
Automatic Synthesis of Deterministic Concurrency

Veselin Raychev1, Martin Vechev1, and Eran Yahav2

1 ETH Zurich
{veselin.raychev,martin.vechev}@inf.ethz.ch

2 Technion
yahave@cs.technion.ac.il

Abstract. Many parallel programs are meant to be deterministic: for the same in-
put, the program must produce the same output, regardless of scheduling choices.
Unfortunately, due to complex parallel interaction, programmers make subtle
mistakes that lead to violations of determinism.
In this paper, we present a framework for static synthesis of deterministic concur-
rency control: given a non-deterministic parallel program, our synthesis algorithm
introduces synchronization that transforms the program into a deterministic one.
The main idea is to statically compute inter-thread ordering constraints that guar-
antee determinism and preserve program termination. Then, given the constraints
and a set of synchronization primitives, the synthesizer produces a program that
enforces the constraints using the provided synchronization primitives.
To handle realistic programs, our synthesis algorithm uses two abstractions: a
thread-modular abstraction, and an abstraction for memory locations that can
track array accesses. We have implemented our algorithm and successfully ap-
plied it to synthesize deterministic control for a number of programs inspired by
those used in the high-performance computing community. For most programs,
the synthesizer produced synchronization that is as good or better than the hand-
crafted synchronization inserted by the programmer.

1 Introduction

Many parallel programs are meant to be deterministic: for the same input, the program
must produce the same output. Unfortunately, concurrent programming mistakes of-
ten result in parallel programs that are non-deterministic: for the same input, different
executions of the program produce different outputs. Manually enforcing determinism
is a time consuming, error-prone and inefficient task: introducing too much synchro-
nization can lead to sequentializing the parallel program, while introducing too little
synchronization can produce a non-deterministic program.

In this paper we propose to automatically synthesize deterministic concurrency con-
trol: given a non-deterministic (potentially infinite-state) parallel program, our algo-
rithm will statically introduce synchronization that transforms the input program into a
deterministic parallel program.
Determinism Verification under Abstraction Direct verification of determinism re-
quires comparing the output states of different executions starting from the same input
state. Equality between states can be easily determined when states are concrete. How-
ever, to handle infinite-state programs one must employ abstraction. Under abstraction,

the equality relationship between concrete states is lost. Equality between abstract states
does not entail equality between the concrete states they represent, and therefore estab-
lishing equality between abstract states is insufficient.

Establishing Determinism by Conflict-Freedom Rather than verifying (and enforcing)
determinism directly, we focus on verifying (and enforcing) a stronger property called
conflict-freedom: if the program is conflict-free then it is deterministic. Informally, a
program is conflict-free if in any concrete program state, parallel threads do not access
(where at least one access is a write) the same memory location. Conflict-freedom al-
lows us to reason about determinism in a local way – by using a property that can be
locally enforced, we ensure that the resulting program is deterministic.

Our approach uses abstract interpretation [9] to compute an over-approximation
of the possible concrete program behaviors. Then, the algorithm checks whether the
over-approximation is conflict-free and if so, verification of conflict-freedom (and thus
determinism) succeeds. Otherwise, the algorithm synthesizes a repair that enforces con-
flict freedom. It does so by synthesizing an inter-thread ordering constraint on the ac-
cesses performed by conflicting threads. That is, the synthesis algorithm statically de-
terminizes the order of operations performed by conflicting threads.

Motivation A comprehensive study [18] shows that nearly a third of all concurrency er-
rors in a variety of open source projects are inter-thread “ordering” violations. As noted
in [18], such violations cannot be easily fixed with atomicity and locking constructs.
Vasuvedan et al. [28] express desire for a “determinizing compiler”, but do not provide
any analysis.

Over the years, there has been significant interest in automatically enforcing mu-
tual exclusion properties in parallel programs, usually by inferring locks and atomicity
constructs [20, 30, 8]. Comparatively, there has been little focus on static techniques for
enforcing “ordering” relationships or determinism, exceptions being the works of [23,
6, 14]. Relationship to existing work is discussed in detail in Section 8.

We present a synthesis framework for statically enforcing determinism. The frame-
work consists of a novel thread-modular synthesis algorithm that enables the use of
flow-sensitive techniques for analyzing each thread. We instantiate the framework with
powerful abstract domains such as Octagon [22] and Polyhedra [10], enabling tracking
and avoidance of conflicting memory accesses at a fine granularity.

Main Contributions Our main contributions are as follows:

– A thread-modular synthesis algorithm which takes as input a potentially non-deterministic
parallel program, and “determinizes” the program by synthesizing inter-thread or-
dering constraints between conflicting statements in a way that preserves program
termination.

– An algorithm that takes as input a set of inter-thread ordering constraints produced
by the synthesizer and a particular synchronization primitive and realizes the con-
straints using the synchronization constructs. To illustrate the concept, we show a
translation to two kinds of synchronization primitives: the classic signal/wait syn-
chronization and the spawn/sync constructs used in structured parallel languages
such as Cilk [4].

– An implementation of the algorithm in a tool based on Soot [27] and Apron [13],
using powerful numerical abstract domains such as Octagon and Polyhedra.

– An evaluation of the tool on a set of Java programs derived from those used in the
high performance community. Our results indicate that the tool can be practically
useful: for most programs, it produced synchronization that is as good or better than
the initial hand-crafted synchronization inserted by the programmer.

The tool’s source code, the benchmarks and instructions how to build and run the
tool are available open source at: http://www.srl.inf.ethz.ch/dps.php.

Limitations

– We note that for general programs, non-determinism may occur due to other reasons
like random number generators, network or user interaction. In this work, we focus
on programs for which the non-determinism is only due to conflicts.

– We focus on programs with a constant number of threads. However, this limitation
is imposed only by the used synchronization primitives. For example, programs
using signal/wait synchronization require careful attention to the number of sig-
nal/wait calls based on the number of threads.

2 Overview

Given a parallel program P , our goal is to synthesize a deterministic parallel program
P ′ by adding synchronization to P . To handle infinite-state programs, our synthesis
algorithm is based on abstract interpretation [9], and takes an abstraction α as one of its
parameters. In this setting, the problem can be phrased as:

Given a parallel program P , and an abstraction α, our goal is to synthesize
a deterministic parallel program P ′ by adding synchronization to P such that
P ′ can be automatically verified as deterministic under the abstraction α.

Challenges Any synthesis algorithm targeting the above problem must address at least
the following three challenges:

– Scalability: The synthesizer should soundly handle realistic infinite-state concur-
rent programs.

– Termination: The inferred synchronization should preserve program termination.
– Number of solutions: The synthesizer should provide a mechanism which allows to

control the number of solutions.
Next, we illustrate our approach on an example. The formalization and evaluation

are provided in later sections.

2.1 Example Program

Consider the simple program shown in Fig. 1(a). Here, a main thread creates two threads
using the spawn construct which in turn execute in parallel and access shared vari-
ables x and y (both initialized to 0). The conditional at line 7 executes atomically. In

this program, different schedules can lead to different final values for x and y. For
example, the schedule x = 0;y = 0;x = 1;if (x == 0) y = 1 results in values
x = 1, y = 0, and the schedule x = 1;x = 0;if (x == 0) y = 1;y = 0 results
in values x = 0, y = 0. Our goal is to add efficient synchronization to the program such
that its result is deterministic, i.e., all executions of the new program yield the same
output state when starting from the same initial values for x and y.

1 spawn {
2 x = 0; {W:({x})}
3 y = 0; {W:({y})}
4 }
5 spawn {
6 x = 1; {W:({x})}
7 if (x==0) y = 1; {W:({y}),R:({x})}
8 }

�����
������

�����
������

����

��	��
������

�
��

�����
������

�����
������

��	�

��
��
������

����
�	����	�

�����
������

�����
�����	�����	��

�
��

�����
�����	�����	��

�
��

�����
������

�����
�����	����

�
��

�����
�����	�����	��

�
���
�������

(a) (b) (c)

Fig. 1. Example with two spawned threads (a) and its thread-modular transition systems for the
threads, (b) before, and (c) after stabilization.

2.2 Thread-Modular Synthesis

To add the necessary synchronization, we present a novel synthesis algorithm that gen-
erates inter-thread ordering constraints, describing an ordering between statements of
different threads. A set of inter-thread ordering constraints can then be implemented in
various ways, for instance by adding synchronization to the program.

One approach would be to build a global transition system of the program in the
style of [16] and use an iterative algorithm to eliminate the “bad” states (states that
cause non-determinism) from the transition system. Unfortunately, building a global
transitions system does not scale to realistic concurrent programs as one needs to reason
about all program interleavings.

Instead, to avoid global reasoning, we introduce a thread-modular synthesis algo-
rithm. To enable thread-modular reasoning the algorithm uses a thread-modular abstrac-
tion. The synthesis algorithm consists of the following three phases:

Phase 1: Compute Stable Invariants First, each thread is analyzed sequentially, ini-
tially assuming that all memory locations accessed by the thread are independent from
locations accessed by threads that may execute in parallel. Fig. 1 (b) shows the thread-
modular transition systems for the two threads in the program of Fig. 1 (a) after each
thread is analyzed sequentially. The values in a state are denoted as a tuple 〈pc, x, y〉.
Note that the combination of states (i.e., concretization) in the transition systems of

Fig. 1 (b) does not cover all possible states of the original program: it does not repre-
sent a final state x = 0, y = 1, clearly possible in the program.

To guarantee soundness, after the initial analysis of each thread, the analyzer checks
whether the independence assumption holds. If not, it iteratively weakens the computed
invariants until they stop changing as a result of interference with other threads. This
stabilization is usually achieved by having each thread include the values of interfering
locations produced by other threads (e.g., [21]).

For the program in Fig. 1 (a), the accessed memory locations for each statement are
shown in curly braces. The statements x = 0 and x = 1 are conflicting as they can
execute in parallel and both write to location x. Similarly for x = 0 and if (x==0)

y = 1 as well as for y = 0 and if (x==0) y = 1. As conflicts arise, our algorithm
needs to weaken the invariants computed in each thread’s transition system. In our ex-
ample, the weakening results in the transition systems of Fig. 1 (c). Note that in these
(abstract) transition systems, x and y can have more than one possible value in each
state. After the weakening, the result is sound, and indeed, the transition systems do
capture the state where x = 0, y = 1.

Phase 2: Identify and Resolve Conflicts After the invariants for each thread are com-
puted, the next step is to synthesize a repair that determinizes each conflict. Deter-
minization of a conflict is achieved via an inter-thread ordering constraint. An inter-
thread ordering constraint restricts the order in which statements from different threads
may be executed. Using the transition systems of Fig. 1 (c), the algorithm produces the
following formula: ψ = (l2≺ l6 ∨ l6≺ l2) ∧ (l2≺ l7 ∨ l7≺ l2) ∧ (l3≺ l7 ∨ l7≺ l3).

Id (a) Satisfied terms (b) Non-redundant terms
1 l2≺ l6, l2≺ l7, l3≺ l7 l2≺ l6, l3≺ l7
2 l6≺ l2, l2≺ l7, l3≺ l7 l6≺ l2, l3≺ l7
3 l2≺ l6, l7≺ l2, l3≺ l7 —
4 l6≺ l2, l7≺ l2, l3≺ l7 —
5 l2≺ l6, l2≺ l7, l7≺ l3 l2≺ l6, l7≺ l3
6 l6≺ l2, l2≺ l7, l7≺ l3 l6≺ l2, l2≺ l7, l7≺ l3
7 l2≺ l6, l7≺ l2, l7≺ l3 —
8 l6≺ l2, l7≺ l2, l7≺ l3 l7≺ l2

Table 1. Solutions to ψ.

Each term in the formula is a con-
straint determinizing two conflicting
statements. The meaning of a term
l2≺ l6 is defined in terms of traces. In-
formally, the traces which satisfy l2≺
l6 are those where if statements at la-
bels l2 and l6 are performed in the
trace, then l2 must occur before l6. The
formal semantics of such terms are de-
fined in Section 4.

The models which satisfy the syn-
thesized formula represent potential
solutions for making the program de-
terministic. For instance, for the for-
mula above, we have eight minimal solutions as shown in Table 1 (column a). Each row
in column (a) lists a solution of the formula (we list the terms which are true).

Termination and Redundancy Unfortunately, some of these solutions are undesirable
and others can be minimized. In particular, solutions 3, 4 and 7 cause non-termination
via deadlock. For instance, solution 3 requires label 3 to execute before label 2, clearly
not possible. Further, solutions 1, 2, 5 and 8 contain redundant terms that can lead to
unnecessary synchronization when implemented directly. For instance, in solution 1,
the term l2≺ l7 is redundant because it is subsumed by the term l3≺ l7. Intuitively, this
is because if the statement at label 3 is executed before the statement at label 7, then

the statement at label 2 is also executed before the statement at label 7. Interestingly,
solution 6 contains no redundant terms and does not introduce non-termination.

Our algorithm addresses both of these issues: it adds terms to the formula ψ that
prevents cycles, and only outputs solutions that do not contain redundant terms. With
the new formula (details are in Section 5), our algorithm produces the five solutions
shown in Table 1(b). Here, ’—’ means that the corresponding solution in that row in
column (a) does not terminate and hence it is not selected in column (b). Indeed, these
solutions do not introduce non-termination and they do not contain redundant terms (up
to the thread-modular abstraction as discussed later).

Reducing the number of solutions Even after the filtering above, it is possible to pro-
duce too many solutions. There are three principal approaches to deal with this problem:
(i) provide additional specifications that solutions must satisfy. For example, in the case
of a read-write conflict, require that the write always takes place before the read as the
write initializes the data accessed by the read. This particular specification filters solu-
tion 6 from the list. (ii) define criteria that compare solutions. A simple criteria could be
to filter solutions that sequentialize the program when there are other solutions which
do not. This criteria filters solution 8. (iii) using coarser synchronization constructs to
realize the constraints, this arises naturally in phase 3, and is discussed below.

1 spawn {
2 o1.wait(); x = 0;
3 y = 0; o2.signal();
4 }
5 spawn {
6 x = 1; o1.signal();
7 o2.wait(); if (x==0) y = 1;
8 }

spawn {
x = 0;
y = 0;
}
sync; spawn {
x = 1;
if (x==0) y = 1;
}

spawn {
x = 1;
if (x==0) y = 1;
}
sync; spawn {
x = 0;
y = 0;
}

(a) (b) (c)

Fig. 2. (a) Enforcing solution l6≺ l2, l3≺ l7 with signal/wait. (b) Enforcing solution l2≺ l6 and
l3≺ l7 with sync. (c) Enforcing solution l7≺ l2 with spawn and sync.

Phase 3: Realization of Solutions A solution can be enforced with a variety of synchro-
nization mechanisms. To illustrate the issues that arise when realizing solutions into the
program, we selected two different synchronization primitives:

– spawn/signal/wait: a thread is created with a spawn, a thread can notify another
thread by invoking o.signal() on a signaling object o and a thread can wait to be
notified with o.wait(). Once a thread is notified, it continues execution.

– spawn/sync: this synchronization mechanism is used by structured parallel pro-
gramming languages such as Cilk [4]. A thread is created with a spawn. When a
thread calls sync, the thread blocks and waits until all of its children threads (threads
that it has spawned) as well as their descendants complete.

With the first mechanism all five solutions in Table 1(b) can be implemented di-
rectly. For instance, the implementation of solution l6≺ l2, l3≺ l7 is shown in Fig. 2 (a).

Two interesting points need to be noted when using the spawn/sync constructs. First,
not all of the five solutions are directly implementable with spawn/sync. For example,
the solution l6≺ l2, l2≺ l7, l7≺ l3 cannot be implemented by placing a sync construct
anywhere in the program. In fact, from the set of five solutions, only the ordering l2≺ l6,
l3 ≺ l7 can be implemented by placing a sync in the program. The resulting program
is shown in Fig. 2 (b). Second, the implemented solution enforces sequentialization of
the two threads, that is, the implemented solution is more coarse than what the actual
constraints require.

Indeed, with certain synchronization primitives, one may obtain fewer and coarser
solutions than what the solutions yielded by phase 2 require. Hence, one side-effect of
using coarser synchronization constructs is obtaining fewer solutions. Therefore, this
is the third mechanism that can lead to fewer solutions produced by the synthesizer.
In Section 7 we show an evaluation of the two synchronization mechanisms and their
final number of solutions.

Inferring spawns In addition to sync statements, our approach can also infer a place-
ment for spawn’s. In our example it is impossible to find a placement of sync in the
program that realizes the solution l7 ≺ l2. However, if the user had omitted the spawn
statements, then our algorithm can infer a placement of spawn’s (and sync) that realizes
l7≺ l2. The result is shown in Fig. 2 (c).

Precision Because of abstraction, it is possible to produce unnecessary constraints. This
is expected as the abstraction loses information in order to make static analysis tractable.
Consider solution l2≺ l6, l3≺ l7 from Table 1(b). Here, the term l3≺ l7 is unnecessary
because if l2 ≺ l6 is enforced, y = 1 would not execute and hence there would be no
conflict with the statement at label 3. One can attempt to refine the abstraction to avoid
unnecessary solutions, but in general it is impossible to completely avoid this effect.

Preserving Termination The solutions produced in phase 2 should not introduce non-
termination. However, when implementing these solutions into a program, deadlock
may be introduced.

To illustrate the point, we slightly modify the example of Fig. 1: assume that the
statement y = 1 at label 7 is now executed separately from its guard. Suppose that we
would like to realize the solution where y = 1 is always performed before y = 0. If
we implement this with signal/wait, we can introduce non-termination. The reason is
that if we place a signal right after y = 1 and a wait right before y = 0, then it is
possible that the execution of statements (in this sequence): x = 0, x = 1, wait leads
to a deadlock. The reason is that y = 1 will never be reached (and the signal will never
be invoked). This issue can be addressed at any of the three phases. We address the
problem in phase 1 and make sure that the inter-thread constraints in the formula only
use labels that are always performed by the program (defined later).

Our approach soundly handles programs with loops and conditionals, the main point
here is that care must be taken when conflicting labels participate inside conditionals
and loops (the details of our solution can be found in Section 5).

2.3 Abstracting Memory Accesses

So far, we illustrated the steps of our algorithm on a simple example. However, realistic
programs introduce additional challenges in the form of unbounded number of dynam-
ically allocated objects, and accesses to arrays of unknown sizes. To address this issue,
we use an abstraction of memory locations that combines information from a (simple)
heap abstraction with information from a numerical abstraction of array indices. Here,
we briefly illustrate the abstractions on the example in Fig. 3.

1 void update(double[] B, double[] C) {
2 spawn {
3 for (int i=1;i <= n; i++) {
4 int ci = 2*i;
5 double t1 = C[ci]; {R:({AC},{2 ≤ ci ≤ 2*n})}
6 B[i] = t1; {W:({AB},{1 ≤ i ≤ n})}
7 }
8 }
9 spawn {

10 for (int j=n;j <=2*n; j++) {
11 int cj = 2*j+1;
12 double t2 = C[cj]; {R:({AC},{2*n+1≤ cj≤ 4*n+1})}
13 B[j] = t2; {W:({AB},{n ≤ j ≤ 2*n})}
14 }
15 }
16 }

Fig. 3. Simple example for parallel accesses to shared arrays.

The threads in the program of Fig. 3 access two arrays B and C passed as param-
eters. Our abstraction for memory locations over-approximates the memory locations
accessed by each statement. We represent the set of (abstract) memory locations ac-
cessed by each statement as a pair of heap information and array index range. The heap
information records what abstract locations may be pointed to by the array base refer-
ence. The array index-range records what indices of the array may be accessed by the
statement via constraints on the index variable.

For this program, our pointer analysis is able to establish that B and C correspond
to disjoint (abstract) memory locations AB and AC , respectively (by analyzing the rest
of the program, not shown here). In this example, we used the Polyhedra abstract do-
main [10] to abstract numerical values, and the array index range is generally repre-
sented as a set of linear inequalities on local variables of the thread. For example, in
Line 5 of the example, the array base C may point to a single abstract location AC , and
the statement reads from the range 2 ≤ ci ≤ 2 ∗ n.

To identify a conflict, our algorithm reasons about potential overlaps between ab-
stract memory locations. In the example of Fig. 3, the ranges of array indices repre-
sented by linear inequalities overlap. That is, the writes at Line 6 and Line 13 overlap
as the abstract memory locations ({AB}, 1 ≤ i ≤ n) and ({AB}, n ≤ j ≤ 2 ∗ n) inter-
sect, leading to potentially conflicting writes by the two threads when i=j=n.

3 Background

Here, we provide basic notations and definitions which we use in the rest of the paper.
Programming Language Our synthesis algorithms are applicable to standard off-the-
shelf concurrent/parallel programming languages. To simplify presentation, we assume
a simple sequential imperative language augmented with the spawn statement for creat-
ing parallel threads. We use TIds to denote the set of thread identifiers, VarIds to denote
the set of local variable identifiers, and Labs to denote the set of program labels. We
assume the code in each thread is augmented with an initial label (the label of the first
statement in the thread) and a final label (the label after the last statement in the thread).
We assume that labels are unique to each thread. We denote the thread of a label l by
tid(l). For an assignment statement at label l, lhs(l) denotes the left hand side, and
rhs(l) the right hand side. To simplify exposition, we assume the language only con-
tains array accesses. The treatment of shared field accesses is similar (and simpler).
Transition System A transition system is a tuple 〈Σ0, F,Σ,T〉 where Σ is a set of
states, T ⊆ Σ × Σ is a set of transitions between states, Σ0 ⊆ Σ are the initial states
and F ⊆ Σ are the final states. For a transition τ ∈ T , we use src(τ) and dst(τ) to
denote its source and destination states and tid(τ) to denote the thread which performed
τ . A state is final if all threads are at their final label in that state. There are no outgoing
transitions from a final state.
Concrete Semantics We assume standard semantics which define a program state and
evaluation of expressions and statements in that program state. The semantic domains
are defined in the standard way in Table 2. As we focus our exposition on arrays, each
l-value is a pair (a, n) ∈ (A\ ×N).

A\ ⊆ aobjs\ allocated arrays
v\ ∈ Val = aobjs\ ∪ {null} ∪N values
lv\ ∈ LV al = aobjs\ ×N l-values
pc\ ∈ PC = TIds ⇀ (Labs ∪ ⊥) program counters
ρ\ ∈ Env\ = TIds× VarIds ⇀ Val environment
h\ ∈ Heap\ = LV al ⇀ Val heap

Table 2. Semantic Domains

A program state is a tu-
ple: σ = 〈pc\σ, ρ\σ, h\σ, A\σ〉 ∈
ST \, where ST \ = PC ×
Env\ × Heap\ × 2aobjs\

. A
state σ keeps track of the pro-
gram counter for each thread
(pc\σ) (undefined if the thread
has not yet been activated),
an environment mapping local
variables to values (ρ\σ), a map-
ping from allocated array ob-
jects and indices to values (h\σ), and a set of allocated array objects (A\σ).

We denote threads(σ) the set of thread identifiers in dom(pc\σ) which are not
mapped to ⊥. We use succ(σ) to denote the set of states that are direct successors
of σ in the transition system. The set of threads which can perform a transition out of
state σ is denoted by succtid(σ). For a transition τ , we denote by wr(τ) ⊆ LV al the
set of memory locations written by τ , by rd(τ) ⊆ LV al the set of memory location
read by τ , and by rw(τ) = wr(τ) ∪ rd(τ) the set of locations accessed by τ .

The transition system of a program P is denoted by 〈Σ0, FP , ΣP , TP 〉. Every tran-
sition τ ∈ TP is associated with a statement that performed the transition and its label
is denoted by lbl(τ).

A trace π = τ0 · τ1 . . . of a program P is a sequence of transitions, such that for
i ≥ 0, τi ∈ TP , src(τi+1) = dst(τi) and src(τ0) ∈ Σ0. We denote the set of traces
of P by [[P]]. We denote the first state of a trace π by first(π) = src(τ0) and the last
state of a finite trace π by last(π) = dst(τn−1), n = |π|.
Determinism Informally, a program is deterministic if it produces (observationally)
equivalent outputs for all (observationally) equivalent inputs. For programming lan-
guages where each statement is deterministic, ensuring end-to-end determinism can be
achieved if concurrent shared memory accesses are ordered such that the program is
conflict-free. Conflict-freedom is a strong property which allows us to prove and estab-
lish determinism without devising abstractions for automatically reasoning about state
equality, a task that can be very challenging when analyzing real programs.

Definition 1 (Conflicting Transitions). We say that two transitions τ and τ ′ are con-
flicting, denoted by τ ∦ τ ′, when: i) tid(τ) 6= tid(τ ′), ii) src(τ) = src(τ ′) and iii)
wr(τ) ∩ rw(τ ′) 6= ∅ or wr(τ ′) ∩ rw(τ) 6= ∅.

Definition 2 (Conflict State). A state σ ∈ Σ is a conflict state if there are two transi-
tions τ, τ ′ such that src(τ) = σ and τ ∦ τ ′.

A program P is conflicting if it has a reachable conflict state σ ∈ ΣP . Otherwise,
the program is conflict-free.

4 Constraints and Termination Guarantees

This section states a theorem which outlines the conditions under which enforcing or-
dering constraints will preserve termination. To state the theorem, we define neces-
sary concepts such as termination, thread blocking, and (combination of) ordering con-
straints. Indeed, any synthesis algorithm which operates in the setting outlined in this
section can provide the guarantees stated by the theorem. One such synthesis algorithm
is provided in Section 5.

4.1 Program Termination

To define that a program P halts, it is enough to show that every trace π ∈ [[P]] is finite.
This property is sufficient when all states with no outgoing transitions are final states.
However programs that deadlock do not reach final state and yet they halt. We refine
the definition of termination to exclude halting in non-final states.

Definition 3 (Terminating Set of Program Traces). A set of traces S ⊆ [[P]] is termi-
nating if:
1. every trace π ∈ S is finite.
2. for any trace π′ ∈ S, there exists a trace π ∈ S such that π′ is a prefix of π and
last(π) ∈ FP .

We say that a program is terminating if the set [[P]] is a terminating set. Note that
it is possible for the program to terminate, yet during its execution some threads can
be temporarily disabled from making progress. This can happen for instance when a
thread is waiting for an external action to occur before it can make a transition. Below
we define what it means for a thread to be blocked (or not to be enabled at any point).

Definition 4. A thread t blocks in a program P if there exists a reachable state σ ∈ ΣP ,
such that t 6∈ succtid(σ) and pc\σ(t) is not a final label of t.

For example, if a thread calls wait then it (temporarily or permanently) blocks.

4.2 Ordering Constraints

In this work we focus on determinization by enforcing ordering between labels that
execute exactly once — the motivation for this approach is to ensure termination.

Definition 5 (Single-transition label). A label l in a program P is a single-transition
label if for every finite trace π ∈ [[P]] where last(π) ∈ FP , there is exactly one transi-
tion τ ∈ π, such that lbl(τ) = l.

Next, we define the meaning of a constraint lm≺ ln in terms of traces that satisfy it.

Definition 6 (Meaning of lm ≺ ln). Given a program P, we say that a trace π ∈ [[P]]
violates an ordering constraint lm≺ ln if:

– lm or ln are not single-transition labels, or
– they are single transition labels where ∃i, j. 0 ≤ i ≤ j < |π| such that lbl(πi) = ln

and lbl(πj) = lm.

Any trace which does not violate lm≺ ln satisfies the predicate.

The definition above is naturally extended to a set of ordering constraintsC = {l1≺
l2, . . . , lm≺ ln}. That is, a trace satisfies C only if it satisfies each constraint in C. We
use [[P]]C to denote all program traces which satisfy the set of ordering constraints C.
Where convenient we treat the set C as a binary relation on labels. We use labels(C)
to denote all labels appearing in the constraints of set C and labels(C)|t = {l | l ∈
labels(C), tid(l) = t} to denote the set labels of thread t appearing in labels(C).

4.3 Constraining Traces

Next, we define what it means for a set of constraints to be consistent. Intuitively, this
will correspond to what a synthesis algorithm must produce as the output right before
this output is implemented with particular synchronization constructs.

Definition 7. Given a program P, we say that a set of ordering constraints C is consis-
tent w.r.t P , if:

1. labels(C) contains only single transition labels.
2. C does not contain cycles: Ilabels(C) ∩ C∗ = ∅.

3. for every thread t, there exists a unique set T ⊆ C such that:
(a) T is a total order on labels(C)|t.
(b) [[P]]T = [[P]].

The first consistency property is self explanatory. The second property requires that
the set of constraints does not conflict with itself. Here Ilabels(C) is the identity function
defined over the set labels(C). Property 3a) requires that if two labels of the same thread
appear in C (could be in different constraints), then these two labels must be ordered.
Property 3b) states that all traces of the program satisfy the total order. The last two
conditions prevents a situation where two labels of the same thread always appear in all
program traces (i.e., they are single-transition labels), yet in some traces they appear in
one order, and in other traces they appear in the opposite order.

Next, we state a key theorem: removing traces induced by a consistent set of order-
ing constraints will not introduce non-termination.

Theorem 1. Given a terminating program P where no thread blocks, and a set of con-
straints C, if C is consistent, then [[P]]C is a terminating set of program traces.

This theorem means that if we produce a program PC whereC is enforced in P such
that [[PC]] = [[P]]C , the resulting program will still be terminating. Next, we will see a
thread-modular synthesis algorithm that takes as input a potentially conflicting program
and infers a consistent set of constraints C. Then, we will see how to implement C with
particular synchronization primitives so to obtain a final conflict-free program.

5 Thread-Modular Synthesis

In this section, we present our thread-modular synthesis algorithm. The algorithm is
based on a thread-modular abstraction which over-approximates the concrete behaviors
from Section 3, allowing us to reason in a thread-modular way. The algorithm takes as
input a potentially conflicting program and outputs a conflict-free program.

First, we define a thread modular abstraction. This abstracts away the relationship
between different threads and leads to semantics that tracks each thread separately,
rather than tracking all threads simultaneously. Then, once stabilization is obtained,
we check for conflicts by combining pairwise thread states and checking whether the
combined state is conflict-free.

5.1 Abstraction

We define the projection σ|t of a state σ on a thread identifier t as σ|t = 〈pc|t, ρ|t, h, A〉,
where pc|t is the restriction of pc to t and ρ|t is the restriction of ρ to t. Given a
concrete state σ ∈ ST \, the program state for a single thread t is σ|t ∈ ŜT , where
ŜT = PC ×Env\ ×Heap\ × 2aobjs\

. Given a set of states S ⊆ ST \, its abstraction
is defined as:

αtm(S) =
⋃
σ∈S
{σ|t | t ∈ threads(σ)}

The program counter pc of a state σ̂ ∈ ŜT contains only a single thread in its domain.
Similarly, threads(σ̂) returns a singleton set that contains the single thread represented
in σ̂ (or the empty set if the thread is mapped to ⊥ in σ).

Algorithm 1: Thread-Modular Syn-
thesis

Input: Program P with n threads
Output: Program P’ that is conflict-free

1 compute stabilized Σ1
P , . . . , Σ

n
P

2 ψ ← true
3 foreach i in 1, . . . , n do
4 foreach j in i+ 1, . . . , n do
5 foreach σ̂i

tm ∈ Σi
P ,

σ̂j
tm ∈ Σj

P do
6 σ ← σ̂i

tm ⊕ σ̂j
tm

7 if σ 6= ⊥ then
8 ψ ← ψ ∧ resolve(σ)

9 ϕ← ψ ∧ nocycles(ψ)
10 S ← SAT (ϕ)
11 return implement(P, S)

Abstraction Computation We have defined
what the abstraction does and not how it
is computed. There are various techniques
which can automatically compute a thread-
modular abstraction of a program [21].
Typically, these analysis algorithms begin
by computing inductive invariants for each
thread. Then, based on the interference be-
tween threads, they weaken the proof of a
given thread until the interference check-
ing succeeds. In a later section, we will dis-
cuss how this stabilization is accomplished
in our setting. After the thread-modular ab-
straction is obtained, one can apply stan-
dard abstractions such as heap or numeri-
cal in order to abstract unbounded state (we
will see an example later).

5.2 Synthesis

Our thread modular synthesizer is shown
in Algorithm 1. After computing invariant

stabilization, the algorithm checks for conflicts between states and computes ordering
constraints to avoid any conflicts. The constraints are accumulated in a global inter-
thread constraint formula ψ. Next, we discuss the ingredients of the algorithm.

Step 1: Identifying Conflicts As defined in Section 3, a conflict is a property of two
transitions executed by different threads. Since our abstraction is thread modular, iden-
tifying a conflict requires pairwise composition of states of individual threads.

First, we define a pairwise state as a composition of individual thread states. The
idea is to define when individual states can be combined into a pairwise state (corre-
sponding to partial concretization, e.g., in [19]). For example, we can define that two
individual states can be combined only when they agree on shared data, or when the
program locations of the individual threads may indeed occur in parallel.

The combination pc1 ⊕ pc2 of program counter functions pc1, pc2 is defined as

pc1 ⊕ pc2 =

{
⊥, mhp(dom(pc1), dom(pc2)) = false
λt.{pc1(t) | t∈dom(pc1)} ∪ {pc2(t) | t∈dom(pc2)} otherwise.

Here, we use the predicate mhp to decide whether two labels may happen in par-
allel. Our approach is parametric on this predicate’s implementation: we can use any
existing may-happen analysis to compute the predicate (e.g. [1]). The combination
ρ1 ⊕ ρ2 of environments is defined similarly.

Definition 8. Given two states σ̂1 = 〈pc1, ρ1, h1, A1〉, σ̂2 = 〈pc2, ρ2, h2, A2〉 ∈ ŜT ,
we say that the states are matching when pc1 ⊕ pc2 6= ⊥, ρ1 ⊕ ρ2 6= ⊥, h1 = h2 and
A1 = A2, and define the composed pairwise state σpw = σ̂1⊕ σ̂2 of matching states as
σpw = 〈pc1 ⊕ pc2, ρ1 ⊕ ρ2, h1, A1〉. If the states are not matching, we define σ̂1 ⊕ σ̂2
to be ⊥.

Definition 9 (Conflicting Program). Given a program P with n threads (1..n), let the
reachable states for each thread be Σ1

P , . . . , Σ
n
P respectively, where Σi

P ⊆ ŜT , 1 ≤
i ≤ n. We say that the program is conflicting when there exist matching states σ̂i

tm ∈
Σi
P , σ̂j

tm ∈ Σj
P such that σ̂i

tm ⊕ σ̂jtm is a conflict state.

A program that is not conflicting is a conflict-free program.
Step 2: Compute Single-Transition Labels and Total Orders Next, we show how to
build a constraint formula whose satisfying assignments form a consistent set as in Def-
inition 7. First, for each thread t we find a set of single-transition labels St = {lti}ni=1

such that there exists a total order TOt = {∪n−1i=1 {lti ≺ lti+1}} on the labels in St, in a
way that each trace in [[P]] satisfies this total order. The set containing the total order of
each thread is denoted by thords = ∪t∈TIds TOt.

Next, given a transition τ , we discuss how to compute the functions lpred(τ) and
lsucc(τ) (both of these return a label). Intuitively, the reason we need these functions
is to lift labels which participate in a conflict and are not single-transition labels. We
assume that lt1 is the label of the first statement in the thread and ltn is the final label
in the thread where both are single-transition labels. This guarantees that if a thread t
performs a transition τ such that lbl(τ) 6∈ St, then we can always find a transition τ ′ in
a trace π performed by t so that τ ′ precedes τ in π and lbl(τ ′) ∈ St. We use the function
lpred(τ) to denote such a label. The function returns the same label regardless in which
π the transition τ appears. Similarly, we ensure the existence of a single-transition label
of a transition performed after τ in some trace π. We use lsucc(τ) to denote such a
label. A trivial solution is to use lpred(τ) = lt1 and lsucc(τ) = ltn, however, we can also
choose labels that are “closer” to τ (in all traces where τ appears). In case lbl(τ) ∈ St,
we define lpred(τ) = lsucc(τ) = lbl(τ).
Step 3: Resolve conflicts The formula ψ accumulates constraints for each conflict state.
Let the conflict transitions of state σ be defined as:

conflicts(σ) = {(τ, τ ′) | τ ∦ τ ′, src(τ) = src(τ ′) = σ}

Resolving a conflict state with a pair of conflicting transition τ, τ ′ can be done in two
ways: performing τ first or τ ′ first. Since we would like our formula to contain only
single-transition labels, the formula for resolving conflicts in a state becomes:

resolve(σ) =
∧
{lsucc(τ ′)≺ lpred(τ) ∨ lsucc(τ)≺ lpred(τ ′) | (τ, τ ′) ∈ conflicts(σ)}

Up to here, we have ensured that conditions 1 and 3 in Definition 7 are enforced. Next,
we make sure that condition 2 (i.e., no solutions with cycles) is also met. Let terms(ψ)
be the set of all terms in the boolean formula ψ. Every term has the form la≺ lb. Then,
the following formula describes all possible ways in which cycles can be eliminated.

nocycles(ψ) =
∧
{∨{¬a | a ∈ A, a ∈ terms(ψ)} | A ⊆ terms(ψ) ∪ thords,A is a cycle}

After all conflicts are resolved and ψ is computed, the formula nocycles(ψ) is added
to ψ obtaining the final formula ϕ (line 9 of Algorithm 1). Note that all labels of a given
thread that appear in terms(ψ) are contained in thords, that is, the labels of a given
thread are totally ordered. As an optimization, we only need to consider cycles that do
not visit the same node multiple times because such cycles can be decomposed into
several smaller ones.
Step 4: Compute satisfying assignments to ϕ Finally, line 10 of Algorithm 1 computes
a satisfying assignment to ϕ. From this satisfying assignment, we select the constraints
with positive truth values, which results in a consistent set of constraints that makes
the program conflict-free. Note that this set may contain constraints which are implied
by other constraints. This is addressed by performing a transitive reduction on the set.
Such a reduction is unique and can be computed with an iterative greedy algorithm that
at each step removes a constraint implied by others.

6 From Constraints to a Program

In the previous section, we showed how to obtain a consistent set of constraints S. In
this section, we discuss how to enforce S in the program by adding synchronization.
This process is realized by the implement(P, S) procedure of Algorithm 1.
Realization with signal/wait synchronization A synchronization method, which di-
rectly corresponds to an ordering constraint between a pair of labels, is a signal/wait
object. Every signal/wait object starts non-signaled and can be signaled by a call to
its signal method. The wait method of a non-signaled object blocks the current thread
until the object gets signaled. If lm and ln are single-transition labels, then the ordering
constraint lm≺ ln can be implemented calling o.signal() after the statement at label lm
and calling o.wait() before the statement at label ln.
Realization with structured synchronization We also considered a set of constructs
used in the structured parallel programming language Cilk [4]. Here, spawn creates
a new child thread while sync blocks until all existing child threads as well as their
recursively created children complete.

Consider the program in Fig. 4(a). Here, a main thread spawns two children threads
and then updates several variables. Suppose we would like to enforce that x = 0 ≺
x = 1, x = 1 ≺ x = 3, x = 3 ≺ x = 2. Here we abuse notation and use state-
ments instead of labels for readability. Fig. 4(b) shows one possible determinization. To
enforce x = 0 ≺ x = 1, the second thread is spawned only after the x = 0 state-
ment, while the thread with x = 1 is joined before spawning the next thread in or-
der to enforce its order to take place before x = 3. Finally, the last sync enforces
x = 3≺x = 2.

In general, as mentioned in Section 2, not every solution can be directly imple-
mentable with spawn/sync: either some coarsening may take place or the solution may
not be directly enforceable. In turn, this leads to fewer overall solutions. In the cases
when spawn/sync is possible, we would like a solution that allows for maximum paral-
lelism. The same order as Fig. 4(b) may be enforced by using sync immediately after the
end of the spawn statements. However, larger portions of the program will be sequen-
tialized and leading to less parallelism. We can solve this by allowing sync statements to

be inserted only at single-transition labels right before a conflict or right before spawn
statements. This leads to Algorithm 2.

x = 0;
spawn {
x = 1;
}
spawn {
x = 3;
}
y = 7;
x = 2;
z = 8;

x = 0;
spawn {
x = 1;
}
sync;
spawn {
x = 3;
}
y = 7;
sync;
x = 2;
z = 8;

x = 0;
y = 7;
x = 2;
spawn {
x = 1;

}
z = 8;
sync;
spawn {
x = 3;

}

x = 0;
y = 7;
x = 2;
spawn {
x = 1;
}
sync;
spawn {
x = 3;
}
z = 8;

(a) (b) (c) (d)

Fig. 4. Example showing different determinizations. (a)
the original program, (b) a determinization by adding
sync statements. (c) a determinization inferring sync and
spawn statements. (d) another determinization inferring
sync and spawn statements.

In this algorithm, we use a
rooted tree of program threads.
Each thread is a node and its
parent node is the thread who
spawned it. The main thread is the
root node. We refer to this tree
as the thread hierarchy. We de-
fine lca to return the lowest com-
mon ancestor in the thread hier-
archy and spawnlabel(a, b) to re-
turn the label at which b executes
spawn of thread a (or a parent
thread of a if a is not a direct child
of b).
Inferring spawn statements As
mentioned earlier, we can real-
ize ordering constraints by infer-
ring not only sync, but also spawn
statements. This is useful in cases
where the programmer provides a
set of threads without the corresponding spawn statement (or they can be only partially
specified). Ability to infer both sync and spawn allows for finer-grained solutions.

Inference of spawn statements can produce several solutions for the same set of
ordering constraints. For example, programs (c) and (d) in Fig. 4 enforce the same
ordering, but they differ in the way they order statement z = 8 (z is a non-conflicting
variable).

7 Experimental Evaluation

We implemented the thread-modular synthesis algorithm in a tool called DPS and eval-
uated its effectiveness on a set of parallel programs. The implementation handles pro-
grams written in the (sequential) Java language augmented with parallel constructs.
The experiments were conducted using Oracle’s Java 1.6 VM on a 4-core 3.5GHz Core
i7 machine. The input to DPS is a standard Java program optionally augmented with
constructs for thread creation (e.g. spawn). The output of DPS is a determinization
of the program expressed with the desired synchronization primitives: signal/wait or
spawn/sync.
Components of the Synthesizer Our analysis is based on the Soot analysis engine [27].
First, our analysis computes an abstraction of the heap using a flow-insensitive global
pointer analysis [17]. Since the pointer analysis is flow-insensitive, its results are sound
even in the presence of concurrency. We use the may-alias information mainly to de-
termine abstract array objects. We perform a thread-modular analysis using numerical
abstract domains (based on Apron [13]). For our experiments, we used the Octagon

and Polyhedra abstract domains with a simple widening strategy (we identify loops and
widen after some constant number of iterations around the loop). The thread modular
analysis computes the set of abstract states as required by Algorithm 1. To solve the
constraint formulas we used the SAT4J solver [26].

Algorithm 2: Inference of sync
Input: Program P, a set constraints
Output: Program P’ with added

sync statements
1 P’ = P
2 foreach la≺ lb ∈ constraints do
3 ta, tb ← tid(la), tid(lb)
4 tp ← lca(ta, tb)
5 if ta = tp then lpa ← la
6 else lpa ← spawnlabel(ta, t

p)
7 if tb = tp then lpb ← lb
8 else lpb ← spawnlabel(tb, t

p)
9 if lpa≺ lpb then

10 add sync at lpb to P’
11 else
12 return ”not realizable”

13 return P’

Stabilized Proofs The particular heap abstract
domain we use ensures the sequential analy-
sis of each thread produces a stabilized proof
and there is no need for refinement. The rea-
son is that the domain abstracts away the con-
tents of an abstract object, meaning all pos-
sible interferences on that object are consid-
ered. Generally this need not be the case, and
refinement may be necessary to compute a
stabilized proof.

Experimental Data To evaluate DPS, we used
benchmarks from the Habanero project [25].
We slightly modified the benchmarks to en-
sure the number of spawned threads is a con-
stant (all modifications preserve the input-
output behavior of the program). Also, our
numerical analysis and synthesis focus on
a program fragment where threads can exe-
cute in parallel and interference is possible.
All resulting programs listed in Table 3 per-
form parallel numerical computations and are
meant to be deterministic. To evaluate our

tool, we first removed all initial synchronization from the program and then ran the
synthesizer. The questions we wanted to answer were:

– can the tool discover the initial synchronization and if so, with which abstract do-
mains?

– which methods are useful to reduce the number of solutions?
– can viable determinizations be obtained in reasonable time?

The results for the first question are summarized in the third and fourth columns
of Table 3. Except for SPARSE, running with Polyhedra produced at least as good syn-
chronization as the initial one. In fact, for MOLDYN and SERIES, the tool discovered
synchronization that allows for more statements to execute in parallel than in the pro-
gram before removing synchronization.

We found that in some programs, the Octagon domain was too imprecise and led
to coarser than necessary synchronization. Still, the tool produced a deterministic pro-
gram, but forced threads to sequentialize. For SPARSE, we were unable to discover the
initial synchronization because the program contains complicated array aliasing ma-
nipulations (an array is indexed with the contents of another array) and the Polyhedra
numerical domain is too imprecise to establish that parallel array accesses are disjoint.
In all cases, the running time of DPS was less than two minutes.

Abstract Domain Number of Determinizations
Program Description Octagon Polyhedra fine W ≺R sync sync

grained + spawn
CRYPT IDEA encryption 7 X 6 1 1 1
MOLDYN Molecular dynamics simulation 7 X 992 72 72 1
SOR Succesive over-relaxation 7 X 2 1 1 1
LUFACT LU Factorization X X 7 4 2 1
SERIES Fourier coefficient analysis X X 3 2 2 1
SPARSE Sparse matrix multiplication 7 7 2 1 1 1

Table 3. Reconstruction of the initial synchronization with different abstract domains and the
number of determinizations with Polyhedra.

Next, we evaluated different methods for reducing the number of solutions. We
experimented with the following:

– Adding a specification that orders writes before reads: in case of a read-write con-
flict, it is often that the write should be ordered before the read except if this would
create a cycle in the constraints. The intuition is that the read should access the
most recently updated value.

– Choosing orderings that are implementable only with a coarser set of synchroniza-
tion primitives (e.g., only spawn and sync).

The fifth column of Table 3 presents the number of solutions with the most fine
grained constraints the algorithm could generate. For some programs, this setting pro-
duced a high number of determinizations. The sixth column adds a specification to order
the writes before the reads. The last two columns include only solutions, where both,
spawn and sync are inferred. The last column contains only one determinization. This
can happen if the spawn statements are fixed in the program and only sync statements
are inferred. It is worth noting that even in this setting, the synthesized synchronization
for MOLDYN and SERIES allowed for more parallelism than the initial synchronization.

8 Related Work

Next, we survey some of the more closely related work concerning determinism.
The work of Navabi et al. [23] focuses on migrating sequential programs into paral-

lel ones. Our work has a different focus, but shares a similar high level problem: given
a potentially non-deterministic parallel program, construct an output program that is
deterministic. However, there are a number of key technical differences: (i) we use nu-
merical domains to gain precision while [23] only relies on pointer analysis. Without
precise numerical domains such as Octagon or Polyhedra, we will end up sequentializ-
ing all threads of our benchmarks. Generally, applications in High Performance Com-
puting require rather precise domains to establish correctness. In contrast, in [23], it
is often sufficient to enforce coarse-grained synchronization, as any parallel solution
is considered an improvement over the sequential program; (ii) our solutions do not

require ta total logical order between threads, resulting in more solutions. This is par-
ticularly important when we have a pair of threads but a solution is possible where
the thread which is spawned first (but still can run in parallel with the second thread)
needs to wait for a transition in the second thread; (iii) in [23], a synchronization point
is generated automatically for every shared memory access, even if that access does
not conflict with any logically preceding thread. This means that some synchronization
may be inserted even if the program is conflict-free. In our approach such synchroniza-
tion points are unnecessary; (iv) we produce a set of constraints as intermediate form,
enabling us to experiment with different synchronization constructs for realizing it.

Next, we examine the technical differences with the work of Botincan et.al. [6].
Here, they start with two sequential programs (e.g. two iterations of a loop) and a proof
of some property for each program in separation logic. Then, by examining each as-
sertion in the proof, one can check whether the resources in the proof can be released.
Conversely, one can check which resources are needed. Then, a thread can grant these
resources to another thread, or block execution until it receives the resources it needs
from another thread. Once the releasing and granting of resources is ensured, the pro-
grams (i.e., two iterations of a loop) can run in parallel. Our work differs in the follow-
ing ways: (i) their approach is centered around resources, a concept in separation logic,
while our approach is based on abstract interpretation; (ii) the inference algorithms are
different: theirs uses logical resources and directly maps (required or unnecessary) re-
sources to specific synchronization primitives, while we use abstract conflict states and
produce constraints that can then be mapped to various synchronization primitives (as
we show); (iii) their work lacks evaluation, while we present a detailed study of how
different specifications and synchronization primitives affect the solution space.

The work of Jin et al. [14] presents a method for enforcing two types of constraints,
called allA-B and firstA-B. While the two works share similar high level goals, the
technical details are very different: for instance, their inference algorithm can introduce
non-termination via deadlocks. Finally, we present a sound thread-modular synthesizer,
while in their work it is assumed that conflicts are provided by an external analysis.

There has been significant interest in various aspects of determinism: automatic
verification [29, 15], programming models and systems [7, 24, 11, 2, 3]. Some of these
dynamically ensure that the program is deterministic (e.g., aborts in case of conflicts or
performs deterministic merge of conflicts, or uses deterministic schedulers). A concern
with some of these approaches is that the program may suffer unnecessary slowdowns.
To reduce these overheads, some techniques put stringent requirements on the input
program (e.g., [24] requires that the input program is data-race free). Further, there is an
issue that a small change to the input may cause a vastly different scheduling strategy,
causing unpredictable slowdowns. In contrast, our approach is static and guarantees
that the output program is deterministic for all input states. We believe that the two
approaches are complementary.

Other approaches such as DPJ [5] extend a programming language with determin-
istic constructs and rely on a type system to verify conflict freedom. However, DPJ’s
type system handling of numerical computations is not as powerful as classic abstract
domains and as such cannot prove conflict-freedom for programs such as SOR. More

importantly, it requires explicit annotations of disjointness and suggests no repairs when
statements conflict.
Program Synthesis Program synthesis techniques have been successfully used to help
programmers discover tricky details, see [12] for a survey. For instance, inference tech-
niques have been used to automatically synthesize missing synchronization such as
atomic sections [30] and locks [20]. All of these approaches effectively synthesize a
constraint over the statements of the same thread. In contrast, we consider inter-thread
constraints where comparatively speaking, there has been significantly less work.

9 Conclusion and Future Work

We introduced a synthesis framework for statically enforcing determinism of infinite-
state programs. We presented a thread-modular synthesis algorithm, which given a po-
tentially non-deterministic parallel program, discovers ordering constraints that make
the program deterministic, without introducing non-termination.

The algorithm identifies abstract conflict states and then synthesizes an inter-thread
constraint formula that describes ways to resolve these conflicts. Then, the synthesizer
realizes a satisfying assignment to such a constraint in the program via synchroniza-
tion constructs. We showed how this is accomplished for signal/wait and spawn/sync
constructs.

We implemented our synthesizer and evaluated it on a set of programs adapted from
those used in the high performance community. Our results indicate that the tool is ef-
fective: for most programs it managed to quickly synthesize the initial synchronization
placement, and in some cases improve it.

There are several interesting directions for future work: (i) defining more expressive
inter-thread constraints, (ii) extending the notion of single-transition labels, (iii) refin-
ing the thread-modular synthesis algorithm so that stabilization interacts with repairs,
and (iv) designing translation algorithms that convert constraints to more expressive
synchronization, also enabled by (i).

References

1. AGARWAL, S., BARIK, R., SARKAR, V., AND SHYAMASUNDAR, R. K. May-happen-in-
parallel analysis of x10 programs. In PPoPP ’07: Proceedings of the 12th symposium on
Principles and practice of parallel programming (2007), ACM, pp. 183–193.

2. AVIRAM, A., WENG, S.-C., HU, S., AND FORD, B. Efficient system-enforced determinis-
tic parallelism. In OSDI’10.

3. BERGER, E. D., YANG, T., LIU, T., AND NOVARK, G. Grace: safe multithreaded program-
ming for c/c++. In OOPSLA ’09.

4. BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RANDALL,
K. H., AND ZHOU, Y. Cilk: an efficient multithreaded runtime system. In PPoPP’95.

5. BOCCHINO, JR., R. L., ADVE, V. S., DIG, D., ADVE, S. V., HEUMANN, S., KOMURAV-
ELLI, R., OVERBEY, J., SIMMONS, P., SUNG, H., AND VAKILIAN, M. A type and effect
system for deterministic parallel java. In OOPSLA’09.

6. BOTINCAN, M., DODDS, M., AND JAGANNATHAN, S. Resource-sensitive synchronization
inference by abduction. In POPL ’12.

7. BURCKHARDT, S., BALDASSIN, A., AND LEIJEN, D. Concurrent programming with revi-
sions and isolation types. In OOPSLA ’10.

8. CHEREM, S., CHILIMBI, T., AND GULWANI, S. Inferring locks for atomic sections. In
PLDI ’08.

9. COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In POPL’77.

10. COUSOT, P., AND HALBWACHS, N. Automatic discovery of linear restraints among vari-
ables of a program. In POPL’78.

11. DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. Dmp: deterministic shared memory
multiprocessing. In ASPLOS ’09.

12. GULWANI, S. Dimensions in program synthesis. In PPDP ’10 (2010).
13. JEANNET, B., AND MINE, A. Apron: A library of numerical abstract domains for static

analysis. In CAV’09.
14. JIN, G., ZHANG, W., DENG, D., LIBLIT, B., AND LU, S. Automated concurrency-bug

fixing. In OSDI’12.
15. KAWAGUCHI, M., RONDON, P., BAKST, A., AND JHALA, R. Deterministic parallelism via

liquid effects. In PLDI ’12.
16. KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic inference of memory fences.

In FMCAD’10.
17. LHOTÁK, O., AND HENDREN, L. Scaling Java points-to analysis using Spark. In CC’03.
18. LU, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from mistakes: a comprehensive study

on real world concurrency bug characteristics. SIGOPS Oper. Syst. Rev.’2008.
19. MANEVICH, R., LEV-AMI, T., SAGIV, M., RAMALINGAM, G., AND BERDINE, J. Heap

decomposition for concurrent shape analysis. In SAS ’08.
20. MCCLOSKEY, B., ZHOU, F., GAY, D., AND BREWER, E. Autolocker: synchronization

inference for atomic sections. In POPL ’06.
21. MINÉ, A. Static analysis of run-time errors in embedded critical parallel c programs. In

ESOP’11.
22. MINÉ, A. The octagon abstract domain. Higher Order Symbol. Comput. 19 (March 2006),

31–100.
23. NAVABI, A., ZHANG, X., AND JAGANNATHAN, S. Quasi-static scheduling for safe futures.

In PPoPP ’08.
24. OLSZEWSKI, M., ANSEL, J., AND AMARASINGHE, S. Kendo: efficient deterministic mul-

tithreading in software. In ASPLOS ’09.
25. Habanero Multicore Software Research project. http://habanero.rice.edu/hj.
26. The SAT4J SAT solver. available at http://www.sat4j.org/.
27. VALLÉE-RAI, R., ET AL. Soot - a Java Optimization Framework. In Proceedings of CAS-

CON 1999 (1999), pp. 125–135.
28. VASUDEVAN, N., AND EDWARDS, S. A. A determinizing compiler. In PLDI, FIT Session

(2009).
29. VECHEV, M., YAHAV, E., RAMAN, R., AND SARKAR, V. Automatic verification of deter-

minism for structured parallel programs. In SAS’10.
30. VECHEV, M., YAHAV, E., AND YORSH, G. Abstraction-guided synthesis of synchroniza-

tion. In POPL ’10.

