), the leaf (9,L) is
in the SPS and it implies the condition of the routing node.
Consider now a search(6) traversing the ternary tree of
Fig. 1(c). The suitable path is ((1, 3),R), ((4, 9),M), ((7, 8),L)
and the SPS is {((4, 9),M), ((7, 8),L)}. Note that for ((1, 3),R),
the node ((4,9),M) implies its condition: if 4 < k < 9,
then k > 3. Consider now a search(x=4,y=3) travers-
ing the 2-D tree in Fig. 1(d). The suitable path is
((4, 4),R), ((6, 2),R), ((5, 6),L), ((4, 5),L). The corresponding
conditions are 4 ≤ x , 2 ≤ y, 5 > x , and 5 > y, respectively.
Since none of the conditions implies the other, here, the
SPS is identical to the path. Finally, consider a search(six)

traversing the trie in Fig. 1(e). The suitable path is (s, i), (si,x).
Since the condition checks whether the node’s word is a pre-
fix of the searched word, each node implies the condition of
its ancestors. Thus, in this example, the SPS is {(si,x)}.
We note that in internal BSTs, the SPS consists of prede-

cessor and successor pairs in the tree (with respect to the
total order of the keys). We have introduced this condition
in [12], where we showed that traversals for a key k can be
validated by checking k’s predecessor and successor in the
tree. In [12], we showed that this condition can be efficiently
checked by storing at every node its predecessor and suc-
cessor in the tree. Unfortunately, generalizing this condition
to other trees results in an inefficient condition. For exam-
ple, form-ary trees, this condition requires extending every
node with the predecessor and successor of each of its keys,
which increases memory consumption. For external trees,
where the predecessor-successor pairs are leaves and do not
share a path, this condition prevents updating concurrently
predecessor-successor pairs. This is too restrictive compared
to other concurrent algorithms that, for example, always al-
low concurrent insertions to leaves. Even worse, it is unclear
whether this condition is applicable for trees whose keys
do not adhere to total order, such as K-D trees (e.g., (3, 2) is
non-comparable to (2, 3)). In contrast, the PaVT condition
generalizes to arbitrary search trees.

4 The PaVT Condition
In this section, we formally define the PaVT condition. We
define it in four steps. First, we give a condition by which to
validate unsuccessful traversals (validating successful traver-
sals is easier, as we shortly explain). This condition relies on
having a set of nodes that are known to be on the same path
in the tree (at some moment). Second, we characterize the
minimal set of nodes that is required for this condition. This
set of nodes acts as the path snapshot. Third, we define suc-
cinct path snapshots (SPSs), which meet stronger conditions
compared to path snapshots. This definition enables us to
store (succinct) path snapshots at the last node of each path
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in order to obtain snapshots in a lock free fashion. This later
enables us to design a lock-free membership test. The suc-
cinct path snapshots can be seen as describing the paths that
are logically in the tree, even if due to concurrent mutations
the paths are temporarily broken. Finally, we show that the
PaVT condition is necessary: any validation condition that
does not check it may return incorrect results.
Preliminaries A traversal in a search tree T , TraverseT (k),
is the exhaustive application of an operation called
nextFieldT starting from the root (Algorithm 1). The op-
eration nextFieldT (n,k) takes a node in T and a key and
returns either (1) a field f indicating that if k is in T , it is
reachable from n.f or (2) ⊥ indicating that k is a key in n.
The nextFieldT (n,k) operation consists of a series of

condition-field pairs [c1 → f1], . . . , [cl → fl ] and it returns
the first field whose condition is met. A condition is a func-
tion from a node n and a key k to a boolean value. We write
c(n,k) = 1 if the condition c is met forn andk , and c(n,k) = 0
otherwise. We say that c(n,k) (logically) implies a condition
c ′ checked on n′ and k ′ if whenever c(n,k) = 1, c ′(n′,k ′) = 1.
The nextFieldT operation has the property that for every
node n and key k , at most one condition is met, regardless
of the evaluation order. We can thus refer to the condition
met in nextFieldT (n,k) (if exists). We assume that the con-
ditions do not use the “or” operand. This does not affect
generality since a condition of the form [(c1 or c2) → f ]
can be represented by two distinct conditions: [c1 → f ]
and [c2 → f ]. This also explains how different conditions
may return the same field (but not vice-versa). A positive
example for this case is the nextField2D (of the 2-D tree),
which for some nodes checks the x coordinate and for some
nodes checks the y coordinate, although eventually either L
or R is returned. We assume that for every node, there are
no two keys that meet different conditions but return the
same field. Another property of nextFieldT is that by the
construction of search trees, if a node n′ is reachable from
a node n via a field f , then nextFieldT (n,n

′.ki)= f for any
key ki in n′. In the following, we refer to this property as the
search trees’ property. For example, in the BST in Fig. 1(a),
the nodes 12 and 9 are reachable from the node 4 via R and
indeed nextFieldT (4,12)= R and nextFieldT (4,9)= R.
The PaVTCondition The PaVT condition determines when
it is safe to determine that a key is not in the tree. This is
the challenging decision because determining whether a key
is in the tree is done by looking for a node (logically in the
tree) that has this key. Our next theorem states the PaVT
condition. It states that given a set of node-condition pairs
that are maximal in their path w.r.t. the condition and given
a key k that meets all these conditions, k is not in the tree.

Theorem 4.1 (The PaVT Condition). Given a treeT , a key k ,
and a set of node-condition pairs S = {(ni1 , ci1 ), ..., (nim , cim )}.
If there exists a moment between the traversal’s invocation and
response where all the following hold:

Algorithm 1: TraverseT (k)
1 Function nextFieldT (n,k):
2 if c1(n,k) = 1 then return f1
3 ...
4 if cl (n,k) = 1 then return fm
5 return ⊥

6 Function TraverseT (k):
7 n← root
8 while n , ⊥ do
9 f← nextFieldT (n,k)

10 if f = ⊥ then return true
11 n← n.f

12 return false

(1) For every (ni , ci ) ∈ S , ci (ni ,k) = 1.
(2) ni1 ,...,nim are logically in T (i.e., their marked is false).
(3) There is a path in T linking these nodes.
(4) This path is maximal: nim .[nextFieldT (nim ,k)] = ⊥.
(5) For every node n logically in T , either no node in S is

reachable from it, or there exists a pair (ni , ci ) ∈ S where
ni is reachable from n via a field f , and ci (ni ,k) implies
a condition c(n,k), such that [c → f ] is in nextFieldT .

Then, there is no node logically in T with the key k .

We illustrate this by example on the BST in Fig. 1(a); a full
proof is provided in Appendix A. Given k = 8 and the set
{(n4, > ), (n9, < )} (whose keys are 4 and 9), all conditions
hold. Assume in contradiction 8 is in the tree in n8. Clearly,
n8 is not n4 or n9. Also, n4 and n9 are not reachable from n8,
as this contradicts requirement (5). Lastly, n8 is not reachable
from n9, as this contradicts requirement (4). Since n4 is the
root, this implies that n8 is not anywhere in the tree. For the
general case, where no node is the root, see the proof.
Minimal Set From this theorem, and in particular require-
ment (5), we can characterize when S is minimal: every con-
dition appears at most once and conditions may be absent if
they are implied by other conditions. This bounds the size of
the required S by the number of conditions in nextFieldT ,
which is typically linear in the number of fields.

Corollary 4.2. Let T be a tree, k a key, and S a set of node-
condition pairs satisfying requirements (1)–(5) of Theorem 4.1.
S is minimal if for every (ni , ci ), (nj , c j ) ∈ S such that j > i :
c j (nj ,k) does not imply ci (ni ,k).

From this characterization we can infer that S is unique:

Lemma 4.3. Let T be a tree, k a key, and S1, S2 minimal
sets of node-condition pairs satisfying requirements (1)–(5) of
Theorem 4.1. Then, either S1 ⊆ S2 or S2 ⊆ S1.

Proof is provided in Appendix A.
Motivation for Succinct Path Snapshots The last corol-
lary and lemma uniquely define the minimal set of nodes, but
do not explain how to construct it. Constructing it on-the-fly
in a lock free fashion is possible, but may lead to reading an
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inconsistent snapshot, which requires restarting the traver-
sal. Instead, we decouple requirement (1) of the PaVT con-
dition (which pertains to the key the traversal searches for)
from requirements (2)–(5) (which pertain to the nodes on the
traversal path), and strengthen the latter to logically capture
the paths in the tree. We call the set of nodes satisfying the
strengthened requirements the succinct path snapshots. The
importance of strengthening the requirements is that con-
current mutations can change nodes that link the snapshots’
nodes as long as they do not affect the snapshot. For example,
in the BST in Fig. 1(a) and for the snapshot {(n4, > ), (n9, < )},
we would like to allow concurrent updates to the nodes link-
ing them (e.g., n12), as long as n4 and n9 are on the same
path and they comprise this path’s snapshot. For example,
we would like to allow concurrent updates that remove n12
or add other nodes with keys k ∈ {10, 11, ...}. We call the
set of keys that can be added to the path without affecting a
snapshot S , the valid keys w.r.t. S . For example, 10, 11, ... are
the valid keys w.r.t. {(n4, >), (n9, <)}. If a path snapshot is
not affected by this kind of concurrent changes, we call it the
succinct path snapshot. We next provide formal definitions.
Succinct Path Snapshots A path is a series of node-field
pairs (n0, f0), ..., (nm , fm) such that: (i) n0 is the root, (ii) for
every i ∈ [0, ...,m − 1]: ni . fi = ni+1, and (iii) nm . fm = ⊥,
i.e., no node follows nm . fm . We say that a condition c cor-
responds to a field f , if when c is met in nextFieldT , f
is returned. For f = ⊥, the corresponding condition is
¬c1 ∧ ... ∧ ¬cm (met when all other conditions are not met).
A node-condition series (n0, c0), ..., (nm , cm) corresponds to
a path (n0, f0), ..., (nm , fm) if every ci corresponds to fi .
Given a path P = (n0, f0), ..., (nm , fm) and its snapshot
S = (n′0, c0), ..., (n

′
k , ck ), the valid keys w.r.t. S of a node n

in P are all keys that n can have such that the nodes in S
remain on the same path in the tree.

Definition 4.4 (A Succinct Path Snapshot.). Let P =

(n0, f0), ..., (nm , fm) be a path and C = (n′0, c0), ..., (n
′
k , cm)

a node-condition series corresponding to P . S ⊆ C is a suc-
cinct path snapshot (SPS) of P if:

(i) n′0,...,n
′
k are logically in T .

(ii) There is a path in T linking these nodes which is max-
imal: n′k . fk=⊥.

(iii) For every node n logically in T , either no node in S
is reachable from it, or there exists a pair (ni , ci ) ∈ S
where ni is reachable from n via some field f , such
that for every k , ci (ni ,k) implies c(n,k), that returns
f for all valid keys w.r.t. S of n.

(iv) For every (ni , ci ), (nj , c j ) ∈ S such that j > i and for
every key k , c j (nj ,k) does not imply ci (ni ,k) for some
valid key w.r.t. S of ni .

The succinct path snapshots logically capture the paths in
the tree. In particular, the fact that a succinct path snapshot
S was obtained implies that the path logically captured by

S meets requirements (2)–(5) of the PaVT condition. This
simplifies the PaVT condition:

Theorem 4.5 (The PaVT Condition via Succinct Path Snap-
shots). LetT be a tree, k a key, and S a succinct path snapshot
such that for every (ni , ci ) ∈ S , ci (ni ,k) = 1. Then, there is no
node logically in T with the key k .

Validating Succinct Path Snapshots is Necessary The
validation of the SPS for an unsuccessful traversal (where the
key k is not found) is not only sufficient but also necessary.
We show that if the tree permits replacements of nodes,
every validation check has to check that the snapshot meets
the conditions in Theorem 4.1. Intuitively, this follows since
omitting any check of these conditions enables a concurrent
thread to change the tree in that unobserved spot and add
the key under search in a different path reachable from this
spot. Thus, any weaker condition may result in returning
incorrect traversal result (and as a result possibly incorrectly
modifying the tree). Proof is provided in Appendix A.

Lemma 4.6. LetT be a tree, k a key not inT , and S a succinct
path snapshot of k inT (logically capturing a path P inT ). Any
validation condition that does not verify requirements (1)–(5)
of Theorem 4.1 for the nodes in S , cannot distinguish between
T and another tree T ′ that contains k .

Wenote that if a tree does not permit addition/replacement
of nodes in the middle of the tree, then some conditions of
Theorem 4.1 are implicitly guaranteed. The external tree
of [14] is such a tree in which nodes can only be added as
leaves and only leaves can be removed. This guarantees: (i)
the first node of the SPS (which is not checked at the end of
the traversal) can be changed but only to one of its ancestors,
which guarantees conditions (1) and (3) and, combined with
the fact that the last node in the SPS is logically in the tree,
also condition (2); (ii) the last node is a leaf, which guarantees
condition (4); and (iii) nodes cannot be added in the middle
of the tree, which guarantees condition (5).

5 Lock-free PaVT Membership Test
In this section, we describe the PaVT membership test.
PaVTTraverseT (Algorithm 2) leverages Theorem 4.5 to imple-
ment a lock-free membership test. It begins similarly to Al-
gorithm 1: it starts from the root (which is a sentinel node, as
we shortly describe) and continues according to nextFieldT .
If it reaches the end of a path, it validates with the succinct
path snapshot, which is atomically read from the last node
traversed (n). Being able to read the snapshot atomically
from a node, makes PaVTTraverseT lock-free. PaVTTraverseT
is linearized either (i) when an unmarked node with the key
k is found (in which case there is a moment between the
invocation and response where k is logically in the tree) or
(ii) in the linearization point of the snapshot read at Line 8,
which guarantees that this snapshot logically captures the
suitable path for k in the tree.
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Algorithm 2: PaVT-TraverseT (k)
1 n← root ; f ← nextFieldT (n,k)
2 while n.f , ⊥ do
3 n← n.f
4 f← nextFieldT (n,k)
5 if f = ⊥ then
6 if n.marked then restart
7 return true

8 S ← snapshot(n, f )

9 if ∃(n′, c ′) ∈ S .c ′(n′,k) = 0 then restart
10 return false

To employ this traversal as part of an update (e.g., insertion
or removal), we modify it to acquire the lock of n, which
serves also as the lock of the snapshot, just before validating
and returning n. We call this variation PaVTTraverseT NLock.
In the remainder of this section, we explain how to maintain
the succinct path snapshots (required at Algorithm 2, Line 8)
to guarantee conditions (2), (3) and (5) of Theorem 4.1. This
means that a traversal only has to check for conditions (1)
and (4) of Theorem 4.1.
Storing SPSs Although snapshots are (supposed to be) read
only from leaves, it simplifies their maintenance if every
node contains all snapshots containing it. That is, snapshots
are stored in every node they consist of. More precisely, for
every node n and field f , we store a set of succinct path
snapshots containing n. f , denoted by Snf . We begin with
characterizing the sizes of the snapshot sets for different
trees. Proof is provided in Appendix A.

Lemma 5.1. 1. In BSTs, internal or external, where the
conditions are < for L and > or ≥ for R, |Snf | ≤ 1 for
every node n and field f .

2. In internal m-ary trees, where the conditions are k <
n.k1,n.k1 < k < n.k2,...,n.km−1 > k , |Snf | ≤ 2 for every
node n and field f .

3. In K-D trees, |Snf | ≤ 2K−1 for every node n and field f .
4. In tries, where nodes contain the complete prefix (i.e., the

keys are not only on the edges), |Snf | ≤ 1 for every node
n and field f .

We now describe how to maintain the snapshots to reflect
the logical paths in the tree.
Sentinels To avoid edge cases, we make sure all snapshots
are of the same size by assuming the tree has a sentinel
node per condition. Namely, if [c1 → f1], ..., [cl → fl ] are
the condition-field series of nextFieldT , then there are l
sentinel nodes, nS1 , ...,n

S
l , such that nSi . fi = n

S
i+1. Since every

key k has to be reachable from all sentinels, traversals may
begin from nSl . Thus, we can set the tree root to be nSl . Upon
creating the tree, the last sentinel node nSl has one snapshot
for cl : {{(nS1 , c1), ..., (n

S
l , cl )}}. The other sentinels do not

have a snapshot.

Algorithm 3: UpdateSnaps(n)
1 Function UpdateSnaps(n):
2 UpdateSnaps(n, n, n.P, { f1, ..., fl })
3 Function UpdateSnaps(n,n′,p, f Set ):
4 if f Set = ∅ then return
5 f ←the field such that p. f = n′

6 c ←the condition such that c(p,n′.k1) = 1
7 if ∀k .c(n,k) = 0 then return
8 Atomically change (p, c) to (n, c) in S

p
f

9 Snf ← S
p
f ; f Set ← f Set \ { f }

10 UpdateSnaps(n, p, p.P, f Set )

Synchronization and Updates To keep the snapshots in
the nodes correct, we require operations that update paths
to lock their snapshots. This is obtained by extending each
node with a lock and associating the snapshot’s lock to the
lock of its last node (i.e., the leaf). In general, this means that
updating a single path requires one lock. However, if the last
node of the snapshot is being removed and is replaced by
a node n, then it means that the snapshot changes its lock
to n’s lock. Thus, n’s lock also has to be acquired before the
update begins, to guarantee that throughout the operation,
changes to the path are blocked.

After executing insertion, removal, or any other mutation,
we potentially need to fix the snapshots of the mutated nodes
and their descendants. This is done by invoking UpdateSnaps

(Algorithm 3) on the mutated nodes. Updating the snapshots
is done by traversing from the mutated node up the tree to
fix the snapshots by overriding the old node-condition pairs.
Traversing up the tree is possible due to the parent pointer
that each node has, which is denoted by n.P for a node n
(as mentioned in Section 2). When a node is removed, either
by replacing it with another node or setting its parent to
point to ⊥ instead of this node, the snapshot of the removed
node is copied to the replacing-node/parent (which has to
be locked as well, as it is being written to) and the replacing-
node/parent looks for a replacement for the removed node
in its snapshots. We omit this from the code for simplicity.
Note that since the path snapshot is already locked,

UpdateSnaps does not require further synchronization. We
also note that for some trees, the snapshot updates can be
optimized. For example, in BSTs, the updated snapshots can
be computed directly from the snapshots of the mutated
nodes or their parents.
Correctness The correctness of UpdateSnaps follows from
the fact that while a path is being updated, concurrent up-
dates are blocked. Thus, the updates of the snapshot are
guaranteed to reflect those of the path. Formally, this argu-
ment can be proven by induction. We omit this proof.
Linearization Although snapshots are not updated atomi-
cally with mutations to the tree, they always represent a con-
sistent (logical) path in a tree, which enables us to linearize
them (assuming that the tree operations invoke UpdateSnaps
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on all mutated nodes). To linearize snapshots, we determine
a point where the snapshot is an SPS of a path in the tree.
The simple case to linearize a snapshot is at the moment of
reading its pointer (i.e., Snf ). However, since snapshots are
not updated atomically with mutations to the tree (e.g., inser-
tions), they may be linearized with respect to insertions or
removals (like the linearization point of an unsuccessful con-
tains in [19]). Namely, if a snapshot contains a node which
has been removed, that snapshot is linearized just before the
linearization point of the removal, and if a snapshot does not
contain a node whose insertion extends its path, the snap-
shot is linearized just before the insertion. Intuitively, these
linearization points are correct because if a thread A reads
a snapshot S , then S logically represents a path that existed
in the tree after A has started this operation. Thus, even if
in the meantime, a thread B changed the path represented
by S , the fact that S has not been updated yet implies that
B has not completed its operation. Thus, we can linearize S
just before the linearization point of B’s operation.
Complexity The complexity of UpdateSnaps is O(h) where
h is height of the tree. This follows because UpdateSnaps

updates at most a single snapshot at every node, and the
new snapshot is copied to nodes by copying a pointer to it
(i.e., nodes of the snapshots are not copied individually). The
number of such updates depends on the update operation,
but is typically a constant. In Section 6, we show how to
optimize UpdateSnaps to reduce the complexity of updating
a single snapshot to O(l) where l is the size of the snapshot.

6 PaVT-ing Updates of BSTs and AVLs
In this section, we demonstrate how to employ the PaVT tra-
versal with a simple locking protocol to implement arbitrary
BSTs, internal and external, and an AVL tree.
Locking ProtocolWe employ the following locking protocol.
Each node has a lock and n1’s lock is acquired before n2’s if
(i) n2 is reachable from n1 or (ii) n1 and n2 are reachable via fi
and fj , respectively, from their lowest common ancestor and
i < j. If a node n has to be locked against the locking order
or it may be the case, an opportunistic attempt to acquire
n’s lock is taken (without blocking), and if it fails, locks
are released and the operation restarts. To guarantee that
restarts do not result in contaminated data, updates begin
only after all required locks are acquired. This protocol is
deadlock-free and livelock-free because locks are always
acquired in the same order by all threads, and the thread that
acquires the locks of the lowest nodes (according to the tree)
is guaranteed to succeed in acquiring the locks.
PaVT-ing Operations We perform PaVT insertions and re-
movals as follows. We invoke PaVTTraverseNLock, which is
identical to Algorithm 2 except that right before Lines 7 and
8, it acquires the lock of the last node traversed, n. Then, if
the validation of Line 9 fails, the lock is released and the op-
eration restarts. Otherwise, instead of returning true/false,

PaVTTraverseNLock returns n (which is now locked). After
PaVTTraverseNLock completes, other nodes that are read or
written to are locked as well (with respect to the locking
order). Then, updates are executed. Finally, the snapshots
are updated as described in the previous section, locks are
released, and the operation result is returned.
Optimizing the Snapshots As discussed in Section 3, in
BSTs, snapshots are of size two (they are predecessor-
successor pairs). Thus, instead of maintaining the complete
snapshot, nodes can store only the other nodes in their snap-
shots and infer the condition of that node. For example, in
the internal BST in Fig. 1(a), the node 9 can store for L the
snapshot: 4. When reading this snapshot, one can infer that
the snapshot contains (9, <) and (4, >), since there are only
two conditions, and the node corresponding to L is 9.
We next provide the implementation details of insertion

and removal, which extend the sequential operations with
the PaVT traversal (contains(k) is exactly Algorithm 2). To
demonstrate the similarity of the PaVT-ed operations to the
sequential operations, we mark with rectangles statements
added on top of the sequential implementation: the pink,
wider rectangles are the PaVT operations, while the gray,
shorter rectangles are the lock acquisitions.
Insertion The BST insert operation inserts a key k if k
is not in the tree. It begins with traversing from the tree
root, turning left or right depending on whether the cur-
rent node’s key is greater or smaller than k , and terminating
when k is found or the path has ended. If k is found in a
node n, it returns false, otherwise it adds a new node af-
ter the last node read. The PaVT-BSTInsert(k) (Algorithm 4)
is very similar to the BST insert and the differences are
marked with rectangles. The differences involving PaVT are
PaVTTraverseNLock and UpdateSnaps, while the differences
involving locks are: (i) acquisition of the lock of the last node
traversed in PaVTTraverseNLock, and (ii) release of locks upon
completion or inside PaVTTraverseNLock if validation fails.
Another difference compared to the sequential insertion is
that after locking n (that is, n’s snapshot suits k), we validate
that n is the last node on the path; if not, we restart, since
this means that n’s lock does not block concurrent updates
to its snapshot. The linearization point of an insertion is at
the moment the new node becomes reachable.
Removal The BST removal operation is PaVT-ed similarly,
and its unique aspect is that it contains a nested traversal in
case the node to remove has two children, in which case a
nested traversal is required to look for the successor, starting
from the node’s right child (Line 22).
The BST remove operation removes a key k if k is in the

tree. It begins with traversing from the tree root, turning
left or right depending on whether the current node’s key is
greater or smaller than k , and terminating when k is found
or the path has ended. If k is found in a node n, the removal
is one of the following:
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Algorithm 4: PaVTBST-Insert(k)
1 n ← PaVTTraverseNLock(k)
2 if n.k=k ∥ (k > n.k && n.R , ⊥) ∥ (k < n.k && n.L , ⊥) then
3 unlock(n)
4 return false

5 newNode← new node(k)
6 newNode.P← n
7 (k > n.k? n.R : n.L)← newNode
8 UpdateSnaps(newNode)
9 unlock(n)

10 return true

• If n has at most one child, n’s parent is updated to
point to this child.
• If n has two children and its right child r does not have
a left child (i.e., r is n’s successor), n’s parent is set to
r , and r ’s left child is set to n’s left child.
• If n has two children and its right child has a left child,
n’s successor, s , is obtained by looking for the leftmost
node in the tree rooted with r . Then, s relocates to n’s
location to remove n.

The PaVT-BSTRemove (Algorithm 5) is very similar to the
BST removal and the differences are marked with rectangles.
The differences involving PaVT are: (i) PaVTTraverseNLock
is invoked to find n and to find s if n has two children, and
(ii) UpdateSnaps. The differences involving locks are:
• Locks are acquired on the last node traversed in
PaVTTraverseNLock.
• Additional locks are acquired on all nodes the removal
involves (i.e., n’s parent, n’s children, and s’s parent
and right child). In case a lock is acquired against
the locking order (e.g., n’s parent is locked after n is
locked), an optimistic attempt to lock it is taken, and if
it fails all locks are released and the operation restarts.
• Locks are released as described for the insertion.
• n’s mark flag is set right after all locks are acquired.

The linearization point is when n is marked as removed.
Internal AVL The AVL extends the BST’s insert(k) and
remove(k) with a rebalance operation that restores the tree
after updates, if the updates have violated the AVL invari-
ants. The rebalance operation traverses the tree bottom up
from the modified nodes and may rotate nodes, i.e., relocate
adjacent nodes. Since the snapshots ofm-ary trees consist of
predecessor-successor pairs, AVL rotations do not affect the
snapshots in internal BSTs. Thus, rotations are implemented
by traversing themutated path upwards, acquiring the nodes’
locks, and rotating the tree if necessary. This guarantees that
at a quiescence state the tree is a valid AVL tree [5].
External BST External trees may be PaVT-ed similarly to
an internal BST, but can be further optimized because inner
nodes do not have payloads and leaves do not have children.
This enables us to condense the node structure by using
the same field to denote a payload of a leaf or a child of an

Algorithm 5: BST-PaVTRemove(k)
1 while true do
2 n ← PaVTTraverseNLock(k)
3 if n.k , k then
4 unlock(n)
5 return false

6 p ← n.P; l ← n.L; r ← n.R

7 if !lock(p,l ,r ) then
unlockAll(); continue

8 if l = ⊥ || r = ⊥ then
9 n.marked← true

10 c ← l = ⊥? r : l
11 (p.L = n? p.L : p.R)←c

12 UpdateSnaps(p, c)
13 unlockAll()
14 return true

15 if r.L = ⊥ then
16 n.marked← true
17 r .L← l ; l .P← r ; r .P← p

18 (p.L = n? p.L : p.R)←r

19 UpdateSnaps(p, r )
20 unlockAll()
21 return true

22 s ←PaVTTraverseNLock(r ,k) // If failed

locking s, release locks and restart

23 if !lock(s .P,s .R) then
unlockAll(); break

24 n.marked← true
25 sP ← s .R; sR ← s .R
26 s .R← r ; r .P← s

27 s .L← l ; l .P← s

28 s .P← p

29 (p.L = n? p.L : p.R)←s

30 sP .L← s .R
31 if sR , ⊥ then sR.P= sP

32 UpdateSnaps(sR,sP ,s ,p)
33 unlockAll()
34 return true

inner node. Also, synchronization can be more efficient if
we limit the locks to the inner nodes. This is correct since
leaves cannot be updated without modifying their parent
(insertion modifies the parent to point to the new inner node
and removal triggers the removal of the parent). Thus, leaves
are synchronized indirectly through their parents and a leaf
is indirectly marked as removed by marking its parent.

7 Evaluation
We evaluated the PaVT-ed internal BST, external BST, and in-
ternal AVL. To evaluate PaVT, we compare to state-of-the-art
algorithms that have online available Java implementations.
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Figure 2. Comparison of binary search tree and AVL implementations.

We compare the (internal) PaVT-BST and External-PaVT-
BST to: (i) LO-BST: a lock based, internal BST [12] and
(ii) EFRB-BST: a lock-free, external BST [14].

We compare the (internal) PaVT-AVL to:
• LO-AVL: a lock based, internal AVL [12].
• Chromatic RB Tree: a lock-free, external red-black tree,
using the LLX/SCX primitives, optimized for updates:
a path is fixed when there are six violations [8].
• BCCO-AVL: a lock based, partially-external AVL [7],
where internal nodes initially store data (keys) but
may become routing nodes if their key is removed, by
logically marking them. These nodes may become data
nodes again if their key is re-added to the tree.

To fairly compare to BCCO-AVL, which in heavy update
benchmarks easily revives logically removed nodes and
avoids rebalancing, we compare to a partially external AVL-
PaVT. We note that non-blocking data structures provide
stronger progress guarantees than lock-based, which re-
quire additional overhead in practice. Thus, comparing non-
blocking algorithms to blocking algorithms may seem like
comparing apples to oranges. However, since sometimes they
were shown to obtain better performance than blocking al-
gorithms [8], we compare to these structures as well. The
comparison of internal trees to external trees demonstrates
the tradeoff between contention and memory consumption.

Experiments ran on an AMDOpteron Processor 6376with
128GB RAM and 64 cores: 4 processors with 16 cores each
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and with hyper-threading support. OS was Ubuntu 14.04
LTS and Java was SE Runtime (build 1.8.0_45-b14) with Java
HotSpot 64-Bit Server VM (build 25.45-b02, mixed mode).
Our experiments follow the standard empirical evalua-

tion (e.g., [7, 8, 12]). We ran five-second trials and we report
the throughput (number of operations per second). In every
trial, threads randomly chose the operation type accord-
ing to a given workload distribution and then randomly
chose the key from a given range. The workloads were:
(i) 90% contains, 9% insert, 1% remove, (ii) 70% contains,
20% insert, 10% remove, and (iii) 0% contains, 50% insert,
50% remove. The ranges were 2 · 105 and 2 · 106. Before each
trial, the tree was prefilled to its expected size: 90% full in
workload (i), 2/3 full in workload (ii), and 50% full in work-
load (iii). Every experiment was run 10 times and the arith-
metic average is reported. Every 10 trial batch was run in
its own JVM instance and a warm-up phase was run before
to avoid HotSpot effects. Threads were not bound to pro-
cessors. The number of threads was varied over the range
1, 2, 4, 8, 16, 32, 64, 128, 132, 134, 144.

Experimental results (Fig. 2) indicate that the PaVT con-
dition is effective and improves performance over current
approaches: PaVT-BST on average outperforms the internal
LO-BST on average by 17% and up to 48%, and PaVT-AVL out-
performs the LO-AVL on average by 22% and up to 60%. The
improvement of PaVT-BST and PaVT-AVL over LO-BST and
LO-AVL stems from the fact that the LO trees acquire more
locks (as for each predecessor-successor pair there is an addi-
tional lock). External-PaVT-BST and EFRB-BST mostly have
similar results (on average EFRB-BST is better by 5%). We re-
mind that the EFRB-BST is lock-free and thus has additional
overhead compared to the lock-based External-PaVT-BST.
The advantage of lock-free algorithms is usually observant
under heavy contention (e.g., when the number of threads
is bigger than the number of cores). The Partially-External-
PaVT-AVL outperforms the partially external BCCO-AVL on
average by 13% and up to 65%. This can be attributed to the
lock-free membership test that Partially-External-PaVT-AVL
has, in contrast to BCCO-AVL.
Lastly, we provide results on the space consumption. Ta-

ble 1 shows the results for all workloads, with 64 threads and
key range 2 ·106 (results for the other scenarios were similar).
Results show that the PaVT implementations provide the
lowest memory consumption, which indicates that explicitly
maintaining the SPSs in the nodes has low overhead.

8 Related Work
Current solutions addressing the challenge of validating tra-
versals range from standard locking protocols and univer-
sal constructions, through validation conditions for sets, to
highly-optimized solutions for specific tree algorithms.
General solutions such as the standard locking protocols

(two-phase locking [15], hand-over-hand locking [3], tree
locking [24]) address this challenge, however employing

90C,9I,1R 70C,20I,10R 0C,50I,50C

PaVT-BST 104,132 140,523 78,111
External-
PaVT-BST 175,021 223,410 131,263

EFRB-BST 148,118 193,623 111,236
LO-BST 239,563 323,149 179,733
PaVT-AVL 104,177 140,612 78,144
Partially-
External-
PaVT-AVL

118,454 145,631 97,101

BCCO-AVL 115,677 145,301 91,041
Chromatic
RB Tree 188,375 237,524 142,018

LO-AVL 249,999 337,455 187,544
Table 1. Space consumption in kB for 64 threads, range 2·106.

them results in poor scalability since they acquire locks on
every node along the traversal path. Universal constructions
are either practical only for data structures with few con-
tention points, such as stacks and queues (e.g., [16, 20, 21]),
or provide only general guidelines (e.g., [10]).

Brown et al. [8] introduce the LLX/SCX primitives, which
are a multi-word generalization of the LL/SC primitives.
However, programmers have to integrate them manually.
Further, LLX/SCX is a lock-free technique and thus updates
take place by first preparing a newmodified subtree and then
atomically changing the pointer to the old subtree to point
to the new one. Thus, when multiple nodes are modified
(e.g., in a balancing operation), all, but their lowest common
ancestor, are reallocated, which affects performance. In [12],
a simple validation condition is proposed for BST, suitable
for data structures implementing totally ordered sets. The
validation check validates a search for a key k by checking
k’s predecessor and successor in the tree, which is done effi-
ciently by maintaining the nodes’ predecessor and successor.
This was shown for internal trees, where the predecessor-
successor pairs always share a path. However, in external
trees, such approach would link the leaves, which do not
share a path, and thus introduce redundant conflicts and con-
tention. DomLock [23] presents a new locking protocol for
hierarchal data structures where nodes’ keys are contained
in their parents’ keys (an example for such tree is one whose
nodes have intervals for keys and keys of descendant nodes
are contained intervals). However, since trees are not always
hierarchical, this protocol is inapplicable in our setting.

Lastly, there are many practical implementations of trees
(e.g., [7]), with most of them supporting lock-free searches
(e.g., [1, 9, 10, 13]), and some offer complete lock-free im-
plementations (e.g., [6, 8, 18, 22, 25]), which typically cope
better under heavy contention but less when updates are
sparse and searches are dominant [17]. Unfortunately, these
support only standard operations and extending them to
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other operations or trees is challenging. In contrast, we pro-
vide a general condition and a lock-free membership test
and demonstrate the simplicity of integrating our traversal
and validation condition in update operations.

9 Conclusion
We presented PaVT, a necessary and sufficient condition for
validating concurrent traversals in search trees. PaVT relies
on succinct path snapshots to validate traversal paths. Based
on this condition, we designed a lock-free membership test.
We also showed how to leverage the traversal and validation
of the membership test to implement binary search trees,
internal and external, and AVL, and experimentally showed
they outperform state-of-the-art trees.
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A Proofs
In this section, we provide all the proofs.

Proof (Sketch) of Theorem 4.1. Assume in contradiction that
there is a node n logically in T with the key k . That node is
not any of ni1 ,...,nim as otherwise it would not be true that for
every (ni , ci ) ∈ S , ci (ni ,k) = 1 (since nextFieldT (ni,k) has
to return ⊥ in this case). Also, there is no n′ in S such that n′
is reachable fromn, since otherwise there is a pair (ni , ci ) ∈ S
such that ni is reachable from n, ci (ni ,k) = 1, and ci (ni ,k)
logically implies a condition c(n,k) in nextFieldT (n,k).
Thus, nextFieldT (n,k), ⊥ and thus k is not in n. Also, n
cannot be reachable from all nodes in S , since the last node
is maximal: nim .[nextFieldT (nim ,k)]=⊥, indicating no node
follows nim . Thus, n is not reachable from any of ni1 ,...,nim
and ni1 ,...,nim are not reachable from n. Consider the lowest
common ancestor ofni1 andn, denoted byn′, and assumen is
reachable from n′ via f and ni1 via f ′. On the one hand, since
ni1 is reachable from n′ via f ′, there exists a pair (ni , ci ) ∈ S
such that ni is reachable from n′ and nextField(ni,k) logi-
cally implies some c(n,k) such that [c → f ′] is in nextFieldT .
Thus, nextFieldT (n,k)=f ′. On the other hand, since k is in
n which is reachable from n′ via f , nextFieldT (n’,k)= f
by the search trees’ property. Since f , f ′, two different
conditions are met in nextFieldT (n’,k) – contradiction. �

Proof (Sketch) of Lemma 4.3. Assume there are two minimal
sets S1 , S2. Then, w.l.o.g. there exists (n, c) ∈ S1 \ S2. Since
(n, c) is not in S2, there exists (n′, c ′) ∈ S2 such that c ′(n′,k)
logically implies c(n,k). However, since (n, c) is in S1, (n′, c ′)
is not in S1, as otherwise S1 would not be minimal. Thus,
there exists (n′′, c ′′) ∈ S1 such that c ′′(n′′,k) logically implies
c ′(n′,k). By transitivity, c ′′(n′′,k) logically implies c(n,k),
namely S1 is not minimal – contradiction. �

Proof (Sketch) of Lemma 4.6. Let v be a validation condition
that does not check all requirements (1)–(5) of Theorem 4.1
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for the snapshot of k in T , Sk . We show for every check that
without checking it, v cannot distinguish between T and a
tree containing k . This implies that v is insufficient.
(1) If there is (ni , ci ) ∈ S , for which it is not checked that

ci (ni ,k) = 1. Since (ni , ci ) ∈ S , for every j > i , c j (nj ,k)
does not logically imply ci (ni ,k) for any valid key w.r.t.
S of ni . In particular, the conjunction ci+1(ni+1,k) ∧
...∧cim (nim ,k) does not logically imply ci (ni ,k) for any
valid keys w.r.t. to S of ni . However, this conjunction
is satisfiable (e.g., by the nodes in S). Thus, there exists
a valid key k ′ for ni for which ci (ni ,k) = 0. Consider
a tree T ′ identical to T . Now let a thread A traverse T ′
and stop just before executing v . Then, another thread
B replaces ni with a node containing the key k ′. Now
B adds k to T ′. Since ci (ni ,k) = 0, k is added either to
ni or through a different field than the one returned by
ci . Now A resumes and executes v . However, v cannot
distinguish between T and T ′.

(2) If there is (ni , ci ) ∈ S , for which it is not checked that
n is logically T . Consider a tree T ′ identical to T but
with a node nk containing k linked to the last node in
S (note that the search trees’ property is met). Now
let a thread A traverse T ′ and stop just before reading
nk . Then, another thread B replaces n with a node
containing the key k ′ (as described in the previous
bullet), connects to it nk (as described in the previous
bullet), unlinks nk from its old position, and marks n
as logically removed. Now A resumes and executes v .
However, v cannot distinguish between T and T ′.

(3) If it is not checked whether there is a path between
two nodes ni and ni+1 in the succinct path snapshot.
Consider n, the parent of ni in T , linking to it via f
(n. f = ni ). Let T ′ be a tree identical to T but with a
node nk containing k linked to the last node in S . Let
a thread A traverse T ′ and stop just before reading
nk . Then, another thread B replaces ni with a node n′
with k ′. The key k ′ is obtained similarly to bullet 1, but
if there are multiple possible keys satisfying the con-
junction but not ci (ni ,k), k ′ is selected to be such that
connecting n′. f ′ = ni meets the search trees’ proper-
ties, for f ′ , f (if there is no such k ′, ni and ni+1 must
be linked in a path and thus this check is implicitly
verified). Then, B connects nk to ni and unlinks nk
from its old position. Finally, A resumes and executes
v ; however, v cannot distinguish between T and T ′.

(4) If the path is not maximal. Consider a tree that right
after nim . fim is linked to a node containing k . Note
that this tree respects the search trees’ property, but v
cannot distinguish between T and this tree.

(5) If there is a node n logically in T , such that there
is a node in S reachable from n and there is no pair
(ni , ci ) ∈ S where ni is reachable from n via some field
f , and ci (ni ,k) logically implies a condition c(n,k),
such that [c → f ] is in nextFieldT : similar to bullet 1.

�

Proof (Sketch) of Lemma 5.1. 1. Assume in contradiction
there is n and f such that |Snf | > 1 and assume w.l.o.g
that f = L. If |Snf | > 1, there are (at least) two paths
that contain (n, <) in their snapshots. Thus, n.L , ⊥
(as leaves are part of one path). Thus, there are two
paths for which n1.R = n2.R = ⊥ and their snapshots
are (n, <), (n1, >) and (n, <), (n2, >). Consider nlca , the
lowest common ancestor ofn1 andn2. We split to cases:
• If n is reachable from nlca , then w.l.o.g. n1 is reach-
able from n2. If n2 is reachable from n1.R, then
n1.R , ⊥ – contradiction. Otherwise, n2 is reachable
from n1.L. Thus, the condition < (n1,k) is not logi-
cally implied by (n, <) or (n2, >). Thus, (n, <), (n2, >)
is not a valid snapshot – contradiction.
• If nlca is reachable from n, then w.l.o.g. n1 is reach-
able from nlca via L. Thus, the condition < (nlca ,k)
is not logically implied by (n, <) or (n1, >). Thus,
(n, <), (n1, >) is not a valid snapshot – contradiction.

2. Succinct path snapshots of internalm-ary trees con-
sist of nodes whose keys are each other predecessor-
successor in the tree. This follows from the require-
ment that the path snapshots contain node-condition
pairs that imply the former conditions on the path.
This means that snapshots are either a single node-
condition pair of the form (n,n.ki < k < n.ki+1) or
two node-condition pairs, where at least one is < n.k1
or < n.km−1. Since every key has at most one prede-
cessor and one successor, the outer fields (< n.k1 and
< n.km−1) are part of exactly one snapshot (where
they are the successor and predecessor, resp.), and the
inner fields (n.ki < k < n.ki+1) are part of at most two
snapshots (one where ki is the predecessor and one
where ki+1 is the successor).

3. By a similar argument, the succinct path snapshots con-
sist of predecessor-successor pairs in every dimension
(i.e., snapshots are of size 2K ). Since dimensions are in-
dependent, if n is reachable from n′, and n’s condition
depends on a dimension a whereas n′’s condition de-
pends on a dimensionb,n′ can be part of the snapshots
of both n.L and n.R. That is, a predecessor-successor
pair of dimension k1 can be part of every path depend-
ing on the other dimensions: it can be part of a path
continuing to L or to R on dimension k2, then on a path
continuing both to L or R from both these nodes, etc.,
up to the kK dimension. Since the number of different
paths containing a given predecessor-successor is at
most 2K−1, we get the bound.

4. Follows because if every node contains the prefix, its
condition logically implies all preceding nodes on its
path. Thus, snapshots consist of a single node, which
is the last node on the path and thus |Snf | ≤ 1.

�
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