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OWASP top 10 security threats to web apps
1. Injection (SQL, NoSQL, OS command, Code, …)
2. Broken Authentication
3. Sensitive Data Exposure
4. XML External Entities (XXE)
5. Broken Access Control
6. Security Misconfiguration
7. Cross-Site Scripting (XSS)
8. Insecure Deserialization
9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring
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A typical injection vulnerability

def upload():                               
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A typical injection vulnerability

def upload():                               

  fname = flask.request.files['f'].filename 

  path = os.path.join(upload_dir, fname)   

  flask.request.files['f'].save(path)       
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A typical injection exploit

def upload():                                  

  fname = "../../../etc/passwd"    

  path = "/var/www/app/../../../etc/passwd"   

  flask.request.files['f'].save("/etc/passwd") 
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Taint Analysis: detecting injection vulnerabilities

def upload():                               

  fname = flask.request.files['f'].filename 

  path = os.path.join(upload_dir, fname)    

  flask.request.files['f'].save(path)       

9

flask.request.files[‘f’].filename

os.path.join()
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Taint Analysis: sources

def upload():                             

  fname = flask.request.files['f'].filename

  path = os.path.join(upload_dir, fname)   

  flask.request.files['f'].save(path)      

10

flask.request.files[‘f’].filename

os.path.join()

flask.request.files[‘f’].save()



Taint Analysis: sinks

def upload():                               

  fname = flask.request.files['f'].filename 

  path = os.path.join(upload_dir, fname)    

  flask.request.files['f'].save(path)       
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Taint Analysis: vulnerability model

def upload():                               

  fname = flask.request.files['f'].filename 

  path = os.path.join(upload_dir, fname)    

  flask.request.files['f'].save(path)       
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os.path.join()
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A typical fix

def upload():                               

  fname = flask.request.files['f'].filename 

  fname = werkzeug.secure_filename(fname)   

  path = os.path.join(upload_dir, fname)    

  flask.request.files['f'].save(path)       
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Taint Analysis: sanitizers

def upload():                               

  fname = flask.request.files['f'].filename 

  fname = werkzeug.secure_filename(fname)   

  path = os.path.join(upload_dir, fname)    

  flask.request.files['f'].save(path)       
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flask.request.files[‘f’].filename

os.path.join()
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Taint Analysis: vulnerability model

def upload():                               

  fname = flask.request.files['f'].filename 

  fname = werkzeug.secure_filename(fname)   

  path = os.path.join(upload_dir, fname)    

  flask.request.files['f'].save(path)       
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os.path.join()
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Completeness of taint specifications is crucial

Missing source or sink → undetected vulnerabilities

Missing sanitizer → false positive reports
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Creating taint specifications is labour-intensive
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Creating taint specifications is labour-intensive
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Goal: Automatically learn 
Taint Specifications from Big Code
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Learning Taint Specifications from Big Code
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Data flow 
graphs

Learning Taint Specifications from Big Code

Static
 analysis
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System requirements
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➢ The system has to be fast 
enough to learn from Big Code

➢ The system has to work with 
few known specifications



Merlin (Livshits et al., PLDI ‘09)
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Merlin (Livshits et al., PLDI ‘09)
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SuSi (Rasthofer et al., NDSS Symposium 2014)
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SuSi (Rasthofer et al., NDSS Symposium 2014)
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SuSi (Rasthofer et al., NDSS Symposium 2014)
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Seldon
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Solution: Seldon
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Data flow 
graphs
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➢ Static analysis is used to build data flow graphs for training programs

➢ Nodes are events in program (e.g. function calls, parameter loads)

➢ Edges represent the data flow between events

➢ Flow, Context, Field-sensitive points-to analysis

➢ Over-approximates usages of Python data structures

Static
 analysis
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➢ Three simple beliefs about taint flow

➢ Should hold for almost all training programs

➢ Can be used to derive constraints on inferred candidates
Static

 analysis
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Beliefs about taint flow
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“Sanitizers secure sinks from untrusted input”
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Beliefs about taint flow

42

A B C
“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”



Beliefs about taint flow
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Beliefs about taint flow

44

A B C

A B C

“Sanitizers secure sinks from untrusted input”

“Vulnerabilities do not occur often”

C

C



Beliefs about taint flow
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Beliefs about taint flow
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Beliefs about taint flow
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Candidate scores

49
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Instantiations of beliefs
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Instantiations of beliefs
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Instantiations of beliefs
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Instantiations of beliefs
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Seldon in production at deepcode.ai
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Seldon’s scalability
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Impact of learning from Big Code
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Total number of true 
candidates inferred

Precision of inferred 
candidates

Individual model for
each project 5 45.5%

Model trained on 
Big Code 23 65.7%

Evaluated on three randomly chosen projects separately 
(Patchwork, find_link, Django FileBrowser)



Predicted Vulnerabilities with Taint Analysis
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Predicted vulnerabilities Estimated true 
vulnerabilities

Seed Specifications 662 159 (24%)

Inferred Specifications 21318 5969 (28%)



Breakdown of reports
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Vulnerabilities in real projects detected using 
Seldon Specs
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➢ 17 projects, 49 severe vulnerabilities (Cross-Site Scripting, SQL Injection, Path Traversal, OS 
Command Injection, Code Injection)

➢ Only 3 vulnerabilities could be detected using the seed specifications 

1. https://github.com/anyaudio/anyaudio-server/pull/163
2. https://github.com/DataViva/dataviva-site/issues/1661
3. https://github.com/DataViva/dataviva-site/issues/1662
4. https://github.com/earthgecko/skyline/issues/85
5. https://github.com/earthgecko/skyline/issues/86
6. https://github.com/gestorpsi/gestorpsi/pull/75
7. https://github.com/HarshShah1997/Shopping-Cart/pull/2
8. https://github.com/kylewm/silo.pub/issues/57
9. https://github.com/kylewm/woodwind/issues/77

10. https://github.com/LMFDB/lmfdb/pull/2695
11. https://github.com/LMFDB/lmfdb/pull/2696

12. https://github.com/mgymrek/pybamview/issues/52
13. https://github.com/MinnPost/election-night-api/issues/1
14. https://github.com/mitre/multiscanner/issues/159
15. https://github.com/MLTSHP/mltshp/pull/509
16. https://github.com/mozilla/pontoon/pull/1175
17. https://github.com/PadamSethia/shorty/pull/4
18. https://github.com/sharadbhat/VideoHub/issues/3
19. https://github.com/UDST/urbansim/issues/213
20. https://github.com/viaict/viaduct/pull/5
21. https://github.com/yashbidasaria/Harry-s-List-Friends/issues/1

https://github.com/anyaudio/anyaudio-server/pull/163
https://github.com/DataViva/dataviva-site/issues/1661
https://github.com/DataViva/dataviva-site/issues/1662
https://github.com/earthgecko/skyline/issues/85
https://github.com/earthgecko/skyline/issues/86
https://github.com/gestorpsi/gestorpsi/pull/75
https://github.com/HarshShah1997/Shopping-Cart/pull/2
https://github.com/kylewm/silo.pub/issues/57
https://github.com/kylewm/woodwind/issues/77
https://github.com/LMFDB/lmfdb/pull/2695
https://github.com/LMFDB/lmfdb/pull/2696
https://github.com/mgymrek/pybamview/issues/52
https://github.com/MinnPost/election-night-api/issues/1
https://github.com/mitre/multiscanner/issues/159
https://github.com/MLTSHP/mltshp/pull/509
https://github.com/mozilla/pontoon/pull/1175
https://github.com/PadamSethia/shorty/pull/4
https://github.com/sharadbhat/VideoHub/issues/3
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https://github.com/viaict/viaduct/pull/5
https://github.com/yashbidasaria/Harry-s-List-Friends/issues/1
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Try online at 
deepcode.ai

Beliefs about taint flow

SAN3 + C ≥ SRC1 + SNK4
SRC1 + SRC2 + SRC3 + C ≥ 

 SAN4 + SNK5

Constraint System
Instantiations of beliefsData flow 

graphs

Sinks:
● flask.Markup()
● django.HttpResponse()
● pymysql.connect().execute()

Sanitizers:
● cgi.escape()
● werkzeug.secure_filename()
● MySQLdb.escape_string()

Sources:
● cherrypy.request.params
● flask.request.args
● request.GET.get()

Inferred Specifications

https://deepcode.ai

