
Scalable Taint Specification Inference with Big Code
Victor Chibotaru

DeepCode AG, Switzerland

chibo@deepcode.ai

Benjamin Bichsel

ETH Zurich, Switzerland

benjamin.bichsel@inf.ethz.ch

Veselin Raychev

DeepCode AG, Switzerland

veselin@deepcode.ai

Martin Vechev

ETH Zurich, Switzerland

martin.vechev@inf.ethz.ch

Abstract
We present a new scalable, semi-supervised method for in-

ferring taint analysis specifications by learning from a large

dataset of programs. Taint specifications capture the role

of library APIs (source, sink, sanitizer) and are a critical in-

gredient of any taint analyzer that aims to detect security

violations based on information flow.

The core idea of our method is to formulate the taint spec-

ification learning problem as a linear optimization task over

a large set of information flow constraints. The resulting

constraint system can then be efficiently solved with state-

of-the-art solvers. Thanks to its scalability, our method can

infer many new and interesting taint specifications by simul-

taneously learning from a large dataset of programs (e.g., as

found on GitHub), while requiring few manual annotations.

We implemented our method in an end-to-end system,

called Seldon, targeting Python, a language where static

specification inference is particularly hard due to lack of

typing information. We show that Seldon is practically ef-

fective: it learned almost 7, 000 API roles from over 210, 000
candidate APIs with very little supervision (less than 300 an-

notations) and with high estimated precision (67%). Further,

using the learned specifications, our taint analyzer flagged

more than 20, 000 violations in open source projects, 97% of

which were undetectable without the inferred specifications.

CCS Concepts • Security and privacy → Information
flow control; • Theory of computation→ Program speci-
fications; •Computingmethodologies→Semi-supervised

learning settings.

Keywords Specification Inference, Taint Analysis, Big Code

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314648

ACM Reference Format:
Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin

Vechev. 2019. Scalable Taint Specification Inference with Big Code.

In Proceedings of the 40th ACM SIGPLANConference on Programming
Language Design and Implementation (PLDI ’19), June 22–26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 22 pages. https://doi.
org/10.1145/3314221.3314648

1 Introduction
A wide class of security vulnerabilities occurs when user-

controlled data enters a program via a library API (a source)
and flows into a security-critical API (a sink). For example,

a source may read a field in a web form or a cookie and

a sink may write to arbitrary files on the server, execute

arbitrary database commands (allowing sql injections) or

render HTML pages (allowing cross-site scripting).

Failure to sanitize information flow from sources to sinks

potentially affects the privacy and integrity of entire appli-

cations. As a result, there has been substantial interest in

automated reasoning tools which detect such unsanitized

flows, using both static and dynamic methods [18, 23, 27, 28].

While useful, all of these tools inherently rely on an existing

specification that precisely describes the set of sources, sani-

tizers, and sinks the analyzer should consider. We refer to

such a specification as a taint specification.

Key Challenge: Obtaining a Taint Specification. Obtain-
ing such a specification for modern languages and libraries

can be very challenging: to determine the role of a candidate

API (source, sink, sanitizer, or none), one would have to in-

spect how information flows in and out of that API and how

that information is used. Manually doing so over thousands

of libraries with APIs often appearing in different contexts,

is prohibitive.

To reduce this manual annotation burden, several works

have proposed methods for automatically learning taint spec-

ifications (e.g., [4, 17, 24]). While promising, these works

have several key drawbacks: either they work in a fully su-

pervised manner requiring the user to manually annotate

all sources and sinks in the training dataset [24], or work in

a semi-supervised manner but do not scale beyond smaller

programs [17], or require test cases and dynamic program in-

strumentation [4]. Further, all three of these methods target

strongly typed languages (Java [4, 24] and C# [17]).

https://doi.org/10.1145/3314221.3314648
https://doi.org/10.1145/3314221.3314648
https://doi.org/10.1145/3314221.3314648

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

This Work: Scalable Semi-Supervised Learning. In this

work we propose a new, scalable method for learning likely

taint specifications in a semi-supervised manner. Given an

input dataset of programs D where only a very small subset

of the APIs AM used by programs in D is manually anno-

tated, our method infers specifications for the remaining,

much larger un-annotated set of APIsAU used by programs

inD. Unlike [24], to infer the taint specification for the APIs

in AU , our approach leverages interactions among the APIs

in AU and AM observed in the programs from D.

The core technical idea of our approach is to formulate

the taint specification inference problem as a linear optimiza-

tion task, allowing us to leverage state-of-the-art solvers for

handling the resulting constraint system. Importantly, un-

like [17], our method scales to learning over large datasets

of available programs D (e.g., as found on GitHub), critical

for increasing the number and quality of discovered specifi-

cations. To demonstrate its effectiveness, we implemented

and evaluated our approach for Python, a dynamic language

where discovering taint specifications is particularly chal-

lenging (e.g., we can no longer rely on type information).

The overall flow of our end-to-end pipeline is shown in

Fig. 1. The input to the training phase is a dataset of pro-

grams D where only a very small number of APIs AM are

annotated as sources, sinks, and sanitizers (in our evaluation,

106). We then apply our semi-supervised learning procedure

based on the linear formulation, inferring 6 896 roles for the

remaining APIs AU . These learned specifications AU can

then be examined by an expert or together with AM be pro-

vided as input to a taint analyzer which will then search

for vulnerabilities (a path between a source and a sink not

protected by a sanitizer) based on the specifications.

Main Contributions. Our main contributions are:

• A formulation of the taint specification inference prob-

lem as linear optimization (§4).

• An end-to-end implementation of the inferencemethod

for Python in a tool called Seldon (§5).

• A thorough experimental evaluation indicating Seldon

scales linearly with dataset size and can learn useful

and new taint specifications with high precision: 67%

on average (§7).

• A taint analyzer that uses the learned specifications

to identify thousands of potential security violations

in open-source projects. We examined some of these

violations manually and disclosed them to maintainers

of the code (§7). The tool is freely available
1
and is

currently being used by Python developers in a push-

button manner (about 1500 usages in January 2019).

1https://www.deepcode.ai/

Seed specs:AM

Training data:D

<
<

source

sanitizer

sinkhtml

Learned specs:AU

<
< ⚠

html

Bug detector

linear

optimization

Figure 1. High-level overview of Seldon.

2 Overview
We now provide an informal explanation of our method on

the example in Fig. 2. Full formal details are provided later.

Code Snippet. Fig. 2a shows a code snippet taken from a

real code repository that we slightly adapted for brevity. It

uses Flask, a Python microframework for web development

and werkzeug, a web application library. The snippet (i) ob-

tains the name of the file attached to a user POST request

in Line 10, (ii) sanitizes the name in Line 11, and (iii) saves

the file in Line 14. Proper sanitization in Line 11 is critical,

as omitting it would enable attackers to use relative paths to

store arbitrary files in arbitrary locations of the filesystem.

Taint Analysis. Fig. 2b shows the corresponding propaga-
tion graph which captures the information flow between dif-

ferent events in Fig. 2a. In addition to the graph, running taint

analysis on the code snippet in Fig. 2a requires a specification
of security-related events describing which events (i) repre-

sent user input (sources), (ii) sanitize user input (sanitizers),

or (iii) must be protected by sanitizers to prevent vulnera-

bilities (sinks). In our example, request.files['f'].filename

is a source (colored in blue), secure_filename is a sanitizer

(colored in green), and save is a sink (colored in red). Given

such a specification, taint analysis checks if there is infor-

mation flow from a source to a sink that does not traverse a

sanitizer, which amounts to a vulnerability.

EncodingAssumptions. The quality of a taint analyzer crit-
ically depends on the quality of its specification: an incom-

plete specification prevents detecting all vulnerabilities that

involve missing parts of the specification. Seldon takes as in-

put the propagation graphs of many applications, where the

role of most events is unknown. For each event in the graph,

it generates variables whose scores indicate the likelihood of

this event having a particular role. For example, referring to

event request.files['f'].filename as a, it introduces three
variables, asrc, asan, and asnk. Seldon then searches for a joint

assignment of scores to each variable. Because we restrict

the scores of each variable to be between 0 and 1, we can

interpret the resulting values as probabilities. For example,

asrc = 0.98 means that event a most likely is a source.

As a next step, Seldon generates a constraint system that

encodes reasonable assumptions on valid scores, shown in

Fig. 2c. For example, constraint (1) encodes the belief that, if

a is a source (i.e., asrc is high), and b is a sanitizer (i.e., bsan is
high), then at least one of the events receiving information

https://www.deepcode.ai/

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

1 from yak.web import app

2 from flask import request

3 from werkzeug import secure_filename

4 import os

5

6 blog_dir = app.config['PATH']

7

8 @app.route('/media/', methods=['POST'])

9 def media():

10 filename = request.files['f'].filename

11 filename = secure_filename(filename)

12 path = os.path.join(blog_dir, filename)

13 if not os.path.exists(path):

14 request.files['f'].save(path)

request.files['f'].filename secure_filename()

app.config['PATH']
os.path.join()

request.files['f'].save()

os.path.exists()

request.files['f']

Save to disk

e

a b

c

d

f

д

asrc + bsan ≤ csnk + f snk + dsnk +C (1)

asrc + csan ≤ f snk + dsnk +C (2)

bsan + dsnk ≤ asrc +C (3)

· · ·(a) Code snippet from real code.

(b) Propagation graph.

(c) Constraints.

Figure 2. Example illustrating the workflow of Seldon.

flow from b must be a sink (i.e., the sum of their sink scores

must be high). In constraint (1),C is a constant that intuitively

controls the strength of the implication (we use C = 0.75).
Likewise, constraint (2) enforces that if a is a source and c

is a sanitizer, then one of f or d must be a sink. We note that,

because c is not actually a sanitizer, constraint (2) should not
be enforced. Because in this case, csan is likely to be small,

the constraint will indeed only have a minor effect on the

solution to the constraint system.

HandlingAmbiguous Targets of Events. Of course, if two
events in different program locations target the same pro-

gram element (e.g., two function calls to the same function),

we try to represent them with the same variables in the con-

straint system. However, in Python, this is non-trivial as it

is hard to determine which function is targeted by a given

function call. We elaborate more on this issue in Section §3.2,

but provide a simple example here.

Concretely, a programmer might replace the two occur-

rences of request.files['f'] in Fig. 2a by a function argu-

ment f instead, after replacing Line 9 by def media(f):.

Then, the target of event d is unclear (analogously for

a). Seldon therefore collects two possible representations of

d : r1 = media(param f).save() (indicating function save of

parameter f of media) and r2 = f.save() (indicating function

save() of f). The resulting constraint system is analogous to

Fig. 2c, except for replacing variables by averages of all pos-

sible representations of their respective event. For example,

we would replace dsrc by 1

2

(
r src
1
+ r src

2

)
.

If another source candidate event x in a different program

location has two possible representation r1 and r3, the con-
straint system will use

1

2

(
r src
1
+ r src

3

)
to capture it, sharing

variable r src
1

with d . As a consequence, the scores of x and d
are correlated (increasing r src

1
increases the score of both x

and d being a source).

Solving the Constraint SystemResulting fromBig Code.
In this way, Seldon determines the propagation graphs for

tens of thousands of Python source files, yielding roughly

half a million constraints and 210,000 candidate events (for

being sources, sanitizers, and sinks).

As programs in our training dataset need not always fol-

low the intuitive assumptions on information flow, we may

not be able to solve the constraint system from Fig. 2c ex-

actly. Instead, we relax it, minimizing the violation of all

constraints, while L1-regularizing by the sum of scores (i.e.,
favoring solutions with fewer inferred specifications).

3 Propagation Graphs
In this section we describe the concept of a propagation

graph and discuss how to use it for analysis and learning.

3.1 Events and Information Flow
The propagation graph G = (V ,E) of a program P consists

of a set of events V and a set of edges E capturing informa-

tion flow, typically determined by static analysis. The set of

events V captures all relevant actions in P that propagate

information. Examples of events include function calls and

global variable reads while examples of flows include the

fact the return value of a function is used as an argument to

another function. In practice,V is usually restricted to events

relevant to a particular setting, e.g., if we are interested in

events relating to security, we can ignore actions that add

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

1 from base_driver import ThreadDriver

2

3 class ESCPOSDriver(ThreadDriver):

4 def status(self, eprint):

5 self.receipt('<div>'+msg+'</div>')

Figure 3. Example illustrating representation of function

call events.

two integers. The graph G is built by applying a static infor-

mation propagation analysis on P (e.g., [17]) and thus edges

represent an over-approximation of the actual information

flow. To maintain consistency with standard notation for

graphs, the set E captures information flow and not events

(which are captured in V).

3.2 Representation of Events
An event v ∈ V is captured by an expression in the program,

for example a field read or a function call expression. To

represent the possible targets an event v can resolve to, we

define the function Rep(v). For example, if v is a function

call, Rep(v) will be an expression describing functions that

v can possibly resolve to.

Depending on the program and the type system of the

language, the expression Rep(v) will be of a different granu-
larity. For instance, for a statically typed language, Rep(v)
may denote the exact function signature to be called by v ,
while for languages which lack static typing such as Python

2

it may be difficult to statically determine the possible tar-

gets of v , and hence Rep(v) may denote an expression that

captures a set of functions.

Example. In Fig. 3, the function call event at Line 5 will have
a representation Rep(v) given by:

ESCPOSDriver::status(param self).receipt()

However, we could also choose to use one of the alterna-

tive representations in the following list (ordered from most

specific and precise to most general and least precise):

base_driver.ThreadDriver::status(param self).receipt()

status(param self).receipt()

self.receipt()

We have determined these options by (i) falling back to the

base class of ESCPOSDriver, (ii) ignoring the class containing

the function call, and (iii) ignoring the function containing

the function call. Later, in Section §4.3, we will show how to

(optionally) fall back to these alternative representations in

order to improve the results of learning.

When building the propagation graph, even if two eventsv
and v ′

have the same representation (i.e., Rep(v) = Rep(v ′)),

they will be encoded as separate events in V (i.e., v , v ′
).

2
Recently introduced gradual typing for Python allows type annotations

for some variables, but is not yet widely used, so we do not rely on it.

Alternatively, if the representation is the same, we could

collapse all events into one event (discussed in Section §6.4).

3.3 Candidate Events and Roles
To enable taint analysis of G, we must assign a role (i.e.,
source, sanitizer or sink) to each event inV . As in [17], we as-

sume the role of an event only depends on its representation

and hence it suffices to know the role of that representation.

Consequently, when learning what the role of an event is,

we are in fact learning what the role of its representation is.

This is a slight simplification, e.g., a function may act as a

source or a sink depending on its arguments, however, we

leave this differentiation for future work.

We only insert an event v into V if v is a candidate for a

role and we also exclude specific roles for some events. For

example, it is very rare that a field read acts as a sink and

impossible for it to act as a sanitizer. Hence, field read events

are only considered as candidates for sources. We elaborate

more on this point in Section §5.

3.4 Using the Propagation Graph
Once the propagation graph is built (we discuss how to do so

for Python in Section §5), we use this graph for two clients:

specification learning, discussed in Section §4, as well as

taint analysis for finding security issues (flows from sources

to sinks which do not pass through a sanitizer). We note that

for these two clients to be practically effective and produce

useful results, it suffices for G to precisely capture the true

information flow between events in most cases (that is, G
need not be an over-approximation).

4 Learning Likely Taint Specifications
We now explain our method for learning roles of events in a

given propagation graph G. The key insight is to formulate

the specification inference problem as a linear optimization

task that can be solved in a scalable manner with efficient

solvers. The resulting scalability is important because it en-

ables semi-supervised learning with very small amounts of

supervision over a large dataset of programs. In turn, this

leads to learning better specifications than if one performs

inference over a single program only (as intuitively, the infer-

ence algorithmwill then have access to only limited amounts

of available information to learn from). We illustrate the ben-

efits of our method experimentally in Section §7.

Learning over a Global Propagation Graph. In order to

learn over a dataset of programs, we first extract the prop-

agation graph Gi = (Vi ,Ei) from each program Pi in the

dataset independently by using the method described in §3.

The union of these individual graphs forms a global propaga-

tion graph G = (
⋃
Vi ,

⋃
Ei) over which the learning will be

performed. Since the event sets Vi are pairwise disjoint (i.e.,
Vi ∩Vj = ∅ for all i , j), G does not contain any edges be-

tween events from different programs. However, even when

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

src

san

sink

(a)

src

san

sink

(b)

src

san

sink

(c)

Figure 4. Visual illustration of our information flow con-

straints. Each graph states that if nodes (with solid out-

line) have the indicated roles, then there exists a node (with

dashed outline) with the indicated role and information flow.

two events v and v ′
belong to different programs, they may

share the same representation (Rep(v) = Rep(v ′)). Our learn-

ing method then leverages information across projects by

mapping events with the same representation to the same

variable (see §4.1).

We note that we explicitly allow events to have multiple

roles (e.g., source and sink), or no role at all, indicating the

event is irrelevant for security (e.g., the function capitalize).

Intuitive Information FlowConstraints. To perform learn-

ing, we first identify several constraints we believe should

hold between events and which a solution of the learning

task should try to enforce. An intuitive visualization of our

constraints is provided in Fig. 4. Here, each column stands

for a separate constraint and captures an implication. We

note that our constraints are not the same as those of [17],

however, they follow a similar high level idea of trying to

capture information flow assumptions.

Fig. 4a indicates that if the program uses a sanitizer with

information flow into a sink, this is most likely to sanitize a

source. Therefore, it requires that whenever an event v has

information flow into another event v ′
, if we classify v as

a sanitizer and v ′
as a sink, we must classify at least one of

the events vi with information flow into v as a source.

Analogously, Fig. 4b indicates that if the program uses

a sanitizer which receives information from a source, the

purpose of that sanitizer is to protect information flow into

a sink. Finally, Fig. 4c indicates that a program typically

sanitizes the information flowing into sinks, i.e., if there is
information flow from a source to a sink, there must be a san-

itizer between these two events. As illustrated in Fig. 4c, we

only require at least one path to be sanitized, not necessarily

every path. This avoids (i) quantifying over all paths and

(ii) being overly strict in the case of spurious information

flow due to over-approximation.

Algorithmic Collection of Constraints. For a given prop-

agation graph, we can easily identify all occurrences of the

constraints in Fig. 4 by a variant of breadth-first search (BFS).

For example, for Fig. 4a, we first identify all sanitizer candi-

dates that flow into a sink candidate, by forward BFS starting

from each sanitizer. For each such sanitizer v , we identify all

source candidates vi flowing into v . Constraint Fig. 4a then
states that if v is a sanitizer and v ′

is a sink, then one of vi
must be a source.

4.1 Variables
For the representation n = Rep(v) of some event v ∈ V , we
introduce variables nsrc, nsan and nsnk that encode likelihoods
of n being a source, sanitizer, or a sink (we discuss multi-

ple possible representations soon). To avoid unnecessary

variables (and unnecessary constraints), we only introduce

variables which match potential roles of n. For example, if n
is a field read, we do not introduce the variable nsan. When

convenient, we refer to variables treated as sources as (n)src

and analogously for sanitizers and sinks.

Variable Constraints. To ensure that we can interpret each
variable nrole as a probability, we add constraints

0 ≤ nrole ≤ 1 (4)

for each introduced variablen and each role in {src, san, snk}.

Constraints for Known Variables. In our evaluation, we

label a small number of events by hand so to bootstrap learn-

ing (hence, our method is semi-supervised), accomplished by

constraining some variables to have appropriate roles. For

example, when we label an event as a sanitizer, but not as

a source or a sink, we add the constraints nsrc = 0, nsan = 1,

and nsnk = 0, where n is the representation of that event.

4.2 Linear Formulation of Information Flow
We now discuss how to encode our intuitive assumptions on

information flow from Fig. 4 as linear constraints. As we will

see, formulating the meaning of the intuitive assumptions as

linear constraints is crucial in order to ensure the resulting

constraint system is efficiently solvable (and thus, suitable

for learning from a large dataset of programs).

Linear Formulation of Fig. 4a. To express the assumption

in Fig. 4a as a linear constraint, we assert that for every event

vsanit thatmay act as a sanitizer and flows into a potential sink

event vsink, the sum of all source candidate scores flowing

into it must be at least the sum of scores of vsanit and vsink.

Example. Fig. 5 shows a small propagation graph for which

we demonstrate the constraint derived from the assumption

in Fig. 4a. Let vsanit be an event with representation nsanit =
Rep(vsanit), which may act as a sanitizer. Analogously, let v1,
v2, v3 be events with representations n1, n2, n3, which may

act as sources, andvsink be an event with representation nsink
that may act as a sink. Further, we assume that the unlabeled

event (top left) may not act as a source (hence we ignore

it). Then, to encode the assumption from Fig. 4a, we add the

following constraint

(nsanit)
san + (nsink)

snk ≤ (n1)
src + (n2)

src + (n3)
src +C (5)

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

vsanit

v1 v2

v3

vsink

Figure 5. A propagation graph used to illustrate the linear

constraints we derive to formally capture Fig. 4a.

where C is a fixed constant. If we set C = 1 and restrict

the values of variables (n1)
src
, (n2)

src
, (n3)

src
, (nsanit)

san
, and

(nsink)
snk

to {0, 1}, then constraint (5) precisely captures the

assumption from Fig. 4a: first, if (nsanit)
san = (nsink)

snk =

1, then at least one of (n1)
src
, (n2)

src
and (n3)

src
must be 1.

Second, constraint (5) is trivially satisfied if at least one of

(nsanit)
san

or (nsink)
snk

is 0.

Restricting values of variables to {0, 1} would result in a

(generally NP-complete) integer linear program and induce

an unsatisfiable constraint system. Instead, we relax the val-

ues a variable can take to be in the interval [0, 1], as indicated
in constraint (4). Then, solving the resulting large constraint

system spanning many variables, becomes tractable. We can

interpret constraint (5) for the relaxed constraint system by

observing that if (nsanit)
san

and (nsink)
snk

are large, then at

least one of (n1)
src
, (n2)

src
, (n3)

src
must be large as well.

Empirically, we observed that for C = 1, most scores are

quite close to 0, precluding a clear separation of sources,

sinks, and sanitizers. Therefore, we decreased C to 0.75,
which increases the effect of the constraints when variables

on the left-hand side have scores below 1. For example, if

(nsanit)
san = (nsink)

snk = 0.7, then C = 0.75 ensures that∑k
i=1 n

src

i ≥ 0.65, whereasC = 1 only ensures

∑k
i=1 n

src

i ≥ 0.4.
To avoid overfitting, we only tested C = 0.75, concluding it
performs significantly better than C = 1.

Linear Formulation of Fig. 4b. To express the assumption

from Fig. 4b, consider a potential source event vsource with
representation nsource, a potential sanitizer event vsanit with
representation nsanit, and potential sink events v1, . . . ,vk
with representations n1, . . . ,nk , respectively. In addition, as-

sume there is information flow from vsrc to vsanit and from

vsanit to every vi . Then, we encode Fig. 4b via

(nsource)
src + (nsanit)

san ≤

k∑
i=1

nsnki +C (6)

The interpretation of constraint (6) is analogous to con-

straint (5).

Linear Formulation of Fig. 4c. We derive the remaining

constraint analogously, leading to

(nsource)
src + (nsink)

snk ≤

k∑
i=1

(ni)
san +C (7)

4.3 Selecting Event Representations with Backoff
In programming languages without static type information

(in our case Python), it is typically difficult to determine

which possible targets an eventv can resolve to, as discussed

earlier in §3.2. At that point, we had derived the representa-

tion Rep(v) of a particular function call event as

ESCPOSDriver::status(param self).receipt()

However, using this entire expression (which captures

the exact location of receipt) may be too detailed and overly

specific to only a particular event, leading to a representation

Rep(v) that occurs infrequently. To address this issue, we

can fall back to less specific representations that occur more

frequently. For example, there may be many more calls to

receipt() from other subclasses of base_driver.ThreadDriver

to receipt(), in which case it would make sense to fall back

to the following representation

base_driver.ThreadDriver::status(param self).receipt().

However, falling back to a less specific representation

induces the risk of conflating Rep(v) with other, unrelated

occurrences of self.receipt() from unrelated events at other

locations. As a trade-off between both approaches, that is,

working with a long but infrequent representation vs short

but frequent representation, we use a backoff approach that

takes into account all possible suffixes (until we reach a fre-

quent suffix). This is a commonly used approach in machine

learning, see e.g., [3], which we adapt to our setting.

Selecting of BackoffVariables. Concretely, let (n1, . . . ,nk)
be all potential representations of an event v , ordered from

most to least specific. If some representations {n1, . . . ,nl } oc-
cur infrequently, we will ignore them as these do not provide

much information (in our evaluation, the cutoff threshold

is 5 occurrences). We denote the remaining set of all possi-

ble backoff options for v by Reps(v) = {nl+1, . . . ,nk }. If no
potential representation of v occurs frequently enough (i.e.,
if Reps(v) = ∅), then we also ignore v and all constraints

involving v , as we cannot hope to learn much about v .
Overall, instead of creating only 3 variables nsrc, nsan, and

nsnk, we create 3 · |Reps(v)| variables for every possible back-
off option

(nr)
src ∀r ∈ Reps(v)

(nr)
san ∀r ∈ Reps(v)

(nr)
snk ∀r ∈ Reps(v)

Variable Constraints. To interpret values of these vari-

ables as probabilities (cp. §4.1), we again add the constraint

0 ≤ (nr)
role ≤ 1 ∀r ∈ Reps(v), role ∈ {src, san, snk} (8)

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Information FlowConstraints. Finally, for every constraint
we added in §4.2, we introduce a constraint that replaces

each variable (n)role by an average of its backoff options

1

|Reps(v)|

∑
r ∈Reps(v)

(nr)
role

4.4 Relaxing and Solving the Constraint System
We now discuss how to solve the resulting constraint sys-

tem derived by applying backoff (§4.3) to variables and con-

straints introduced in §4.1 and §4.2, respectively.

The constraint system C consists of variable constraints

Cvar
as in constraint (8), constraints for known variables

Cknown
as in §4.1 and information flow constraints Cflow

as

in §4.2. For all constraints, we use the version which includes

backoff (§4.3), but forCknown
, we only annotate fully qualified

names, i.e., the longest possible backoff option for each event.

Relaxing the Constraints. Because programs in our train-

ing dataset might not always respect our intuitive constraints

on information flow, the constraint system is generally not

satisfiable. For example, the assumption from Fig. 4a might

be violated by a sanitizer that does not have any sources

flowing into it, which in turn would violate constraint (5)

and hence also its version with backoff.

This forces us to relax the constraints and replace the

entire constraint system with a more robust one, which takes

into account possible errors. Intuitively, we treatCvar
as hard

constraints but relax Cflow
to be soft constraints, and aim to

minimize their violation.

More precisely, we transform each constraint in Cflow
of

the form Li ≤ Ri into a relaxed constraint Li ≤ Ri +εi , where
Li (resp. Ri) is the left-hand (resp. right-hand) side of the

original constraint, and εi ≥ 0 quantifies the violation of the

original constraint.

Rewriting this constraint yields Li − Ri ≤ εi . Hence, mini-

mizing the violation of the original constraints (measured by

the l1-norm defined as

∑
i |ϵi |) means solving the following

optimization problem

min

M∑
i=1

max(Li − Ri , 0) + λ ·
∑
nr

(
(nr)

src + (nr)
san + (nr)

snk
)

(9)

subject to 0 ≤ (nr)
role ≤ 1 ∀nr and (10)

Cknown
(11)

Here, nr ranges over all representations and their backoff

versions, and M denotes the total number of constraints

in Cflow
. In addition, λ is a regularization constant (in our

evaluation, we use λ = 0.1) that penalizes solutions that
classify many nodes as sources, sanitizers or sinks. To avoid

overfitting, we tried only a few values λ ∈ {0.1, 1, 0.01}, of
which λ = 0.1 performed best. Empirically, we observed

that decreasing λ by a factor of 10 increases the number of

inferred specifications by a factor of around 2.

Solving the Relaxed Constraint System. Solving the re-

sulting optimization problem (9) efficiently can be done in

many different ways. We opted for using Adam Optimizer

[15] from TensorFlow [1], which optimizes (9) incrementally

using projected gradient descent. Here, to enforce the hard

constraints of type (10), we project the variables nrole to the

interval [0, 1] after each iteration.

5 Building the Propagation Graph for
Python

To build the propagation graph G = (V ,E) of a Python pro-

gram P , we first determine the set of relevant events V and

their candidate roles, and then establish the information flow

between these events.

5.1 Events
The events in our propagation graph can be either function

calls, object reads, or formal arguments of function defini-

tions. Examples of object reads include attribute loads (e.g.,
obj.field), indexing into dictionaries, lists, and tuples (e.g.,
d[k]), and reads of method parameters (e.g., function def f(a)

has potential source a). As mentioned earlier, the role of an

object read event can only be a source, but not a sanitizer or

a sink. Similarly, formal arguments of function definitions

are considered only as sources. Finally, function calls can be

either sources, sinks or sanitizers. We do not consider stores

into variables because they rarely act as sinks and cannot

act as a source or a sanitizer.

5.2 Capturing Information Flow
We next discuss how we capture information flow.

Function Calls. We assume a function call induces infor-

mation flow from its arguments to its return value, an over-

approximation of the true information flow, e.g., the Python
built-in function id(o) returns a unique value for object o,

and hence does not propagate information about o itself.

Points-to Analysis. Points-to analysis (also known as alias

analysis) determines which variables may point to the same

object. In our system we used an Andersen-style points-to

algorithm [26]. Here, for each pair of events a,b s.t. a ∈

PointsTo(b) we add an edge b → a. Our points-to algorithm

is fully flow-sensitive, field-sensitive and context-sensitive

up to a bound of 8 method calls, the default setting of the

library we used. For simplicity, we treat calls to functions

with an unknown body as allocation sites and ignore loops

(i.e., we treat loops as having just a single iteration). As a

consequence, our propagation graph does not contain cycles

(in principle, our method supports cycles).

We note that our points-to analysis both over- and under-

approximates the true points-to relation but is sufficiently

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

src

san

sink

(a)

san

��HHsan

(b)

src

��HHsrc

(c)

��HHsink

sink

(d)

Figure 6. Visual illustration of Merlin’s information flow

constraints. Each graph states that if solid nodes have the

indicated roles, the dotted node should have the indicated

role (if underlined) or not have it (if crossed out).

precise for our application of learning role specifications

of events and the subsequent taint analysis that uses these

specifications to discover security bugs.

Data Structures. Python has several built-in collections

(i.e., data structures), including lists, dictionaries, tuples, and
sets. We treat these the same as standard function calls, e.g.,
when defining a new list (e.g., l=[a,b,c]), we record infor-

mation flow from any of its entries to the whole list.

Local Symbol Table. The function locals() returns a dictio-
nary containing all of the local variables in the current scope.

We model this behavior by adding information flow from all

local variables to locals() calls.

Inlining Methods. Finally, to enable a more precise static

analysis, we inline methods whose body can be statically

determined (i.e.,methods defined in the same file as the caller

and not subject to multiple dispatching). For simplicity, we

treat imported methods as having an unknown body.

6 Adapting a Baseline Method
We now discuss Merlin’s method to taint specification infer-

ence in C# [17]. Merlin’s method differs from our method

across several key technical dimensions: (i) the formulation

of the constraints, (ii) how relevant events and candidate

roles are identified, (iii) the formulation of the optimization

problem, and (iv) the granularity of the propagation graph.

6.1 Merlin’s Constraints
We summarize the information flow constraints of Merlin in

Fig. 6 (their presentation in [17] is different, but equivalent).

Fig. 6a illustrates that for every flow across three events

where the first is a source and the third is a sink, the second

is likely to be a sanitizer. Fig. 6b shows that whenever there is

a flow from a sanitizer to another event, the latter is unlikely

to be a sanitizer. Fig. 6c and Fig. 6d capture an analogous

constraint for sources and sinks.

In contrast to our constraints, Merlin’s constraints cannot

be easily encoded as linear constraints. In addition, Mer-

lin’s constraints are more restrictive: they constrain the role

for specific nodes, while our constraints only enforce the

existence of nodes with a particular role.

6.2 Identifying Events and Candidate Roles
Merlin relies on static typing information when identify-

ing events and candidate roles. Since this is impossible in

programming languages without strong static typing, we

adapted Merlin to handle such languages.

Representation of Events. As Merlin targets C#, it does

not address how to deal with multiple possible targets of

a given event. Instead, it represents events by their target,

identified using the static type system. For dynamically typed

languages, this is hard, as discussed in §3.2. Thus, when

adapting Merlin to handle Python programs, we use the

most specific representation (e.g., the one discussed earlier

for the example in §3.2).

Identification of Candidates. To identify which nodes are

candidates for a role, Merlin heavily relies on the type sys-

tem of C#. For example, it considers only functions that take

a string as input as candidates for sources. Applying this

heuristic to languages without static type information is

not possible which means we can exclude only very few

candidates from certain roles. For example, we view all func-

tion calls as candidates for all roles. As a consequence, in

our setting, we obtain significantly more candidates than

Merlin does in C#, but typically the same amount of informa-

tion about their interaction. This increases the difficulty of

specification learning because we now have to classify more

candidates using roughly the same amount of information.

6.3 Formulating the Optimization Task
We now discuss how Merlin uses its information flow con-

straints to state an optimization problem on factor graphs. As

we demonstrate in §7.4, in contrast to our approach based on

linear constraints, this formulation does not scale well and

is not suitable for learning from a large dataset of programs.

Factor Graphs. Merlin expresses its information flow con-

straints as a factor graph, a well-known graphical model [16]

suitable for performing structured prediction.

Given the propagation graphG of a program,Merlin scores

joint assignments of roles to events. To this end, it introduces

a score for every occurrence of a constraint from Fig. 6 in G .
For example, based on the constraint in Fig. 4c, Merlin inves-

tigates every flow through three events which are candidates

for being sources, sanitizers, and sinks, respectively. For each

such flow, Merlin checks if the joint assignment respects the

constraint: if the first and third events are classified as source

and sink, respectively, the second event should be classified

as a sanitizer. If so, it will provide a high score, and if not, a

low score.

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 7. Illustrating vertex contraction: merging gray

nodes.

Then, the total score of an assignment is the product of

all scores

p(x1, . . . ,xN) =
∏
s

fs (xs) (12)

Here, each xi ∈ {0, 1} encodes if a given event assumes

a given role. Moreover, each fs is a factor evaluating the

score for an occurrence of a constraint in G, xs is the set of
variables involved in this factor, and fs (xs) is the score of
factor fs for assignment xs .

Prior on Known Candidates. For candidates that are la-

beled by hand, Merlin selects a hard prior, stating that they

must act as their respective role. We can interpret this as a

particular factor for every hand-labeled candidate, defined

by

fs (xs) =

{
1 candidate has the correct role

0 otherwise

Prior on Candidates. In addition to scores for joint assign-

ments, Merlin introduces prior probabilities for every poten-

tial role of every candidate node. The probability a source

(resp. sink) candidate acts as a source (resp. sink) is 50%. The

probability a sanitizer candidate acts as a sanitizer is intu-

itively given by checking which fraction of paths that go

through it start from a source and end in a sink. These priors

can be seen as additional factors, meaning that Eq. (12) can

accurately describe the joint probability of all factors.

Probabilistic Inference. Using prior probabilities and the

scores for joint assignments, Merlin determines the marginal

probability of each candidate having a particular role:

pi (xi) =
∑
x1

· · ·
∑
xi−1

∑
xi+1

· · ·
∑
xN

p(x1, . . . ,xN) (13)

While there is a wide variety of techniques that solve mar-

ginal inference in factor graphs (e.g., the sum-product al-

gorithm [31]), these are significantly less scalable than ap-

proaches for solving linear constraints (which our approach

uses). To solve Eq. (13), Merlin uses Infer.NET [19].

6.4 Propagation Graph Granularity
In contrast to our approach, Merlin conflates events targeting

the sameAST node (i.e., events with the same representation).

Because our propagation graph is more informative than

Merlin’s, we can use it to construct the conflated graph by

1 def f():

2 x = src()

3 y = san(x)

4 def g():

5 x = 1

6 y = san(x)

7 sink(y)

(a) Two functions prop-

agating information.

src

san

san

sink

src

san

sink

(b) Transition from uncollapsed (left) to

collapsed (right) propagation graph.

Figure 8. Collapsed graphs are unsuitable for taint analysis.

applying vertex contraction to conflate all events with the

same representation, illustrated in Fig. 7. We refer to the

original graph as uncollapsed, and to Merlin’s propagation

graph as collapsed.
The collapsed graph is not suitable for taint analysis as it

combines unrelated events into a single graph, illustrated in

Fig. 8: here the collapsed graph contains information flow

from the source to the sink even though this is not the case

in the original program. We note that while the collapsed

graph is not suitable for taint analysis, it can still be used for

specification learning.

While Merlin’s original presentation [17] assumes col-

lapsed graphs, it is also directly applicable to uncollapsed

graphs. Therefore, in our evaluation, we run Merlin using

both the collapsed and uncollapsed propagation graphs.

7 Experimental Evaluation
We now present an extensive experimental evaluation of

Seldon
3
, and demonstrate its practical effectiveness in both

learning useful taint specifications from a large dataset of

Python programs and finding new security bugs based on

these learned specifications.

7.1 Implementation and Analysis Flow
We implemented Seldon in an end-to-end production quality

tool which (i) parses and analyzes a large number of Python

repositories, (ii) extracts the propagation graphs from pro-

grams as outlined in Section §5, (iii) builds the resulting linear

constraint system as outlined in Section §4, and (iv) solves

the optimization problem subject to the constraint system.

Once the optimization problem is solved, we obtain confi-

dence scores for every possible backoff option of every event

being a source, sink, or sanitizer. To determine the role of

a given event, we loop over all its possible backoff options,

sorted frommost to least specific. For the ith option (0-based),
we select a given role if 0.8i · (ni)

role ≥ t , for a given thresh-

old t (discussed later). It this does not happen for any role or

backoff option, the event has no role. Overall, this amounts

3
Seldon is freely available at https://www.deepcode.ai/

https://www.deepcode.ai/

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

Table 1. Statistics on the applications in our evaluation.

Candidates 210 864

Average # backoff options per event 1,73

Constraints 504 982

Source files 44 250

to backing off to less and less specific representations while

exponentially decreasing the score.

We also built a static taint analyzer that consumes the

specification learned by Seldon and checks for security vul-

nerabilities in web applications: it reports an error if it finds

an unsanitized information flow from a source to a sink.

7.2 Dataset
In this section, we describe the programs and hand-labeled

specifications used for our evaluation.

Applications. Weobtained various Python applications from

GitHub (https://github.com/), focusing on popular ones (iden-
tified by number of stars). While Seldon is generally applica-

ble, we focused our attention on web applications, a domain

where practical security concerns are particularly relevant.

To this end, we only included applications which contain the

string django, werkzeug or flask in their code, as these are the

most popular frameworks used for Python web development.

Tab. 1 provides statistics on these applications, including the

number of candidates for sources, sanitizers, and sinks, the

average number of backoff options per event, the number of

constraints induced by the applications, and the number of

Python files.

SeedHand-labeled Specifications. Wemanually annotated

some events, resulting in 106 events classified as exclusively

sources (28 events), exclusively sanitizers (30 events), and

exclusively sinks (48 events). To avoid issues with events

with multiple possible representations (see Section §4.3), we

only classified events whose representations are fully quali-

fied, such as werkzeug.utils.secure_filename(). We avoided

labeling application-specific events or other common coding

patterns, ensuring that we can handle new programs without

needing additional manual effort.

In general, manually annotating events can be expensive.

However, we focused our attention on events with a clear

role (e.g., request.GET.get()), identified by investigating com-

mon security vulnerabilities (as taken from OWASP Top 10

[22]). This approach allowed us to create our seed specifi-

cation within a few hours, labeling most events involved in

well-known taint-related security vulnerabilities. Labeling

more events is significantly harder as it requires manually

identifying and investigating less common vulnerabilities.

We also blacklisted some built-in Python functions and

commonly used library functions from taking on any role, by

specifying 192 patterns, including, e.g., *__name__*, *.all(),

vsrc source : ∃vsink.∃P .(vsrc,vsink, P) vulnerable
vsan sanitizer : ∃vsrc.∃vsink.∃P .(vsrc,vsink, P) vulnerable

and (vsrc,vsan,vsink, P) sanitized
vsink sink : ∃vsrc.∃P .(vsrc,vsink, P) vulnerable

Figure 9. Formal definitions for sources, sanitizers and sinks.

or *tensorflow*. This blacklist contains patterns for com-

monly used Python code patterns. The seed specification is

given in App. B.

7.3 Manually Inspecting Learned Specifications
For both Seldon and our baseline Merlin, we investigated

the precision of the learned specifications.

Ground Truth. To determine the ground truth, we defined

sources, sinks, and sanitizers via a notion of vulnerable infor-

mation flow, in a given program. Concretely, we say a triple

(v,v ′, P) is vulnerable, if an attacker can inject malicious

data into v , which then flows into v ′
, which in turn triggers

a vulnerability (e.g., an SQL injection). We note that in this

case, we ignore sanitizers on the path from v to v ′
, because

we are only interested in determining if the investigated

information flow is potentially dangerous. Conversely, we

define a quadruple (v,vsan,v
′, P) as sanitized, if sanitizervsan

safely sanitizes the information flow from v to v ′
in P .

The formal definitions for the considered roles are shown

in Fig. 9. Here, quantifiers expand to programs and events

from our dataset, ensuring we only report sources, sinks,

and sanitizers that may lead to vulnerabilities in real-world

programs.

Finding Vulnerable Flows. We note that determining if a

program and an event with the specified properties exist

would generally require investigating all programs in our

dataset. Because this is practically infeasible, we instead use

taint analysis (Section §3.4) to determine candidate programs

to investigate. For example, to evaluate if a given event n is a

source, we run taint analysis on all programs to identify all

sinks that are reachable from this source and contained in

our specification. Then, we only investigate the top 5 sinks

with the highest scores. If none of them exhibits a vulnerable

flow, we (conservatively) report n as a false-positive.

Fairness of Comparison. To ensure fairness when com-

paring Merlin to Seldon, we evaluate both specifications in

exactly the same way, using the whole dataset and the can-

didates inferred by our approach to identify candidates for

vulnerable programs. We note that the alternative of using

only the dataset and specifications used and obtained by

Merlin would be unfair to Merlin, as it only scales to a single

application, and thus predicts significantly less specification

candidates.

https://github.com/

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Table 2. Statistics on specification learning with Merlin.

Repository Number of Lines Graph type Candidates (src/san/sink) Factors Inference Time

Flask API 2 128 Collapsed 376/376/68 1034 2min

Flask API 2 128 Uncollapsed 378/378/66 470 3min

Flask-Admin 23 103 Collapsed 3337/3337/422 22740 > 10h

Flask-Admin 23 103 Uncollapsed 3369/3369/380 7204 > 10h

Table 3. Results for Merlin on the Flask API, only selecting

roles with a confidence of 95%.

Collapsed Graph Uncollapsed Graph

Role Number Precision Number Precision

Sources 18 33% 9 22%

Sanitizers 5 20% 1 100%

Sinks 3 0% 3 0%

Any 26 27% 13 23%

7.4 Baseline Comparison
To evaluate Merlin [17] we used the adaptation in Section §6

and the same propagation graph, seed specifications, and set

of candidates as for the evaluation of our approach. We spec-

ified the factor graph derived from the propagation graph

in Infer.NET [19]. As Merlin originally specifies a collapsed

propagation graph, while our approach specifies an uncol-

lapsed one, we evaluated Merlin on both cases.

Because the employed inference method is not specified

in [17], we used the default method of Expectation Propaga-

tion (EP), including belief propagation as a special case. We

also tried Gibbs sampling when EP timed out. We note that

the third available inference method, Variational Message

Passing, could not handle the encoded factor graph.

We ran all experiments for Merlin on a 512GB RAM, 32

core machine at 2.13GHz, running Ubuntu 16.04.3 LTS.

Scalability. Merlin was unable to handle the large amount

of data we use for our learning approach. This is not entirely

surprising, as it relies on probabilistic inference, a task that

is #P-hard when exact results are desired [6], and NP-hard

even for approximate results [7].

We ran Merlin on two applications, summarized in Tab. 2:

Flask API [10], which is smaller and where inference suc-

ceeds in minutes, and the larger Flask-Admin [9], where

inference timed out after 10h. We also tried Gibbs Sampling

with only 20 iterations, which also timed out after 10h. In

contrast, our approach handles Flask-Admin in < 20 seconds

(we did not evaluate the precision here as we scale to the

full dataset). As a consequence, running Merlin on the whole

dataset used for the evaluation of our approach is infeasible.

When Merlin did not time out (i.e., for Flask API), we in-

vestigated its precision using the method from Section §7.3.

Tab. 3 shows the results when selecting using a threshold

of 95%, i.e., only picking roles for which Merlin is highly

Table 4. Results for Merlin on the Flask API, only selecting

top 5 predictions.

Collapsed Graph Uncollapsed Graph

Role Number Precision Number Precision

Sources 5 40% 5 20%

Sanitizers 5 20% 5 40%

Sinks 5 0% 5 0%

Any 15 20% 15 20%

confident. The results indicate Merlin is often overly con-

fident, but not very precise. This is the case regardless of

whether the graph is collapsed or not. The precision results

are analogous when examining its top 5 predictions (Tab. 4).

Because Merlin predicted only few specifications in both

experiments, we also investigated the effect of increasing the

number of predicted specifications. Concretely, we computed

Merlin’s estimated precision with a threshold of 50% for

sinks and sanitizers (yielding less than 50 specifications) and

for the top 50 sources, corresponding to a threshold of 50%

(54%) for the collapsed (uncollapsed) graph. For the collapsed

(uncollapsed) graph, the precision is 18% (12%) for sources,

2.7% (2.22%) for sinks, and 8.33% (9.09%) for sanitizers.
Based on these experiments, we concluded that Merlin

cannot reach high precision in our setting.

7.5 Evaluation Results for Seldon
To evaluate Seldon, we investigated the following questions:

• Q1: How scalable is our approach in solving its con-

straint system?

• Q2: How precise is the learned specification, i.e., how
many identified roles are false positives?

• Q3: How many sources, sanitizers, and sinks do we

detect?

• Q4: How useful are learned specifications for discov-

ering vulnerabilities?

• Q5: Does using a large dataset improve the inferred

specifications?

• Q6: How does the seed specification affect precision?

• Q7: What is the real-world value of the security vul-

nerabilities reported by Seldon?

Experiments were done on a 28 core Intel(R) Xeon(R) CPU

E5-2690 v4, 512Gb RAM machine running Ubuntu 16.04.3.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

Table 5. Count and estimated precision of candidates predicted by Seldon.

Role # Predicted / # Candidates Fraction of predicted candidates Precision (Estimate)

Sources 4 384 / 210 864 2.08% 72.0%
Sanitizers 1 646 / 210 864 0.78% 58.0%
Sinks 866 / 210 864 0.41% 56.0%
Any 6 896 / 210 864 3.27% 66.6%

1 2 3 4 5 6 7 8

5,000

10,000

15,000

Number of files (×105)

T
i
m
e
(
s
)

Figure 10. Seldon inference times (in seconds) as a function

of the number of analyzed files.

Q1: Scalability. We tested the scalability of Seldon by run-

ning it on datasets of different sizes. The measured inference

times are shown in Fig. 10, showing Seldon scales linearly in

the number of analyzed files (the graph looks similar when

we consider the size of the constraint system instead of the

number files). For the largest dataset of 800, 000 files (in-

cluding non-web applications), Seldon finished in < 5 hours,

indicating it is scalable enough to learn specifications from

real-world repositories.

Q2: Precision. We have evaluated the precision of predicted

sources, sinks, and sanitizers, i.e., which fraction of candi-

dates that are predicted to have a particular role actually

have the predicted role. To perform this evaluation, we took

a random sample of 50 sources, sanitizers, and sinks with

scores above 0.1. To determine this threshold for sources

(analogously for sinks and sanitizers), we sorted events by

their score for being a source and picked the threshold that

strikes a balance between number of predicted specifications

(i.e., recall) and precision. Concretely, we tolerate a slightly

higher false positive rate for the opportunity to discover new

unknown security vulnerabilities.

Wemanually determined the ground truth for these events,

leading to a precision of 72.0% (sources), 56.0% (sinks) and

58.0% (sanitizers), respectively, and an overall precision of

66.6% (see also Tab. 5). We have repeated this experiment

for more samples (manually checking 200 sources, sanitizers,

and sinks, respectively), yielding an overall precision of 65.5%
(this corresponds to a deviation of 1.1%). This indicates that
our precision estimate is fairly stable.

In Fig. 11, we provide more details on the score and pre-

cision of the random sample we evaluated. First, note there

are only a few samples with score around 1.0, meaning the

optimization was completely confident in its assignment of a

Table 6. Results for bug-finding using the set of sources,

sanitizers and sinks in initial specification versus the inferred

specification tested on 25 random reported specifications

Reason Seed spec Inferred spec

True vulnerabilities 24% 28%

Vulnerable flow, but no bug 28% 12%

Incorrect sink 0% 24%

Incorrect source 0% 8%

Incorrect source and sink 0% 8%

Missing sanitizer 40% 8%

Flows into wrong parameter 8% 12%

role for relatively few events. For most samples, the score is

around 0.5, hence the model believes the event likely plays

the role, but is uncertain. Fig. 11 also shows how confidence

transforms into precision. For every precision data point, we

show the average ratio of true positive labels according to the

ground truth for the cumulative sample including all samples

up to a position. This shows how we can adjust the threshold

for selecting sources, sinks and sanitizers to achieve desired

precision levels. Note, however, that non-zero confidence

value for a role is already an indicator for the event’s role,

as most events (discussed in Q3) have score 0.

Our results indicate that Seldon successfully identifies

many sources, sanitizers, and sinks with consistently high

precision. App. A shows the evaluated sample of events.

Q3: Number of Sources, Sanitizers, and Sinks. With the

above threshold, Seldon identified numerous sources, san-

itizers, and sinks, shown in Tab. 5. Identifying a similarly

large set by hand would be difficult as only a small fraction

of all candidates (3.27%) have some role. Even inspecting

all inferred specifications manually is significantly cheaper

than inspecting all candidates, by a factor of about 30.

Our results are in line with those in [17], which identified

3.8% of all nodes in its propagation graph as sources, sani-

tizers, or sinks (381 out of 10038). However, in their setting,

the learning problem was significantly easier, as C# allows

filtering candidates by type, thus removing 75% of all nodes

in the propagation graph.

Q4: Number of Vulnerabilities. To evaluate the usefulness
of inferred specifications for detecting security vulnerabil-

ities in real web applications, we ran taint analysis on our

complete GitHub dataset (described in §7.2) using both the

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

0 20 40

0.5

1

Sample of candidate sources

0 20 40

0.5

1

Sample of candidate sanitizers

0 20 40

0.5

1

Sample of candidate sinks

Score

Precision

Figure 11. Plot of 50 candidate samples for sources, sanitizers and sinks. The samples are sorted according to their predicted

score for the role. Precision for all samples up to a given sample shows how higher score correlates with precision.

Table 7. Total number of reports and estimated number

of vulnerabilities in all the data based on evaluating true

positive rate on the sample from Tab. 6

Reason Seed spec Inferred spec

Number of reports 662 21318

Number of projects affected 192 2409

Estimated vulnerabilities 159 5969

initial seed specifications and the final inferred specifications.

In each case we manually inspected 25 randomly sampled

vulnerability reports. The comparison is shown in Tab. 6.

In terms of precision as estimated on the 25 samples, both

approaches discover similar ratio of true vulnerable flows.

However, not all of these flows are exploitable due to other

settings in the evaluated applications. For example, a Cross-

Site Scripting attack is not possible if the Content-Type http

header is set to text/plain and not text/html. Another

observation is that the seed specification misses a number

of sanitizers and produces false positives for sanitized flows.

In contrast, the inferred specification can contain incorrect

sources and sinks, but has increased coverage for sanitizers.

In terms of recall, the results are summarized in Tab. 7.

The seed specification only produces a small number of total

reports (662), but these reports still contain a large number

of false positives. The inferred specification significantly

increases the number of reports to 21318 in 2409 projects and

we estimate the total number of true security vulnerabilities

detected by Seldon to be close to 6000.

Based on this sample, we conclude that the learned specifi-

cations increase the estimated number of true vulnerabilities

in our dataset by an order of magnitude.

Q5: Impact of Large Dataset. Next, we evaluated the im-

pact of learning on a big dataset as opposed to on a single

project. To this end, we randomly selected 3 projects from

the complete corpus (described in Section §7.2) and ran the

end-to-end process for each of them separately, always us-

ing the same seed specifications. To compare the results to

the complete specifications (obtained by learning on the full

dataset), we projected the complete specifications to each

of the three projects (i.e., we ignored all specifications not

occurring in the considered project). For each of the three

projects, we then compared the specifications obtained from

training only on that project vs training on all projects.

The experiment shows the precision increased from 45%

(on average, when using the individual specifications) to 65%

(on average, when using the projections of complete speci-

fications). In addition to increasing precision, the complete

specification inferred 18 new, true roles not predicted by the

individual specifications.We thus conclude that cross-project

learning is beneficial.

Q6: Impact of Seed Specification. We also evaluated Sel-

don’s precision for half the seed specification (considering

only odd line numbers in App. B). This significantly reduces

precision, by 14 percentage-points. Thus, we believe our

seed specification strikes a good balance between manual

effort and precision. We note that in the extreme case of an

empty seed specification, Seldon will predict 0 specifications,

because picking 0 for all variables is a trivial solution to its

constraint system.

Q7: Reporting Bugs. Finally, to ensure reported vulnerabil-

ities have value in real-world projects, we inspected several

reports with highly scored sources and sinks, built proof-of-

concept exploits and reported 49 severe vulnerabilities in 17

projects: 25 Cross-Site Scripting, 18 SQL Injections, 3 Path

Traversal, 2 Command Injections, and 1 Code Injection. We

provide a full list of all reported bugs in App. C. We note

that only 3 of these could be discovered using only the seed

specification, and that some of the reported issues can affect

a large number of users.

8 Related Work
In this section, we describe the work most related to ours.

SpecificationMining. Multiple works have proposed learn-

ing specifications related to information flow. The work most

related to ours is Merlin [17], which we have discussed in

detail (§6) and also investigated in our evaluation (§7.4).

SuSi [24] trains a support vector machine (SVM) classi-

fier to identify privacy specifications of Android APIs. In

contrast to our work, SuSi is fully supervised and heavily

relies on the similarity of type signatures of methods with

similar role. While effective for Android, this method is less

applicable to the diverse and dynamic Python codebases. In

general, Python is more difficult to analyze than statically

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

typed languages such as Java and C# (targeted by SuSi and

Merlin, respectively). Concretely, in contrast to Java and C#,

in Python one cannot identify a unique target of an event,

filter source, sink, or sanitizer candidates by their type, or

leverage statically precise information flow analysis.

Shar et al. [25] predict sanitizers using backward program

slicing from a known set of sinks and dynamically computes

a number of features for each function (e.g., testing how func-

tions react on dot-dot-slash to sanitize path traversal [21]).

Based on this information, their tool predicts if an infor-

mation flow is sanitized (however it still needs manually

provided sources and sinks). Modelgen [4] learns informa-

tion flow of Android privacy APIs based on dynamic analysis

obtained from a large test case set and mined on invocation

subtraces. In contrast, our approach is fully static and also

works on a range of APIs not covered by test suites.

TaintAnalysis. Numerousworks have addressed static taint
analysis in Android, including SCanDroid [11], ScanDal [14],

LeakMiner [30], FlowDroid [2] and DroidSafe [12]. Taint

analysis has also been investigated for server-side web ap-

plication [27], for client-side JavaScript [28] or for C [29].

Other works have applied dynamic taint analysis for a
range of applications such as TaintDroid [8], DTA++ [13],

Python taint for Erasure [5] and TaintCheck for Valgrind [20].

All these static and dynamic approaches require a specifi-

cation of sources, sanitizers, and sinks, based on which they

perform taint analysis. Therefore, the work on these tools

is complementary to our approach: Better specifications im-

prove these tools, while better information flow analysis may

improve our specification learning.

9 Conclusion and Discussion
We presented Seldon, a new approach for learning taint spec-

ifications. Its key idea is to phrase the task of inferring the

specification as a linear optimization, leading to scalable in-

ference and enabling simultaneous learning of specifications

over a large dataset of programs.

Clearly, Seldon is subject to the usual limitations of taint

analysis: it can only help to detect vulnerabilities based on in-

formation flow and does not address, e.g., buffer overflows or
insecure configurations. In addition, Seldon relies on a high-

quality dataset and on a correctly annotated (but small) seed

specification. For example, when the dataset often misses

sanitization, the constraint from Fig. 4c forces the variables

to (i) omit the specification of the source or sink, (ii) incor-

rectly label a non-sanitizer as a sanitizer, or (iii) accept a

penalty for this constraint.

In our evaluation, we showed that Seldon can infer thou-

sands of taint specifications for Python programs with high

estimated precision. Manual examination of the reports pro-

duced by our taint analyzer (which uses the inferred specifi-

cations) indicates the reports contain true security violations,

some of which we reported to the maintainers of the projects.

Acknowledgements
The research leading to these results was partially supported

by an ERC Starting Grant 680358.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-

aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-

sensitive and Lifecycle-aware Taint Analysis for Android Apps. SIG-
PLAN Not. 49, 6 (June 2014), 259–269. https://doi.org/10.1145/2666356.
2594299

[3] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean,

and Google Inc. 2007. Large language models in machine translation.

In In EMNLP. 858–867.
[4] Lazaro Clapp, Saswat Anand, and Alex Aiken. 2015. Modelgen: Mining

Explicit Information Flow Specifications from Concrete Executions. In

Proceedings of the 2015 International Symposium on Software Testing
and Analysis (ISSTA 2015). ACM, New York, NY, USA, 129–140. https:
//doi.org/10.1145/2771783.2771810

[5] Juan José Conti and Alejandro Russo. 2012. A Taint Mode for

Python via a Library. In Proceedings of the 15th Nordic Conference
on Information Security Technology for Applications (NordSec’10).
Springer-Verlag, Berlin, Heidelberg, 210–222. https://doi.org/10.1007/
978-3-642-27937-9_15

[6] Gregory F. Cooper. 1990. The computational complexity of proba-

bilistic inference using bayesian belief networks. Artificial Intelligence
42, 2-3 (March 1990), 393–405. https://doi.org/10.1016/0004-3702(90)
90060-D

[7] Paul Dagum and Michael Luby. 1993. Approximating probabilistic

inference in Bayesian belief networks is NP-hard. Artificial Intelligence
60, 1 (March 1993), 141–153. https://doi.org/10.1016/0004-3702(93)
90036-B

[8] William Enck, Peter Gilbert, SeungyeopHan, Vasant Tendulkar, Byung-

Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and

Anmol N. Sheth. 2014. TaintDroid: An Information-Flow Tracking

System for Realtime Privacy Monitoring on Smartphones. ACM
Transactions on Computer Systems 32, 2 (June 2014), 1–29. https:
//doi.org/10.1145/2619091

[9] Flask Admin. [n. d.]. https://github.com/flask-admin/flask-admin/.
[10] Flask API. [n. d.]. www.flaskapi.org.
[11] Adam Fuchs, Avik Chaudhuri, and Jeffrey S Foster. 2009. SCanDroid:

Automated security certification of Android applications. (01 2009).

[12] Michael I. Gordon, Deokhwan Kim, Jeff Perkins, Limei Gilham, Nguyen

Nguyen, and Martin Rinard. 2015. Information-Flow Analysis of An-

droid Applications in DroidSafe. In Proceedings 2015 Network and Dis-
tributed System Security Symposium. Internet Society, San Diego, CA.

https://doi.org/10.14722/ndss.2015.23089
[13] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and

Dawn Xiaodong Song. 2011. DTA++: Dynamic Taint Analysis with

Targeted Control-Flow Propagation. In NDSS.

https://www.tensorflow.org/
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2771783.2771810
https://doi.org/10.1145/2771783.2771810
https://doi.org/10.1007/978-3-642-27937-9_15
https://doi.org/10.1007/978-3-642-27937-9_15
https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1016/0004-3702(93)90036-B
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
https://github.com/flask-admin/flask-admin/
www.flaskapi.org
https://doi.org/10.14722/ndss.2015.23089

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[14] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. 2018.

SCANDAL: Static Analyzer for Detecting Privacy Leaks in Android

Applications. (11 2018).

[15] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Sto-

chastic Optimization. CoRR abs/1412.6980 (2014). arXiv:1412.6980

http://arxiv.org/abs/1412.6980
[16] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Mod-

els: Principles and Techniques - Adaptive Computation and Machine
Learning. The MIT Press.

[17] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya

Banerjee. 2009. Merlin: Specification Inference for Explicit Information

Flow Problems. SIGPLAN Not. 44, 6 (June 2009), 75–86. https://doi.
org/10.1145/1543135.1542485

[18] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security

Vulnerabilities in Java Applications with Static Analysis. In Proceedings
of the 14th Conference on USENIX Security Symposium - Volume 14
(SSYM’05). USENIX Association, Berkeley, CA, USA, 18–18. http:
//dl.acm.org/citation.cfm?id=1251398.1251416

[19] T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bron-

skill. 2018. /Infer.NET 0.3. Microsoft Research Cambridge.

http://dotnet.github.io/infer.

[20] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint

Analysis for Automatic Detection, Analysis, and SignatureGeneration

of Exploits on Commodity Software. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2005, San Diego, Califor-
nia, USA. http://www.isoc.org/isoc/conferences/ndss/05/proceedings/
papers/taintcheck.pdf

[21] OWASP. 2015. OWASP on Path Traversal. https://www.owasp.org/
index.php/Path_Traversal.

[22] OWASP. 2017. OWASP Top 10 Project. https://www.owasp.org/index.
php/Category:OWASP_Top_Ten_Project.

[23] Python Taint. [n. d.]. https://github.com/python-security/pyt.

[24] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A Machine-

learning Approach for Classifying and Categorizing Android Sources

and Sinks. In Proceedings 2014 Network and Distributed System Security
Symposium. Internet Society, San Diego, CA. https://doi.org/10.14722/
ndss.2014.23039

[25] L. K. Shar, L. C. Briand, and H. B. K. Tan. 2015. Web Application

Vulnerability Prediction Using Hybrid Program Analysis and Machine

Learning. IEEE Transactions on Dependable and Secure Computing 12,

6 (Nov 2015), 688–707. https://doi.org/10.1109/TDSC.2014.2373377
[26] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis.

Found. Trends Program. Lang. 2, 1 (April 2015), 1–69. https://doi.org/
10.1561/2500000014

[27] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Sal-

vatore Guarnieri. 2013. ANDROMEDA: Accurate and Scalable Se-

curity Analysis of Web Applications. In Proceedings of the 16th In-
ternational Conference on Fundamental Approaches to Software En-
gineering (FASE’13). Springer-Verlag, Berlin, Heidelberg, 210–225.
https://doi.org/10.1007/978-3-642-37057-1_15

[28] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri

Weisman. 2009. TAJ: effective taint analysis of web applications. ACM
SIGPLAN Notices 44, 6 (May 2009), 87. https://doi.org/10.1145/1543135.
1542486

[29] Fabian Yamaguchi, AlwinMaier, Hugo Gascon, and Konrad Rieck. 2015.

Automatic Inference of Search Patterns for Taint-Style Vulnerabilities.

In 2015 IEEE Symposium on Security and Privacy. IEEE, San Jose, CA,

797–812. https://doi.org/10.1109/SP.2015.54
[30] Zhemin Yang and Min Yang. 2012. LeakMiner: Detect Information

Leakage on Android with Static Taint Analysis. In 2012 Third World
Congress on Software Engineering. IEEE,Wuhan, China, 101–104. https:
//doi.org/10.1109/WCSE.2012.26

[31] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. 2003. Explor-

ing Artificial Intelligence in the New Millennium. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 239–269. http://dl.acm.org/
citation.cfm?id=779343.779352

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1543135.1542485
https://doi.org/10.1145/1543135.1542485
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://dl.acm.org/citation.cfm?id=1251398.1251416
http://www.isoc.org/isoc/conferences/ndss/05/proceedings/papers/taintcheck.pdf
http://www.isoc.org/isoc/conferences/ndss/05/proceedings/papers/taintcheck.pdf
https://www.owasp.org/index.php/Path_Traversal
https://www.owasp.org/index.php/Path_Traversal
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://github.com/python-security/pyt
https://doi.org/10.14722/ndss.2014.23039
https://doi.org/10.14722/ndss.2014.23039
https://doi.org/10.1109/TDSC.2014.2373377
https://doi.org/10.1561/2500000014
https://doi.org/10.1561/2500000014
https://doi.org/10.1007/978-3-642-37057-1_15
https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1109/SP.2015.54
https://doi.org/10.1109/WCSE.2012.26
https://doi.org/10.1109/WCSE.2012.26
http://dl.acm.org/citation.cfm?id=779343.779352
http://dl.acm.org/citation.cfm?id=779343.779352

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

API Score Correct
post.title 0.75 ✓
claimed_user.fullname 0.75 ✓
create_site_element(param siteResult).Comments 0.75 ✓
filen.filename 0.75 ✓
file_instance.filename 0.75 ✓
flask.views.MethodView::get(param filename) 0.72 ✓
flask.request.form[’srpValueM’] 0.69 ✓
anyaudio.helpers.encryption.decode_data()[’url’] 0.6

urlparse.urlparse().port 0.5

create(param name) 0.5 ✓
_create_or_edit(param entry).slug 0.5

LoginForm().username.data 0.5 ✓
edit(param name) 0.5 ✓
feed_get(param handle) 0.5 ✓
flask.request.form[’name’] 0.5 ✓
flask.g.site.publish_log_file 0.5

inputtemplate.filename 0.49 ✓
get_function_data(param jid) 0.49 ✓
_process_new_comment(param comment) 0.49 ✓
u.username 0.42 ✓
lava_results_app.models.QueryCondition.get_similar_job_content_types() 0.38

response_add(param obj).pk 0.38

playlist_edit(param request).user 0.37 ✓
pymongo.Connection().wbuserstatus.collection_names() 0.37 ✓
flask.request.form[’json’] 0.28 ✓
rpt.request().bound_action.action.default_format 0.27

edit(param path) 0.26 ✓
service_unavailable_handler(param error).description[1] 0.26 ✓
flask.request.form[’bookmark_path’] 0.25 ✓
form.GeneralForm().username.data 0.25 ✓
_hash()[] 0.25

execute(param context) 0.25

flaskup.models.SharedFile().get() 0.25 ✓
self.request 0.25 ✓
quota_edit(param request) 0.25 ✓
render_html(param template) 0.25

robots(param request) 0.25 ✓
args.REQUEST[’body’] 0.25 ✓
google.appengine.ext.webapp.template.django.template.Node::render(param self).src_key 0.23

djangoffice.forms.users.UserForm().cleaned_data[’email’] 0.2 ✓
resp[’user_id’] 0.2 ✓
bathymetry(param projection) 0.17 ✓
models.User().get() 0.17 ✓
flask.current_app.root_path 0.16

upload_photo.filename 0.16 ✓
poll_details(param hackathon_name) 0.12 ✓
flask.request.user.id 0.12

argparse.ArgumentParser().parse_args().port 0.12

flask.request.stream.read() 0.11 ✓
flask.request.args.get()[6] 0.1 ✓

Table 8. Evaluation on 50 random events classified as sources by Seldon.

A Evaluated Samples
Tables 8, 9 and 10 include detailed evaluation for the random

sample of sources, sanitizers and sinks predicted by Seldon.

In general, it is quite challenging to even check these speci-

fications, if they are not shown in the context of the flows

they appear in, let alone coming up with them directly.

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

API Score Correct
flux.models.User().url() 1 ✓
hunchworks.forms.EvidenceForm().save() 1 ✓
clam.common.util.xmlescape() 0.75 ✓
common.twitter.get_signin_url() 0.75 ✓
form_valid(param self).request.cradmin_app.reverse_appurl() 0.75 ✓
shiva.models.Album() 0.75

utils.helper.MethodView::post(param repo).meta.get_blob() 0.75 ✓
imgur.getAuthUrl() 0.75 ✓
flask.current_app.aws.connect_to().generate_url() 0.75 ✓
util.jwt_encode() 0.75 ✓
sahara.utils.wsgi.JSONDictSerializer().serialize() 0.75

vm_templates.models.VirtualMachineTemplate.objects.get() 0.75

redwind.controllers.process_people() 0.73

dci.server.auth.hash_password() 0.6 ✓
QuickEntryForm().save() 0.58 ✓
markdown.Markdown().convert() 0.54 ✓
helpers.normalize() 0.5

ba.action.get_target_url() 0.5 ✓
ghdata.GHTorrent().contributions() 0.5

transformations.hourly() 0.5 ✓
mediamanager.MediaManager.cover_art_uuid() 0.5

opencricket.chart.syntax_response.SyntaxResponse.build_response() 0.5

box.get_authorization_url() 0.5 ✓
urllib.parse.urlunparse() 0.5

silopub.util.set_query_params() 0.5 ✓
storage.load().content_redirect_url() 0.5 ✓
faitoutlib.get_new_connection() 0.5

files.models.File.from_upload() 0.5

PayOrderByPaypal.get_paypal_url() 0.5 ✓
viz_obj.json_dumps() 0.5

course.utils.get_flow_access_rules() 0.5

flask_cas.cas_urls.create_cas_logout_url() 0.5 ✓
werkzeug.secure_filename() 0.49 ✓
urllib.urlencode() 0.49 ✓
generateSavegame.createZip() 0.41

jsonConverter.parse_object() 0.4

portality.dao.Facetview2.url_encode_query() 0.28 ✓
core.obfuscate() 0.28 ✓
octavia.amphorae.backends.agent.api_server.util.haproxy_dir() 0.25 ✓
util.shorten() 0.25 ✓
des.encrypt() 0.25 ✓
dpxdt.server.models.Artifact() 0.25

gzip.open() 0.25

next().process() 0.25

esp.program.models.TeacherBio.getLastBio() 0.25

auth.generate_state() 0.25 ✓
RentalManager() 0.25 ✓
baiducloudengine.BaiduCloudEngine().check_file() 0.16 ✓
markdown() 0.12

onlineforms.models.FormFiller.objects.create() 0.12

Table 9. Evaluation on 50 random events classified as sanitizers by Seldon.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

API Score Correct
fs.write() 1 ✓
subprocess.Popen().communicate() 0.83 ✓
common.mail.SendEmail().send() 0.75 ✓
utils.account.send_verify_mail() 0.75 ✓
ShellCommandError() 0.75

mail.send_mail() 0.75 ✓
CommentPostBadRequest() 0.75 ✓
flask.Blueprint().add_url_rule() 0.66 ✓
django.utils.six.with_metaclass()::error_response(param response_class)() 0.55 ✓
flask.helpers.make_response() 0.55 ✓
catsnap.resize_image.ResizeImage.make_resizes() 0.5

ext.render_template() 0.5

flask_mail.Mail().send() 0.5 ✓
flaskext.sqlalchemy.SQLAlchemy().session.add() 0.5

db.session.add() 0.5

User.query.filter_by() 0.5

flask.Markup() 0.5 ✓
django.core.mail.EmailMessage().attach() 0.5 ✓
fp_new.write() 0.49 ✓
db.write() 0.49 ✓
models.Gcm.send_message() 0.49

flask.current_app.mail.send() 0.49 ✓
open().write() 0.49 ✓
requests.post() 0.48 ✓
self.response.out.write() 0.44 ✓
PyPDF2.PdfFileReader() 0.37

CookieForm().prepareResponse() 0.36 ✓
qs[0].set_status() 0.28

groups.models.all_activities() 0.25

lastuser_core.models.db.session.add() 0.25

common.messaging.models.DatedMessage.objects.post_message_to_user() 0.25 ✓
baseframe.forms.render_redirect() 0.25 ✓
textpress.views.admin.render_admin_response() 0.25

upload(param self).container.upload_object_via_stream() 0.25 ✓
blueprints.admin.models.Users.check_user_passwd() 0.25

dismod3.plotting.plot_posterior_region() 0.25

object_log.models.LogItem.objects.log_action() 0.25

flask.abort() 0.25 ✓
editors.helpers.ReviewHelper().set_data() 0.25

textpress.views.admin.flash() 0.25 ✓
fumblerooski.utils.calculate_record() 0.25

redwind.models.Post.load_by_path() 0.25

self._fileHandler.addNewFile() 0.22 ✓
os.dup2() 0.2

hooks.fire() 0.18

cursor.execute() 0.17 ✓
anarcho.apk_helper.parse_apk() 0.16 ✓
standardweb.models.Message.query.options().filter_by() 0.12

db.session.delete() 0.1

Table 10. Evaluation on 50 random events classified as sinks by Seldon.

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

B Initial Seed Specifications
Below we provide as a listing our initial seed specification.

Lines starting with o: denote sources, with a: sanitizers,

with i: sinks and with b: blacklisted events from these roles:

Sources

o: User.objects.get()

o: cms.apps.pages.models.Page.objects.get()

o: django.core.extensions.get_object_or_404()

o: django.http.QueryDict()

o: django.shortcuts.get_object_or_404()

o: example.util.models.Link.objects.get()

o: flask.request.form.get()

o: inviteme.forms.ContactMailForm()

o: live_support.forms.ChatMessageForm()

o: model_class.objects.get()

o: req.form.get()
o: request.GET.copy()

o: request.GET.get()

o: request.POST.copy()

o: request.POST.get()

o: request.args.get()

o: request.form.get()

o: request.pages.get()

o: self.get_query_string()

o: self.get_user_or_404()

o: self.queryset().get()

o: self.request.FILES.get()

o: self.request.get()

o: self.request.headers.get()

o: textpress.models.Page.objects.get()

o: textpress.models.Tag.objects.get()

o: textpress.models.User()

o: textpress.models.User.objects.get()

SQL injection

i: MySQLdb.connect().cursor().execute()

i: MySQLdb.connect().execute()

a: MySQLdb.connect().cursor().mogrify()

a: MySQLdb.escape_string()

i: pymysql.connect().cursor().execute()

i: pymysql.connect().execute()

a: pymysql.connect().cursor().mogrify()

a: pymysql.escape_string()

i: pyPgSQL.connect().cursor().execute()

i: pyPgSQL.connect().execute()

a: pyPgSQL.connect().cursor().mogrify()

a: pyPgSQL.escape_string()

i: psycopg2.connect().cursor().execute()

i: psycopg2.connect().execute()

a: psycopg2.connect().cursor().mogrify()

a: psycopg2.escape_string()

i: sqlite3.connect().cursor().execute()

i: sqlite3.connect().execute()

a: sqlite3.connect().cursor().mogrify()

a: sqlite3.escape_string()

i: flask.SQLAlchemy().session.execute()

i: SQLAlchemy().session.execute()

i: db.session().execute()

i: flask.SQLAlchemy().engine.execute()

i: SQLAlchemy().engine.execute()

i: db.engine.execute()

i: django.db.models.Model::objects.raw()

i: django.db.models.expressions.RawSQL()

i: django.db.connection.cursor().execute()

XPath Injection

i: lxml.html.fromstring().xpath()

i: lxml.etree.fromstring().xpath()

i: lxml.etree.HTML().xpath()

OS Command Injection

i: subprocess.call()

i: subprocess.check_call()

i: subprocess.check_output()

i: os.system()

i: os.spawn()

i: os.popen()

a: subprocess.Popen()

XXE

i: lxml.etree.to_string()

XSS

i: amo.utils.send_mail_jinja()

i: django.utils.html.mark_safe()

i: django.utils.safestring.mark_safe()

i: example.util.response.Response()

i: jinja2.Markup()

i: olympia.amo.utils.send_mail_jinja()

i: suds.sax.text.Raw()

i: swift.common.swob.Response()

i: webob.Response()

i: wtforms.widgets.HTMLString()

i: wtforms.widgets.core.HTMLString()

i: flask.Response()

i: flask.make_response()

i: flask.render_template_string()

a: bleach.clean()

a: cgi.escape()

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

a: django.forms.util.flatatt()

a: django.template.defaultfilters.escape()

a: django.utils.html.escape()

a: flask.escape()

a: jinja2.escape()

a: textpress.utils.escape()

a: werkzeug.escape()

a: werkzeug.html.input()

a: xml.sax.saxutils.escape()

a: flask.render_template()

a: django.shortcuts.render()

a: django.shortcuts.render_to_response()

a: django.template.Template().render()

a: django.template.loader.get_template().render()

a: werkzeug.exceptions.BadRequest()

Path Traversal

i: flask.send_from_directory()

i: flask.send_file()

a: os.path.basename()

a: werkzeug.utils.secure_filename()

Open Redirect

i: flask.redirect()

i: django.shortcuts.redirect()

i: django.http.HttpResponseRedirect()

Black list

Imports and related functions.

b: *tensorflow*

b: *tf*

b: *numpy*

b: *pandas*

b: np.*

b: plt.*

b: pyplot.*

b: os.path.*

b: uuid.*

b: sys.*

b: json.*

b: datetime.*

b: io.*

b: re.*

b: hashlib.*

b: struct.*

b: *String*

b: *Queue*

b: threading*

b: mutex*

b: dummy_threading*

b: multiprocessing*

b: *module*

b: math.*

Flask

b: flask.Flask()*

b: app.*

Django

b: *django*conf*

b: *django*settings*

b: *ugettext*

b: *lazy*

b: *RequestContext*

Logs

b: *logging*

b: *logger*

b: tempfile.mkdtemp()

b: type().__name__

b: set_size(param n)

b: result.append()

b: str().encode()

b: ValueError()

b: logging.info()

b: key.split()

b: json.dump()

Python built-ins.

b: False

b: None

b: True

b: *_()*

b: __import__()

b: *__name__*

b: *_str()*

b: *_unicode()*

b: abs()

b: *.all()

b: *.any()

b: *.append()

b: ascii()

b: *assert*

b: attr()

b: bin()

b: bool()

b: builtins.str()

b: bytearray()

b: bytes()

b: *.capitalize()

b: *.center()

b: chr()

b: classmethod()

b: cmp()

b: complex()

Scalable Taint Specification Inference with Big Code PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

b: *.copy()

b: *.count()

b: *.decode()

b: dict()

b: *.difference()

b: *.difference_update()

b: dir()

b: *.encode()

b: *.endswith()

b: enumerate()

b: *.extend()

b: *.filter()

b: *.find()

b: *.findall()

b: *.finditer()

b: float()

b: *.format()

b: frozenset()

b: func()

b: future.builtins.str()

b: getattr()

b: globals()

b: hasattr()

b: hash()

b: help()

b: hex()

b: id()

b: *.index()

b: *.insert()

b: int()

b: *.intersection()

b: *.intersection_update()

b: *.isalnum()

b: *.isalpha()

b: *.isdecimal()

b: *.isdigit()

b: *.isdisjoint()

b: *.isidentifier()

b: *.isinstance()

b: *.islower()

b: *.isnumeric()

b: *.isprintable()

b: *.isspace()

b: *.issubclass()

b: *.issubset()

b: *.issuperset()

b: *.istitle()

b: *.isupper()

b: *.keys()

b: kwargs

b: *len()

b: list()

b: *.ljust()

b: locals()

b: *.lower()

b: *.lstrip()

b: *.maketrans()

b: *.map()

b: *.match()

b: *.match.group()

b: max()

b: meth()

b: min()

b: next()

b: object()

b: oct()

b: open()

b: ord()

b: *.pop()

b: *.popitem()

b: pow()

b: print()

b: *.purge()

b: *.quote()

b: *.quoted_url()

b: range()

b: reduce()

b: *.reload()

b: *.remove()

b: *.replace()*

b: *.repr()

b: *.reverse()

b: reversed()

b: *.rfind()

b: *.rindex()

b: *.rjust()

b: round()

b: *.rpartition()

b: *.rsplit()

b: *.rstrip()

b: *.search()

b: set()

b: setattr()

b: *.setdefault()

b: *.sort()

b: sorted()

b: *.split()*

b: *.splitlines()

b: *.startswith()

b: *.staticmethod()

b: str

b: str()

b: *.strip()

b: strip_date.strftime()

b: *.sub()

b: *.subn()

b: sum()

b: super()

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA V. Chibotaru, B. Bichsel, V. Raychev, M. Vechev

Pull Request Number of Bugs Type of Bug
https://github.com/anyaudio/anyaudio-server/pull/163 2 XSS

https://github.com/DataViva/dataviva-site/issues/1661 2 Path Traversal

https://github.com/DataViva/dataviva-site/issues/1662 1 XSS

https://github.com/earthgecko/skyline/issues/85 1 XSS

https://github.com/earthgecko/skyline/issues/86 2 SQLi

https://github.com/gestorpsi/gestorpsi/pull/75 2 XSS

https://github.com/HarshShah1997/Shopping-Cart/pull/2 12 SQLi

https://github.com/kylewm/silo.pub/issues/57 1 XSS

https://github.com/kylewm/woodwind/issues/77 2 XSS

https://github.com/LMFDB/lmfdb/pull/2695 7 XSS

https://github.com/LMFDB/lmfdb/pull/2696 1 SQLi

https://github.com/mgymrek/pybamview/issues/52 1 Command Injection

https://github.com/MinnPost/election-night-api/issues/1 1 Command Injection

https://github.com/mitre/multiscanner/issues/159 1 Path Traversal

https://github.com/MLTSHP/mltshp/pull/509 1 XSS

https://github.com/mozilla/pontoon/pull/1175 5 XSS

https://github.com/PadamSethia/shorty/pull/4 1 SQLi

https://github.com/sharadbhat/VideoHub/issues/3 1 SQLi

https://github.com/UDST/urbansim/issues/213 1 Code Injection

https://github.com/viaict/viaduct/pull/5 3 XSS

https://github.com/yashbidasaria/Harry-s-List-Friends/issues/1 1 SQLi

Table 11. Reported Bugs.

b: *.symmetric_difference()

b: *.symmetric_difference_update()

b: *test*

b: *.translate()

b: *.trim_url()

b: *.truncate()

b: tuple()

b: *.type()

b: unichr()

b: unicode()

b: unknown()

b: *.update()

b: *.upper()

b: *.values()

b: *.vars()

b: zip()

C Reported Bugs
In Tab. 11, we provide a list of all pull requests based on bugs

reported by our taint analysis.

https://github.com/anyaudio/anyaudio-server/pull/163
https://github.com/DataViva/dataviva-site/issues/1661
https://github.com/DataViva/dataviva-site/issues/1662
https://github.com/earthgecko/skyline/issues/85
https://github.com/earthgecko/skyline/issues/86
https://github.com/gestorpsi/gestorpsi/pull/75
https://github.com/HarshShah1997/Shopping-Cart/pull/2
https://github.com/kylewm/silo.pub/issues/57
https://github.com/kylewm/woodwind/issues/77
https://github.com/LMFDB/lmfdb/pull/2695
https://github.com/LMFDB/lmfdb/pull/2696
https://github.com/mgymrek/pybamview/issues/52
https://github.com/MinnPost/election-night-api/issues/1
https://github.com/mitre/multiscanner/issues/159
https://github.com/MLTSHP/mltshp/pull/509
https://github.com/mozilla/pontoon/pull/1175
https://github.com/PadamSethia/shorty/pull/4
https://github.com/sharadbhat/VideoHub/issues/3
https://github.com/UDST/urbansim/issues/213
https://github.com/viaict/viaduct/pull/5
https://github.com/yashbidasaria/Harry-s-List-Friends/issues/1

	Abstract
	1 Introduction
	2 Overview
	3 Propagation Graphs
	3.1 Events and Information Flow
	3.2 Representation of Events
	3.3 Candidate Events and Roles
	3.4 Using the Propagation Graph

	4 Learning Likely Taint Specifications
	4.1 Variables
	4.2 Linear Formulation of Information Flow
	4.3 Selecting Event Representations with Backoff
	4.4 Relaxing and Solving the Constraint System

	5 Building the Propagation Graph for Python
	5.1 Events
	5.2 Capturing Information Flow

	6 Adapting a Baseline Method
	6.1 Merlin's Constraints
	6.2 Identifying Events and Candidate Roles
	6.3 Formulating the Optimization Task
	6.4 Propagation Graph Granularity

	7 Experimental Evaluation
	7.1 Implementation and Analysis Flow
	7.2 Dataset
	7.3 Manually Inspecting Learned Specifications
	7.4 Baseline Comparison
	7.5 Evaluation Results for Seldon

	8 Related Work
	9 Conclusion and Discussion
	References
	A Evaluated Samples
	B Initial Seed Specifications
	C Reported Bugs

