
Scalable Taint Specification Inference with
Big Code

Victor Chibotaru Benjamin Bichsel Veselin Raychev Martin Vechev

DeepCode ETH Zurich DeepCode ETH Zurich

OWASP top 10 security threats to web apps
1. Injection (SQL, NoSQL, OS command, Code, …)
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities (XXE)
5. Broken Access Control
6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization
9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

2

Injection vulnerabilities
1. Injection (SQL, NoSQL, OS command, Code, …)
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities (XXE)
5. Broken Access Control
6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization
9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

3

A typical injection vulnerability

def upload():

4

A typical injection vulnerability

def upload():

 fname = flask.request.files['f'].filename

5

A typical injection vulnerability

def upload():

 fname = flask.request.files['f'].filename

 path = os.path.join(upload_dir, fname)

6

A typical injection vulnerability

def upload():

 fname = flask.request.files['f'].filename

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

7

A typical injection exploit

def upload():

 fname = "../../../etc/passwd"

 path = "/var/www/app/../../../etc/passwd"

 flask.request.files['f'].save("/etc/passwd")

8

Taint Analysis: detecting injection vulnerabilities

def upload():

 fname = flask.request.files['f'].filename

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

9

flask.request.files[‘f’].filename

os.path.join()

flask.request.files[‘f’].save()

Taint Analysis: sources

def upload():

 fname = flask.request.files['f'].filename

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

10

flask.request.files[‘f’].filename

os.path.join()

flask.request.files[‘f’].save()

Taint Analysis: sinks

def upload():

 fname = flask.request.files['f'].filename

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

11

flask.request.files[‘f’].filename

os.path.join()

flask.request.files[‘f’].save()

Taint Analysis: vulnerability model

def upload():

 fname = flask.request.files['f'].filename

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

12

flask.request.files[‘f’].filename

os.path.join()

flask.request.files[‘f’].save()

A typical fix

def upload():

 fname = flask.request.files['f'].filename

 fname = werkzeug.secure_filename(fname)

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

13

Taint Analysis: sanitizers

def upload():

 fname = flask.request.files['f'].filename

 fname = werkzeug.secure_filename(fname)

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

14

flask.request.files[‘f’].filename

os.path.join()

werkzeug.secure_filename()

flask.request.files[‘f’].save()

Taint Analysis: vulnerability model

def upload():

 fname = flask.request.files['f'].filename

 fname = werkzeug.secure_filename(fname)

 path = os.path.join(upload_dir, fname)

 flask.request.files['f'].save(path)

15

flask.request.files[‘f’].filename

os.path.join()

werkzeug.secure_filename()

flask.request.files[‘f’].save()

Completeness of taint specifications is crucial

Missing source or sink → undetected vulnerabilities

Missing sanitizer → false positive reports

16

Creating taint specifications is labour-intensive

17

Creating taint specifications is labour-intensive

18

Creating taint specifications is labour-intensive

19

Goal: Automatically learn
Taint Specifications from Big Code

20

Learning Taint Specifications from Big Code

21

Data flow
graphs

Learning Taint Specifications from Big Code

Static
 analysis

22

Data flow
graphs

Learning Taint Specifications from Big Code

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Static
 analysis

23

Data flow
graphs

Learning Taint Specifications from Big Code

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Static
 analysis

24

Data flow
graphs

Learning Taint Specifications from Big Code

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Static
 analysis

25

System requirements

26

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

Merlin (Livshits et al., PLDI ‘09)

27

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

Merlin (Livshits et al., PLDI ‘09)

28

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

Semi-
-supervised

learning

Merlin (Livshits et al., PLDI ‘09)

29

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

Inference
based on

factor
graphs

Semi-
-supervised

learning

SuSi (Rasthofer et al., NDSS Symposium 2014)

30

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

SuSi (Rasthofer et al., NDSS Symposium 2014)

31

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

SVM

SuSi (Rasthofer et al., NDSS Symposium 2014)

32

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

SVM

Supervised
learning

Seldon

33

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

Seldon

34

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

Inference
based on

linear
constraints

Seldon

35

➢ The system has to be fast
enough to learn from Big Code

➢ The system has to work with
few known specifications

Inference
based on

linear
constraints

Semi-
-supervised

learning

Solution: Seldon

36

Data flow
graphs

Static Code Analysis

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

➢ Static analysis is used to build data flow graphs for training programs

➢ Nodes are events in program (e.g. function calls, parameter loads)

➢ Edges represent the data flow between events

➢ Flow, Context, Field-sensitive points-to analysis

➢ Over-approximates usages of Python data structures

Static
 analysis

37

Data flow
graphs

Beliefs about taint flow

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

➢ Three simple beliefs about taint flow

➢ Should hold for almost all training programs

➢ Can be used to derive constraints on inferred candidates
Static

 analysis

38

Beliefs about taint flow

39

“Sanitizers secure sinks from untrusted input”

Beliefs about taint flow

40

B C
“Sanitizers secure sinks from untrusted input”

Beliefs about taint flow

41

A B C
“Sanitizers secure sinks from untrusted input”

Beliefs about taint flow

42

A B C
“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”

Beliefs about taint flow

43

A B C

A C

“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”

Beliefs about taint flow

44

A B C

A B C

“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”

C

C

Beliefs about taint flow

45

A B C

A B C

“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”

“Sanitizers clean untrusted input before it
reaches a sink”

Beliefs about taint flow

46

A B C

A B C

A B

“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”

“Sanitizers clean untrusted input before it
reaches a sink”

Beliefs about taint flow

47

A B C

A B C

A B C

“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”

“Sanitizers clean untrusted input before it
reaches a sink”

Data flow
graphs

Seldon overview

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

➢ Data flow observed in
training is transformed into
soft linear constraints

Static
 analysis

48

Candidate scores

49

A 0 ≤ SRCA, SANA, SNKA≤ 1

Instantiations of beliefs

50

“Sanitizers secure sinks from untrusted input”
A B C

Instantiations of beliefs

51

Y B C

Z

X

If
B is a sanitizer

And
C is a sink

Then
At least one of X, Y, Z is a source

Instantiations of beliefs

52

Y B C

Z

X

If
B is a sanitizer

And
C is a sink

Then
At least one of X, Y, Z is a source

SRCX + SRCY + SRCZ + 1 ≥ SANB + SNKC

Instantiations of beliefs

53

Y B C

Z

X

SRCX + SRCY + SRCZ + 1 ≥ SANB + SNKC

Instantiations of beliefs

54

Y B C

Z

X

A Y C

Z

X

SRCX + SRCY + SRCZ + 1 ≥ SANB + SNKC SANX + SANY + SANZ + 1 ≥ SRCA + SNKC

Instantiations of beliefs

55

Y B C

Z

X

A Y C

Z

X

A B Y

Z

X

SRCX + SRCY + SRCZ + 1 ≥ SANB + SNKC SANX + SANY + SANZ + 1 ≥ SRCA + SNKC SNKX + SNKY + SNKZ + 1 ≥ SRCA + SANB

Instantiations of beliefs

56

SRC1 + C ≥ SAN3 + SNK6
SAN3 + C ≥ SRC1 + SNK6
SNK6 + C ≥ SRC1 + SAN3
SRC4 + C ≥ SAN2 + SNK7
SRC4 + C ≥ SAN2 + SNK8
SAN2 + C ≥ SRC4 + SNK7
SAN2 + C ≥ SRC4 + SNK8
SAN4 + C ≥ SRC1 + SNK5
SAN4 + C ≥ SRC2 + SNK5
SAN4 + C ≥ SRC3 + SNK5
SNK5 + C ≥ SRC1 + SAN4
SNK5 + C ≥ SRC2 + SAN4
SNK5 + C ≥ SRC3 + SAN4
SNK7 + SNK8 + C ≥ SRC4

+ SAN2
SRC1 + SRC2+ SRC3 + C ≥

 SAN4 + SNK5

Global Constraint
System

Project1

Project2

ProjectN

1

3

6

4

2

7 8

2

4

5

1 3

SRC1 + C ≥ SAN3 + SNK6
SAN3 + C ≥ SRC1 + SNK6
SNK6 + C ≥ SRC1 + SAN3

SRC4 + C ≥ SAN2 + SNK7
SRC4 + C ≥ SAN2 + SNK8
SAN2 + C ≥ SRC4 + SNK7
SAN2 + C ≥ SRC4 + SNK8
SNK7 + SNK8 + C ≥ SRC4

+ SAN2

SRC1 + SRC2+ SRC3 + C ≥
 SAN4 + SNK5

SAN4 + C ≥ SRC1 + SNK5
SAN4 + C ≥ SRC2 + SNK5
SAN4 + C ≥ SRC3 + SNK5
SNK5 + C ≥ SRC1 + SAN4
SNK5 + C ≥ SRC2 + SAN4
SNK5 + C ≥ SRC3 + SAN4

Data flow
graphs

Hard constraints for known specifications

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

Static
 analysis

57

Data flow
graphs

Hard constraints for known specifications

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

A SRCA = 1
SANA = 0
SNKA = 0

Static
 analysis

58

Data flow
graphs

Hard constraints for known specifications

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

B SRCB = 0
SANB = 1
SNKB = 0

Static
 analysis

59

Data flow
graphs

Hard constraints for known specifications

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

C SRCC = 0
SANC = 0
SNKC = 1

Static
 analysis

60

Seldon overview

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

Data flow
graphsStatic

 analysis

61

Seldon in production at deepcode.ai

62

https://deepcode.ai

Data flow
graphs

Seldon for Python (this work)

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

Static
 analysis

63

Data flow
graphs

Seldon for Python (this work)

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

➢ 44 250 files from
web-related projects on
Github

Static
 analysis

64

Data flow
graphs

Seldon for Python (this work)

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

➢ 44 250 files from
web-related projects on
Github

➢ 106 specifications

Static
 analysis

65

Data flow
graphs

Seldon for Python (this work)

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

➢ 44 250 files from
web-related projects on
Github

➢ 106 specifications

➢ 210 864 candidates
➢ 504 982 constraints

Static
 analysis

66

Data flow
graphs

Seldon for Python (this work)

Beliefs about
taint flow

Instantiations
of beliefs

Sinks:
● db.session().execute()

Sanitizers:
● flask.escape()

Sources:
● request.form.get()

Known specifications

Linear
optimization

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()
● …

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()
● …

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()
● …

Inferred Specifications

Hard Constraints
SRC2 = 1
SAN2 = 0
SNK2 = 0

Soft Constraints
SAN3 + C ≥ SRC1 + SNK4

SNK7 + SNK8 + C ≥ SRC4 +
SAN2

SRC1 + SRC2 + SRC3 + C ≥
 SAN4 + SNK5

Global
Constraint

System

➢ 6 896 inferred
specifications

➢ 66.6% estimated
precision

➢ 210 864 candidates
➢ 504 982 constraints

➢ 106 specifications

➢ 44 250 files from
web-related projects on
Github

Static
 analysis

67

Seldon’s scalability

68

Impact of learning from Big Code

69

Total number of true
candidates inferred

Precision of inferred
candidates

Individual model for
each project 5 45.5%

Model trained on
Big Code 23 65.7%

Evaluated on three randomly chosen projects separately
(Patchwork, find_link, Django FileBrowser)

Predicted Vulnerabilities with Taint Analysis

70

Predicted vulnerabilities Estimated true
vulnerabilities

Seed Specifications 662 159 (24%)

Inferred Specifications 21318 5969 (28%)

Breakdown of reports

71

24

True
vulnerabilities

(24%)

Other
reasons

(36%)

Missing
sanitizer

(40%)

True
vulnerabilities

(28%)

Other
reasons

(24%)

Missing
sanitizer

(8%)

False
source
or sink
(40%)

Vulnerabilities in real projects detected using
Seldon Specs

72

➢ 17 projects, 49 severe vulnerabilities (Cross-Site Scripting, SQL Injection, Path Traversal, OS
Command Injection, Code Injection)

➢ Only 3 vulnerabilities could be detected using the seed specifications

1. https://github.com/anyaudio/anyaudio-server/pull/163
2. https://github.com/DataViva/dataviva-site/issues/1661
3. https://github.com/DataViva/dataviva-site/issues/1662
4. https://github.com/earthgecko/skyline/issues/85
5. https://github.com/earthgecko/skyline/issues/86
6. https://github.com/gestorpsi/gestorpsi/pull/75
7. https://github.com/HarshShah1997/Shopping-Cart/pull/2
8. https://github.com/kylewm/silo.pub/issues/57
9. https://github.com/kylewm/woodwind/issues/77

10. https://github.com/LMFDB/lmfdb/pull/2695
11. https://github.com/LMFDB/lmfdb/pull/2696

12. https://github.com/mgymrek/pybamview/issues/52
13. https://github.com/MinnPost/election-night-api/issues/1
14. https://github.com/mitre/multiscanner/issues/159
15. https://github.com/MLTSHP/mltshp/pull/509
16. https://github.com/mozilla/pontoon/pull/1175
17. https://github.com/PadamSethia/shorty/pull/4
18. https://github.com/sharadbhat/VideoHub/issues/3
19. https://github.com/UDST/urbansim/issues/213
20. https://github.com/viaict/viaduct/pull/5
21. https://github.com/yashbidasaria/Harry-s-List-Friends/issues/1

https://github.com/anyaudio/anyaudio-server/pull/163
https://github.com/DataViva/dataviva-site/issues/1661
https://github.com/DataViva/dataviva-site/issues/1662
https://github.com/earthgecko/skyline/issues/85
https://github.com/earthgecko/skyline/issues/86
https://github.com/gestorpsi/gestorpsi/pull/75
https://github.com/HarshShah1997/Shopping-Cart/pull/2
https://github.com/kylewm/silo.pub/issues/57
https://github.com/kylewm/woodwind/issues/77
https://github.com/LMFDB/lmfdb/pull/2695
https://github.com/LMFDB/lmfdb/pull/2696
https://github.com/mgymrek/pybamview/issues/52
https://github.com/MinnPost/election-night-api/issues/1
https://github.com/mitre/multiscanner/issues/159
https://github.com/MLTSHP/mltshp/pull/509
https://github.com/mozilla/pontoon/pull/1175
https://github.com/PadamSethia/shorty/pull/4
https://github.com/sharadbhat/VideoHub/issues/3
https://github.com/UDST/urbansim/issues/213
https://github.com/viaict/viaduct/pull/5
https://github.com/yashbidasaria/Harry-s-List-Friends/issues/1

Summary

73

Try online at
deepcode.ai

Beliefs about taint flow

SAN3 + C ≥ SRC1 + SNK4
SRC1 + SRC2 + SRC3 + C ≥

 SAN4 + SNK5

Constraint System
Instantiations of beliefsData flow

graphs

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()

Inferred Specifications

https://deepcode.ai

