
Probabilistic Verification of Network Configurations
Samuel Steffen

ETH Zurich, Switzerland
samuel.steffen@inf.ethz.ch

Timon Gehr
ETH Zurich, Switzerland
timon.gehr@inf.ethz.ch

Petar Tsankov
ETH Zurich, Switzerland
petar.tsankov@inf.ethz.ch

Laurent Vanbever
ETH Zurich, Switzerland

lvanbever@ethz.ch

Martin Vechev
ETH Zurich, Switzerland

martin.vechev@inf.ethz.ch

ABSTRACT
Not all important network properties need to be enforced all the
time. Often, what matters instead is the fraction of time / probability
these properties hold. Computing the probability of a property in
a network relying on complex inter-dependent routing protocols
is challenging and requires determining all failure scenarios for
which the property is violated. Doing so at scale and accurately
goes beyond the capabilities of current network analyzers.

In this paper, we introduce NetDice, the first scalable and accu-
rate probabilistic network configuration analyzer supporting BGP,
OSPF, ECMP, and static routes. Our key contribution is an inference
algorithm to efficiently explore the space of failure scenarios. More
specifically, given a network configuration and a property ϕ, our
algorithm automatically identifies a set of links whose failure is
provably guaranteed not to change whether ϕ holds. By pruning
these failure scenarios, NetDice manages to accurately approxi-
mate P(ϕ). NetDice supports practical properties and expressive
failure models including correlated link failures.

We implement NetDice and evaluate it on realistic configurations.
NetDice is practical: it can precisely verify probabilistic properties
in few minutes, even in large networks.

CCS CONCEPTS
• Mathematics of computing→ Probabilistic inference prob-
lems; • Networks→ Network properties.

KEYWORDS
Network analysis, Failures, Probabilistic inference, Cold edges

ACM Reference Format:
Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2020. Probabilistic Verification of Network Configurations. In An-

nual conference of the ACM Special Interest Group on Data Communication

on the applications, technologies, architectures, and protocols for computer

communication (SIGCOMM ’20), August 10–14, 2020, Virtual Event, NY, USA.

ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3387514.3405900

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405900

100 102 104 106 108 1010

states

10−4

10−2

100

im
pr

ec
isi

on

four 9s guarantee
random sampling
partial exploration
this work

Figure 1: Comparison of approaches for probabilistic network anal-
ysis in a network with 191 links and link failure probability 0.001.
The confidence for sampling (Hoeffding’s inequality) is α = 0.95.

1 INTRODUCTION
Ensuring network correctness is an important problem that has
received increased attention [1, 4, 12, 16, 19, 31, 40]. So far, existing
approaches have focused on verifying “hard” properties, producing
a binary answer of whether the property holds under all or a fixed
set of failure scenarios.

Besides hard properties, network operators often need to reason
about “soft” properties1 which can be violated for a small frac-
tion of time (e.g. 0.01%). Among others, allowing properties to
be violated allows for cheaper network designs, e.g. by reducing
over-provisioning. Soft properties typically emerge when reasoning
about compliance with Service Level Agreements (SLAs). SLAs can
be defined with respect to any metric (e.g. path availability, average
hop count, capacity) and are traditionally measured in “nines”: For
instance, an IP VPN provider might guarantee internal path avail-
ability between its customers for 99.999% (five 9s) of the time, and
two-path availability for 99.99% (four 9s).

Similarly to verifying hard properties, computing the probabil-
ity of a soft property requires analyzing the network forwarding
behavior emerging from a network configuration (i.e. the network
control plane) in many, possibly all, environments (e.g. failure sce-
narios). A key difference is that verifying a hard property aims at
checking the absence of a counter-example (e.g. a failure scenario
in which the property is violated), not at computing how many

1This need is exemplified by a survey we conducted amongst network operators (52
answers). In this survey, 94% of operators indicated that they care about probabilistic
network analysis. At the same time, 83% of them indicated that it is currently difficult
to do so. See App. A.1 for details.

https://doi.org/10.1145/3387514.3405900
https://doi.org/10.1145/3387514.3405900

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev

such counter-examples exist and how likely they are. This is an im-
portant distinction as it enables modern network verification tools
such as Minesweeper [4], BagPipe [40], ARC [19], Tiramisu [1], and
ERA [12], to reason abstractly about many environments.

Challenge Modern networks often rely on a combination of BGP
and IGPs for their routing decisions. Exactly computing how fre-
quently a property holds in such a network is challenging, unless
its size is tiny enough to admit brute forcing all failure scenarios.
Instead, one can aim at approximating the probability by exploring
a subset of failure scenarios. As we show though, naive partial
exploration often leads to inaccurate approximations, making it im-
possible to verify SLA properties that must hold almost all the time,
e.g. 99.99% or more. Since violating SLAs may lead to monetary
sanctions, being accurate is key.

We illustrate the challenges of accurately approximating these
probabilities with two intuitive strategies: (i) partial exploration, in
which one only considers up to k link/node failures; and (ii) proba-
bility estimation via sampling. For each, we explore the relationship
between the achieved precision and the number of explored states
(see Fig. 1, note the log-log scale). The dotted line indicates an
imprecision of 10−4, necessary to verify a four 9s SLA.

Attempt 1: Partial exploration This strategy explores the fail-
ure scenarios in decreasing order of likelihood, i.e. the most likely
first. Due to the exponential decay of probabilities though, this
strategy must still explore many states to reach an accurate approx-
imation (except in small networks). For example, consider the Colt
network [27] (191 links) with a link failure probability of 0.001 [20].
As visualized by the dotted line in Fig. 1, one needs to explore more
than 106 states, almost all scenarios with up to 3 links failures,
to reach the precision required to verify a four 9s SLA. 2 Clearly,
this does not scale. As an illustration, Batfish [16] requires around
30 sec on average to analyze BGP configurations for one scenario
of a similarly sized network. The fundamental issue is that the
gain in precision becomes exponentially smaller as more failures
are considered: In Colt, the probability of at most 1 link failing is
0.999191 + 191 · (0.999190 · 0.001) ≈ 0.984, while the probability of
at most 2 (resp. 3) links failing is ≈ 0.9990 (resp. ≈ 0.9999).

Attempt 2: Sampling This strategy samples k scenarios from the
failure distribution (by independently sampling each link’s failure
status), checks the property for each of them, and computes the
fraction of samples for which the property holds. Technically, this
corresponds to maximum likelihood estimation (MLE) of the prop-
erty probability. We compute the precision of the estimate using
Hoeffding’s inequality [23]. While the precision is independent
of the network size, this strategy needs an intractable number of
samples to achieve high precision. We illustrate this in Fig. 1 (see
the dashed line, we use confidence α = 0.95). One needs to sample
109 states in order to reach the precision required to verify a four 9s
SLA, which clearly does not scale.

We note that there exists a variety of more advanced sampling
strategies such as importance sampling, Markov Chain Monte Carlo,
2The peculiar shape of the line is due to the log-log scale. Each “bump” in the plot
comprises all scenarios with exactly k failures for a specific k . With independent link
failures, each such scenario is equally likely, resulting in a linear relationship that
manifests as a curved line. However, increasing k leads to exponentially less likely
scenarios, resulting in several bumps (one for each k).

or Metropolis-Hastings (see e.g. [5, Chapter 11]). However, these
are typically concerned with low-probability observations (which is
irrelevant in our context) and may produce incorrect results due to
weak theoretical guarantees [11]. While there also exist alternative
concentration bounds for MLE such as the Wald interval [28], their
empirical guarantees can be violated in practice [7].

To sum up, a fundamental research question is still open: Is it
possible to build a scalable network verification tool that can precisely

verify probabilistic properties to support even stringent SLAs (four/five

9s) in large networks relying on BGP and common IGPs?

NetDice: Scalable and precise probabilistic analysis We an-
swer positively by presenting the probabilistic configuration ana-
lyzer NetDice. Given a network configuration, the external routing
inputs (if any), a probabilistic failure model, and a property ϕ, Net-
Dice accurately computes P(ϕ), the probability of ϕ holding.

To precisely and scalably compute P(ϕ), NetDice relies on an effi-
cient inference algorithm which is based on two key insights. First,
we identify a class of practical properties amenable to probabilis-
tic inference. Second, we show how to leverage these properties’
structure to heavily prune the space of failures. More specifically,
given a property ϕ, we show how to automatically identify a set of
links whose failure is provably guaranteed not to change whether ϕ
holds. We describe efficient techniques to identify these links for
the most common routing protocols (OSPF, BGP) and mechanisms
(static routes, route reflection, and load balancing). We also discuss
how to extend NetDice to support more protocols.

NetDice reasons probabilistically about internal failures, not
external routing announcements (which we assume are fixed). Con-
cretely, NetDice cannot reason about the uncertainty created by
external BGP routes (dis)appearing at the network edge. While this
is a limitation, we stress that reasoning about internal failures is
already practically relevant (e.g. to guarantee internal SLAs). Fur-
ther, while learning a precise internal failure model is possible,
e.g., from historical data [6, 20, 38], this is not the case for external
announcements.

We fully implemented NetDice and published it on GitHub. 3

Our evaluation shows that NetDice can verify practical properties
in few minutes, with imprecision below 10−4, even in networks
with hundreds of nodes.

Main contributions Our main contributions are:

• An introduction to the problem of probabilistic network analysis—
a new facet to the area of network verification (§2).
• A class of practical network properties that are amenable to

efficient probabilistic inference (§3).
• A scalable inference algorithm effectively pruning the space of

failures for BGP and common IGPs (§4–§5) to compute the prob-
ability of a property for an expressive failure model (§6–§7).
• NetDice, an implementation of our approach, evaluated on real

network topologies and configurations (§8).

3https://github.com/nsg-ethz/netdice

https://github.com/nsg-ethz/netdice

Probabilistic Verification of Network Configurations SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

2 OVERVIEW
We now describe NetDice on a simple example: consider an OSPF
network with 6 routers and link weights as shown in Fig. 2. Assume
the operator requests the probability of a waypoint property ϕ.
Specifically, she wants to know the probability that traffic from
D to C traverses a monitoring node E, given that links may fail
probabilistically. While the property ϕ is not a hard requirement,
she would like it to be violated only a small fraction of the time.

Input and output NetDice takes four inputs: (i) a network con-
figuration comprising the topology, and the BGP and IGP setup
(including external peers, route reflectors, link weights, and static
routes); (ii) external BGP announcements; (iii) a failure model spec-
ifying the probabilities of (possibly dependent) failures; and (iv) a
property ϕ. NetDice returns the probability P(ϕ) of the property
holding. In our example, we consider shortest path routing (we
discuss static routes and BGP in §5) and independent link failures
with probability 0.2 (we discuss more complex failure models in §6).

Failure exploration All failures in NetDice are modeled as link
failures. For example, a node failure is modeled as a simultaneous
failure of all adjacent links (see §6 for details). NetDice therefore
computes P(ϕ) by exploring the space of possible link failures. In-
tuitively, it checks ϕ for all possible failure scenarios and sums up
the probabilities of those where ϕ holds.

In Fig. 2, we show several link states that NetDice explores, where
we depict failed links with a cross. NetDice starts with L1, the state
where all links are up, and then explores L2, L3, etc.

Pruning the failure space using cold edges Our key insight is
that for any given link state, there may exist links (we call these cold
edges) whose failure is guaranteed not to change whether ϕ holds or

not. That is, the state of cold edges is irrelevant for the property at
the given link state.

In state L1 where all links are up (see Fig. 2), the forwarding
path from D to C is D–E–C, and therefore our property ϕ holds.
All 5 edges outside the shortest path (highlighted in blue) are cold,
because any combination of them failing will not change the for-
warding path from D to C (and thus the satisfaction of ϕ). There
are 25 − 1 = 31 such combinations (we depict three examples in the
top right of Fig. 2). NetDice leverages this observation to cover all
32 states (L1 + 31) in one go by computing their total probability
mass, which is identical to the probability that links D–E and E–C
are both up (p1 = 0.82 = 0.64). Note that this is significantly more
than the probability mass of L1 alone (0.87 ≈ 0.21).

Determining cold edges for shortest path routing is straightfor-
ward. However, extending this idea to real-world networks, which
use multiple protocols including BGP, static routes, and shortest
paths in combination, is challenging. To this end, in §5, we define
algorithms that determine cold edges for any combination of these
protocols and formally prove their correctness.

Recursively adding failures Next, NetDice introduces single fail-
ures to all non-cold edges, arriving at the states L2 and L3. NetDice
continues with L2 and recursively explores all failure scenarios
where link D–E fails. Therefore, when processing the subtree at L3,
NetDice never introduces a failure to the link D–E since all such
scenarios are already explored. That is, NetDice “locks” link D–E to

Figure 2: NetDice’s failure exploration computing the probability
of the propertyϕ “traffic from D towards C traverses the waypoint E”
under shortest path routing.

remain up. The recursion ends when all non-locked links are cold,
such as in L6 where D is disconnected from C.

For each visited state Li , NetDice constructs the forwarding
graph, determines whether ϕ holds, and computes the covered prob-
ability mass pi (similarly as for L1). When exploration terminates,
NetDice sums the values pi for which ϕ holds to obtain P(ϕ).

For our example, NetDice determines P(ϕ) ≈ 0.6932 by visiting
only 15 states. In contrast, a brute force algorithm would need to
visit 27 = 128 states. In practical networks with hundreds of links,
the benefit of NetDice is even more pronounced (see §8).

We note that while the set of cold edges in each state depends on
the flow involved in the propertyϕ, it does not depend on whetherϕ
holds. In particular, NetDice would explore the same states if the
waypoint under consideration was A instead of E.

Bounded exploration To speed up inference, NetDice can be con-
figured to stop exploration when a desired level of precision is
reached. In this case, the output of NetDice is a probability inter-
val Iϕ guaranteed to contain P(ϕ). In practice, very high precision
can be obtained by visiting only few states.

3 NETWORK MODEL AND PROPERTIES
We now define the control and forwarding plane model as well as
the properties supported by NetDice. We then formally define our
problem statement.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev

Figure 3: Example topology and BGP session layout.

3.1 Network Model
The internal topology is an undirected weighted graphG = (V , E,w),
where the nodes V represent routers, and edges E represent full-
duplex links. The function w : E → N × N assigns to each link a
pair of non-negative weights (one weight per direction) to be used
for shortest path routing.

Example Fig. 3 shows a simple topology which will serve as a
running example throughout this paper. It consists of 6 nodes A–F
(i.e., V = {A, . . . , F}), which are connected by weighted links as in-
dicated. For simplicity, we use the same weights for both directions
(e.g., w((B, E)) = (3, 3)).

3.2 Control Plane
Shortest paths and static routes For internal destinations, Net-
Dice supports static routes and shortest path routing protocols
such as OSPF and IS-IS, which are modeled by shortest paths under
weights w . The network may use equal-cost multi-path (ECMP)
forwarding, where all shortest paths are used. The IGP cost between
two nodes is the sum of weights along a shortest path.

For example, the shortest path between nodes D and C is D–E–C,
and the IGP cost between them is 2 (see Fig. 3).

BGP We assume that the network uses BGP to propagate external
routing information within the network. The administrator can
configure iBGP sessions between nodes, where some nodes may
be configured as route reflectors. The border routers maintain eBGP
sessions with external nodes in different ASes. Nodes which are
neither external nor border routers nor route reflectors are called
internal nodes.

For example, in Fig. 3, the border router F maintains two eBGP
sessions with external nodes W and Z (the external peers of F).
Nodes B and C are connected by an iBGP session (i.e., they are
internal peers) and serve as route reflectors. Node B has three route
reflector clients: A, D, and E. Node D is the only internal node in
the example.

BGP routing decisions are based on announcements received
from external nodes. The BGP protocol, which we will discuss in
more detail in §4, determines for each node and destination the
selected next hop, which is the exit point used by traffic to leave
the network. In our model, the selected next hop of internal nodes
and route reflectors is always a border router. A border router may

select an external peer as the next hop to forward traffic outside of
the network.

We make two main assumptions on the BGP configuration of
the network. First, similarly to [14, 15, 22], we assume that BGP
announcements are not modified internally. Previous measurement
studies [10, 39] show that this assumption holds for the vast major-
ity of the networks (except for large transit providers). Second, we
assume that BGP converges to a unique state, which is also true in
most practical cases [13, 34].

3.3 Forwarding Plane
The combination of BGP, shortest paths, and static routes deter-
mines how a node forwards traffic. If a static route is configured,
the node uses it, otherwise, the node resolves the next router along
the shortest path towards the selected next hop. The forwarding in-
formation base (FIB) comprises all forwarding rules for all prefixes
at all nodes.

3.4 Properties
In the most general case, a network (forwarding) property is an
arbitrary predicate over the FIB determined by the routing protocols
described above. While arbitrary properties are very expressive,
analyzing their satisfaction under failures is very hard (we will
discuss failures in §3.5). For instance, the property may check each

FIB entry for all nodes and all destinations, which is likely affected
by any failure. In general, analyzing such properties under failures
requires exhaustive enumeration of all possible failure scenarios.

Yet, many practical properties are relatively lightweight in terms
of FIB entries they depend on. For instance, an operator may be
interested in: (i) whether traffic from a customer for some destina-
tion traverses a firewall, which is independent of the FIB entries
at routers not receiving that customer’s traffic, or (ii) whether the
inbound traffic destined to the top-k prefixes share any under-
provisioned links, which is independent of FIB entries for other
destinations. We capture properties that do not depend on all FIB
entries using the concepts of single- and multi-flow properties.

Single-flow properties Let a flow be a pair of ingress node and
destination prefix. Note that this is not equivalent to a TCP flow:
there may be many TCP flows between the same ingress and pre-
fix. A property is a single-flow property if it only depends on the
forwarding graph4 of a single flow, and is deterministic given this
graph (this is, failures are the only source of randomness). Prop-
erty (i) above is such an example.

Multi-flow properties As a generalization, a multi-flow prop-
erty ϕ only depends on the forwarding graphs of a bounded set
flows(ϕ) of flows. Such properties are particularly useful to analyze
behavior related to congestion or isolation. The property (ii) above
is such an example. Note that this class is very general: most for-
warding properties can be expressed as a multi-flow property by
including every flow of the network in the property (resulting in
an arbitrary predicate over the FIB of all nodes). Further, note that
every single-flow property is also a multi-flow property.

4Due to ECMP, there may be multiple paths towards a destination. Hence, the for-
warding behavior is described by a general directed graph.

Probabilistic Verification of Network Configurations SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Property Meaning

sin
gl

e-
flo

w Reachableu→d Traffic u → d reaches its destination d .
Waypointu→d (w) Traffic u → d traverses node w .
Egressu→d (e) Traffic u → d leaves network at egress e .
PathLengthu→d (l) Traffic u → d traverses l links.

m
ul

ti-
flo

w BalancedF (L, ∆) Under flows F with given volumes, the load
on the links in L differs by at most ∆.

IsolationF Set of flows F does not share any links.
CongestionF (l , t) Flows F with given volumes together do not

exceed volume threshold t for link l .
Table 1: Examples of single- and multi-flow properties supported
by NetDice.

Practical few-flow properties NetDice specifically targets “few-
flow” properties ϕ, where the size of flows(ϕ) is small. In fact, many
practical soft properties, where violation for a small fraction of time
is acceptable, can be phrased as few-flow properties (see Tab. 1).

For example, an operator may be interested in the probability
that a customer reaches a certain prefix for SLA compliance (see
Reachableu→d , which is a single-flow property) or that this traffic
traverses a monitoring node (Waypointu→d). Alternatively, she
may want to detect resource allocation deficiencies by checking
how frequently a given flow exits at a suboptimal West coast egress
(Egressu→d) or traverses too many hops (PathLengthu→d).

Further, given a small set F including the largest flows in the
network together with their mean volumes, she may want to inspect
how frequently the load on two intercontinental links is balanced
(BalancedF), or how often the flows are isolated (IsolationF) or
together consume more than 80% of a link’s capacity (CongestionF).

Checking properties NetDice supports any single- or multi-flow
property ϕ that can be efficiently checked given the forwarding
graphs G1, . . . ,Gn of the n flows in flows(ϕ) for a concrete fail-
ure scenario. In particular, we assume the existence of a func-
tion Check(ϕ,G1, . . . ,Gn) returning true iff the forwarding graphs
G1, . . . ,Gn satisfy ϕ. Note that this function does not need to deal
with control plane protocols or failures as the forwarding plane
will already be computed by NetDice.

Our implementation of Check (see §8) relies on simple variants
of depth-first searches to verify the properties in Tab. 1 for given
forwarding graphs. By adapting the Check implementation, Net-
Dice can easily be extended to verify custom properties not listed
in Tab. 1, e.g. by leveraging existing deterministic verifiers. We note
that efficient Check implementations are out of scope of this paper.

Limitations In §5, we discuss how NetDice infers P(ϕ) for a prop-
erty ϕ by effectively pruning the space of failures. NetDice’s effi-
ciency thereby depends on the size of flows(ϕ). While the approach
presented in this paper can theoretically be used to analyze any
single- or multi-flow property, the performance of NetDice degrades
as the size of flows(ϕ) becomes large (we show this empirically in
§8.4). In particular, analyzing properties involving all flows in a
network is often intractable. However, few-flow properties allow
for very efficient analysis using NetDice (see §8).

1. Local preference (prefer highest)
2. AS path length (prefer lowest)
3. Origin (prefer IGP over EGP over INCOMPLETE)
4. Multi-exit discriminator (prefer lowest, compared only for an-

nouncements from the same neighbor AS)
5. Prefer external over internal announcements
6. IGP cost towards egress router (prefer lowest)
7. BGP peer id (prefer lowest, serves as tie break)

Table 2: BGP decision process [13, 33]. Announcements are com-
pared in a lexicographic way, starting with step 1.

3.5 Failures and Problem Statement
We now introduce NetDice’s problem statement.

Failure distribution Links (and other network components) fail
probabilistically. To model this, we define a vector L of random
variables Le ∈ {0, 1} for each link e ∈ E. We interpret Le = 1 and
Le = 0 as link e being up, resp. down. We write P(L) to denote the
probability mass function of the joint distribution over link failures.
This is, the probability P(L = l) for some vector l can be interpreted
as the fraction of time the links are up or down according to l .

The distribution P(L) can capture complex dependencies be-
tween link failures, including node and shared risk link group
(SRLG) failures (§6).

Property distribution Link failures may change the FIB and po-
tentially also whether a property holds. Let ϕ be the (Bernoulli)
random variable with values in {0, 1} indicating whether a given
single- or multi-flow property does (value 1) or does not hold (0).
Note that whether the property holds is fully determined for a given
link state L (by the Check function, see §8.4), meaning that P(ϕ | L)
is either 0 or 1. We are interested in computing P(ϕ = 1).

Problem statement NetDice addresses the following problem state-
ment: Given (i) a network configuration, (ii) external BGP announce-
ments, (iii) a link failure distribution P(L), and (iv) a single- or multi-
flow property ϕ, compute the probability P(ϕ = 1) of the property
being satisfied.

4 MODELLING BGP
We now provide our model of BGP and present an algorithm to
simulate BGP for given external announcements.

4.1 Notation and BGP Overview
Peers We denote the set of external nodes, route reflectors and
border routers as Ext, Rr and Br, respectively (Ext and V are
disjoint). Each node in V and Ext is assigned a unique peer ID. We
assume that a BGP session between two nodes is intact as long as
the two nodes are connected in the topology.

Announcements BGP peers exchange announcements of paths
towards external destinations. In addition to indicating the next
hop and the destination prefix, an announcement carries attributes
including local preference, AS path length, origin, and multi-exit
discriminator (MED).

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev

Figure 4: Simulating BGP using Alg. 1, considering local preference (LP) and IGP costs only. Symbols inside nodes denote the best selected
announcements. The BGP session layout is as shown in Fig. 3.

Protocol BGP processes destinations independently, hence our de-
scription of the protocol focuses on one destination d . We consider
a synchronous model of BGP [33] consisting of multiple rounds,
similar to activation sequences [3, 13]. This assumes that the con-
verged state of BGP is independent of the message ordering—a
practical assumption [13].

First, external peers send announcements to the border routers.
Then, in each round until convergence, every node receives an-
nouncements from its peers and selects the best announcement
according to the BGP decision process described in Tab. 2. This best
announcement is sent towards all route reflector clients (except
to the peer the announcement was received from), and, if the an-
nouncement was received from an external peer, also to all internal
peers. The algorithm returns for each nodev ∈ V the next hop field
of the best announcement in the converged state. We use Nhd (v)
to denote the selected next hop for destination d at node v .

4.2 Simulating BGP
We now describe how BGP can be simulated.
Pre-processing (Top3) As observed in [13], the first three steps
of Tab. 2 induce a global preference relation over announcements.
This is, if the graph of BGP sessions is connected, an announcement
entering the network will always rule out all other announcements
that are less preferred according to steps 1–3 of Tab. 2. Hence, we
can prune suboptimal announcements in a pre-processing step
called Top3.

For instance, assume that external peers send announcements
as indicated in Fig. 4a. For simplicity, we only consider the local
preference (LP) attribute. The announcements and will never be
selected as a best announcement in the converged state because
and have higher local preference. We can hence safely remove
and before simulating BGP. Also, we can remove E from the set of
border routers as it does not receive any external announcements
anymore. Note that failures may break connectivity between groups
of BGP routers, which needs to be considered by Top3.

Unfortunately, step 4 of Tab. 2 breaks the global preference rela-
tion amongst routes [13]. We can hence not include more steps of
Tab. 2 during pre-processing.
Passive nodes Internal nodes only receive announcements from
internal peers and have no route reflector clients. Hence, they are
passive in the sense that they never send any announcement. To
determine the converged state of BGP, it suffices to simulate interac-
tions between border routers and route reflectors. Once converged,
we can run one BGP round at internal nodes to determine their
selected next hops.

Algorithm 1 Simulating BGP in a network partition X ⊆ V

1: run Top3 (discard suboptimal announcements)
2: while not converged do
3: for node n ∈ Top3(Br, X) ∪ (Rr ∩ X) do
4: receive announcements from peers
5: select best announcement according to steps 4–7 of Tab. 2
6: re-distribute best announcement to peers
7: for each node x ∈ X do
8: select next hop Nhd (x) based on best announcement

Simulating BGP The two ideas above give rise to the BGP sim-
ulation algorithm in Alg. 1. Given a network partition X ⊆ V (it
may be X , V due to link failures), the algorithm determines the
selected next hops for all nodes in X . In Lin. 1, Alg. 1 runs Top3 and
discards suboptimal announcements. Lin. 3–6 simulate one BGP
round for all non-internal nodes. Here, we write Top3(Br,X) to
denote the set of border routers inX remaining after pre-processing.
During simulation, only steps 4–7 of Tab. 2 need to be considered.

Example Fig. 4 illustrates an execution of Alg. 1 in the topology
from Fig. 3. Announcements and are discarded during Top3 in
Lin. 1 (see Fig. 4a). Lin. 2–6 simulate BGP rounds for the 4 nodes
A, B, C, and F. In round 1 (see Fig. 4b), nodes A and F receive
one announcement each, which is selected (symbols inside nodes).
These announcements are forwarded to the respective internal
peers. Round 2 is similar (see Fig. 4c). In round 3, both nodes B and
C receive and (see announcements sent to B and C in round 2,
Fig. 4c). At node B, step 6 of Tab. 2 compares the IGP costs 2 and 1
towards the next hops A (for) and F (for), respectively. This re-
sults in the selection of announcement at B (see Fig. 4d). Similarly,
also C selects .

No node changes its decision in any further round and the loop
in Lin. 2–6 terminates. Lin. 7–8 select the next hops for all nodes in
the network (see Fig. 4e). Nodes A and F select external nodes as
next hops, indicating that they forward traffic out of the network.

5 PRUNING THE FAILURE SPACE
We now discuss how NetDice identifies links whose failures are
guaranteed not to change whether a property ϕ holds. We first
formalize the notions of cold and hot edges (§5.1), and then present
how, in addition to shortest path routing, we can incorporate static
routes (§5.2) and BGP (§5.3). For simplicity, in §5.2–§5.3 we assume
that ϕ is a single-flow property. In §5.4, we discuss how to support
multi-flow properties and how to incorporate further protocols.

Probabilistic Verification of Network Configurations SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Figure 5: Hot edges for static routes and shortest paths. The link
weights are as shown in Fig. 3.

5.1 Cold and Hot Edges
Definition 5.1. Given a network configuration and a flow (u, d),

a set of edges C ⊆ E is cold iff any combination of link failures in
C is guaranteed to not change the forwarding graph for (u, d). An
edge is cold iff it belongs to a set of cold edges. An edge is hot iff it
is not cold.

In the following, we focus on identifying hot edges, and declare
their complement as cold. While one could trivially declare all edges
as hot, this would not allow for pruning any failures. Therefore, our
goal is to identify as few hot edges as possible, while still ensuring
the complement to be cold.

Shortest paths As we have illustrated in §2, for shortest paths
routing, all edges along the5 shortest path are hot, while all other
edges are cold (see Fig. 2). In this case, our choice of hot edges
is optimal: Any failure of hot edges is guaranteed to change the
forwarding graph. However, for more complex protocols (and their
combination), we generally cannot guarantee optimality (see §5.2).

5.2 Incorporating Static Routes
We now discuss how to additionally support static routes. Let
Staticd ⊆ V × V be the set of static routes in the network for
a destination d . Consider the topology of Fig. 3 and assume that
in addition to shortest paths, the administrator has configured
StaticC = {(E, B)} (see large arrow in Fig. 5a). The flow (D, C)
is forwarded as shown in Fig. 5a. D determines the shortest path
towards C, which is D–E–C. Hence, it forwards traffic to E. The
static route at E deflects traffic from the initial shortest path and
forwards it to B instead. At B, traffic again uses the shortest path
towards C.

Local stability For a set of edges C ⊆ E to be cold, it is suffi-
cient that every node in the forwarding graph does not change
its forwarding behavior for the flow under consideration if any
combination of links in C fails. We formalize this observation in
Def. 5.2 and Lemma 5.3.

Definition 5.2. A node is locally stable under a set of link failures
w.r.t. a flow if packets of that flow are forwarded identically by the
node both with and without the failures.
5When referring to the shortest path, we refer to the unique path chosen by the routing
protocol (e.g., OSPF), even though there may be multiple shortest paths. In §5.4, we
discuss how to incorporate ECMP.

Algorithm 2 Hot edges for static routes and shortest paths
1: procedure HotSpStatic(u , d , Efwd, L)
2: D ← {u } ∪ {y | (x , y) ∈ Staticd ∩ Efwd } ▷ decision points
3: H ← AllSp(D, {d }, L) ▷ all shortest paths D → d
4: return H ∪ (Staticd ∩ Efwd) ▷ traversed static routes

5: procedure AllSp(S, T, L) ▷ all shortest paths S → T
6: return

⋃
s∈S,t∈T SpL (s , t) ▷ shortest path s → t

Lemma 5.3. Let (u,d) be a flow with forwarding graph f , and
C ⊆ E a set of edges. Further, assume that every node in f is locally

stable w.r.t. flow (u,d) under any subset of C failing. Then, C is cold.

Lemma 5.4 (see below) states that under shortest paths routing,
local stability is transitive. Hence, to apply Lemma 5.3 we only need
to prove local stability for few nodes, namely (i) the source node of
the flow, (ii) all start and (iii) all end nodes of traversed static routes.
All other nodes on the forwarding graph will be locally stable by
Lemma 5.4. Note that (iii) is required as static routes can deflect
the forwarding graph from the initial shortest path, as shown in
Fig. 5a.

Lemma 5.4. Let x,y ∈ V be nodes using shortest path routing for

a flow (u,d), where y is the next router along the shortest path from

x to d . If x is locally stable under some failures w.r.t. flow (u,d), then
so is y.

Proof. If the failures would change the shortest path py from y
to d , also the shortest path px from x to d would change, because
py is necessarily a subpath of px . □

Example To ensure local stability of the ingress D, links D–E and
E–C of the shortest path D–E–C must be hot. Note that this is the
case even though E–C does not lie on the forwarding graph: if this
link fails (see Fig. 5d), the shortest path from D to C changes to
D–A–B–C. To ensure (ii), we mark link E–B as hot (the source of a
static route is locally stable as long as the output link does not fail).
For (iii), we need to mark the link B–C as hot. This makes sure the
shortest path between B and C does not change under cold edge
failures.

Fig. 5b summarizes the hot edges for this example. Any failures
of other edges will not change the forwarding graph. Fig. 5c shows
an example of such a cold edge failure.
General algorithm Alg. 2 determines hot edges in an arbitrary
network for link state L, ensuring local stability for (i—iii) above.
The procedure HotSpStatic takes as input a flow (u,d) ∈ V ×V ,
the edges Efwd of the forwarding graph for that flow, and the link
state L. First, in Lin. 2 it collects u and all end points of traversed
static routes in a setD. These nodes are called decision points. Next,
in Lin. 3 it determines all edges along a shortest path between
any r ∈ D and d . Here, SpL(s, t) is the set of all edges along the
shortest path from s to t under link states L. Finally, in Lin. 4 the
procedure adds links used by any encountered static route to H .
For our example, Alg. 2 returns the red edges in Fig. 5b.
Correctness Lemma 5.5 shows that Alg. 2 is correct.

Lemma 5.5. The complement C = E \ H of the setH returned by

HotSpStatic (Alg. 2) is cold.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev

Figure 6: Hot edges for BGP combined with shortest paths.

Proof. Assume any subset of C fails. According to Lemma 5.3,
we only need to prove local stability for nodes in the forwarding
graph f . Due to Lin. 3, all decision points are locally stable. Due to
Lin. 4, all nodes in f with a configured static route are locally stable.
Finally, using a simple inductive argument leveraging Lemma 5.4,
it can be shown that every other node in f is also locally stable. □

Unlike with shortest paths only, the setH is generally an over-
approximation of hot edges: while any failure of a hot edge not
carrying any traffic may change the forwarding graph (e.g., see
Fig. 5d), this is not necessarily the case.

5.3 Incorporating BGP
Next, we discuss how to identify hot edges for BGP. Consider again
the example in Fig. 4, where next hops are selected for an external
destination d . Together with shortest paths routing, the flow (D, d)
is forwarded as shown in Fig. 6a.

At a high level, we have to make sure that any cold edge failures
do not change, at each node in the forwarding graph, (i) the selected
BGP next hop r and (ii) the next node towards r according to the
internal routing protocol. We have discussed the main ideas for (ii)
in §5.2. Next, we inspect (i).

Guarding the selected next hop There are multiple reasons why
link failures may affect the selected next hop of a node n. First, fail-
ures may disconnect n from a BGP peer, leading to n not receiving
that peer’s announcements anymore. In our example, failing links
A–B and A–D would prevent B from receiving announcement
sent by A in round 1 (see Fig. 4b). Second, the IGP costs involved
in step 6 of Tab. 2 when comparing announcements can change
due to failures. For instance, in round 3 of our example (Fig. 4d),
node B selects over due to lower IGP cost. If link B–C fails, the
IGP cost from B to F changes to 4, making B select instead. Third,
failures may change announcements sent by a peer of n and thereby
transitively influence the decision of n.

Combining these thoughts with our insights from §5.2 gives rise
to Alg. 3, which collects hot edges for the BGP protocol. Procedure
HotBgp takes as input a flow (u,d), where u ∈ V is a node and d
is an external destination, the edges Efwd of the forwarding graph
for that flow, and link states L. The algorithm performs three main
steps.

Step 1: Ensuring local stability for route reflectors First, in
Lin. 2–4 we perform BGP pre-processing and determine the set
of border routers and route reflectors in the partition X . Then, in
Lin. 5 we mark the shortest paths from any route reflector to any
border router as hot. This ensures that in X , (i) all route reflectors

Algorithm 3 Hot edges for BGP
1: procedure HotBgp(u , d , Efwd, L)
2: X ← nodes in the same partition as u under L
3: BrL ← Top3(Br, X) ▷ BGP pre-processing (§4.2)
4: RrL ← Rr ∩ X
5: H ← AllSp(RrL , BrL , L) ▷ all shortest paths (Alg. 2)
6: D ← {u } ▷ decision points
7: ∪ {y | (x , y) ∈ Staticd ∩ Efwd }
8: ∪ {y | (x , y) ∈ Efwd ∧ Nhd (x) , Nhd (y)}
9: for each x ∈ D do

10: H ← H ∪ SpL (x , Nhd (x)) ▷ shortest path x → Nhd (x)
11: H ← H ∪ (Staticd ∩ Efwd) ▷ traversed static routes
12: if RrL = ∅ then
13: H ← H ∪ AllSp({u }, BrL) ▷ ensure connectivity
14: return H

remain connected with all border routers, and (ii) the IGP costs
compared in step 6 of Tab. 2 during any round of Alg. 1 do not
change. In our example, this step marks links A–B, B–C, and C–F
as hot, see Fig. 6b.

Step 2: Ensuring local stability for decision points Similarly
as in Alg. 2, Lin. 6–10, ensure that cold edge failures can not change
the forwarding behavior of a set D of decision points. D includes
the same nodes as in Alg. 2, but additionally includes nodes where
the next hop changes (see Lin. 8). This may for example happen
if adjacent nodes are clients of different route reflectors sending
different announcements. In Lin. 9–10, we mark all edges on any
shortest path from a decision point to the selected next hop as hot.
Together with step 1, step 2 ensures local stability of decision points
under shortest paths routing. Like in Alg. 2, in Lin. 11 of Alg. 3
we mark all links used by a static route in Efwd as hot in order to
ensure local stability of nodes with static routes.

In our example, the set of decision points is D = {D, F} (there
are no static routes). In Lin. 6–11, the algorithm marks links D–E,
E–C, and C–F as hot (see Fig. 6c).

Step 3: Ensuring connectivity If there is at least one route reflec-
tor in X , Lin. 5–11 ensure that all route reflectors, border routers
and nodes on the forwarding graph remain connected. Hence, all
BGP sessions between these nodes remain intact under cold edge
failures. However, Lin. 5 does not enforce border routers to be con-
nected if RrL = ∅. As a technical detail, we have to separately
ensure connectivity in this case by connecting u with all border
routers in Lin. 13.

In our example, RrL , ∅. Hence, Lin. 12–13 do not add any hot
edges. The final set of hot edges is shown in Fig. 6d.

Correctness Lemma 5.6 shows that Alg. 3 is correct.

Lemma 5.6. The complement C = E \ H of the setH returned by

HotBgp (Alg. 3) is cold.

Proof Sketch. We provide a full proof in App. A.2. First, we
show stability of BGP decisions by arguing that in every iteration
of Alg. 1, all sent announcements do not depend on failures in C.
Then, we prove local stability for all decision points and conclude
by levering Lemma 5.4 and Lemma 5.3. □

Probabilistic Verification of Network Configurations SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Figure 7: Modelling node failures as a Bayesian Network.

5.4 Extensions
ECMP With ECMP, traffic is forwarded along multiple shortest
paths, not all of which would be marked as hot by Alg. 2 and Alg. 3.
We can easily incorporate ECMP by additionally marking all edges
in Efwd as hot.

Multi-flowproperties Extending our approach to multi-flow prop-
erties is straightforward. In particular, given a multi-flow propertyϕ
with flows(ϕ) = {(u1,d1), . . . , (un,dn)}, we can just union the hot
edges for the individual flows to obtain the hot edges for ϕ. This
is, for Eifwd being the forwarding graph of flow (ui ,di), we com-
puteH =

⋃n
i=1 HotBgp(ui ,di , Eifwd, L). Any failure of a cold edge

e < H is guaranteed to not change the forwarding graph for any
flow in flows(ϕ).

Further protocols The general concept of cold edges can in princi-
ple be applied to any routing protocol. While identifying cold edges
for a new protocol requires manual effort and domain-specific in-
sights, we believe that many of the ideas developed here (e.g., local
stability) can be re-used.

6 PROBABILISTIC FAILURE MODEL
We now describe how to represent the failure distribution P(L). In
NetDice, failure models are expressed as dependencies amongst
link failures. For example, a node or shared risk link group (SRLG)
failure can be modeled as a simultaneous failure of multiple links.
Similar to [36, 37], we model such dependencies using a Bayesian
Network (BN) representing the distribution P(L). Each variable
X in the BN is binary (values 0 or 1), where X = 0 indicates a
failure. Each link e ∈ E is associated with a variable Le in the BN,
and more variables and dependencies can be added. Because any
discrete probability distribution with arbitrary dependencies can
be represented by a BN, this approach is very general.

Example: Independent link failures A BN modelling indepen-
dent link failures just consists of one variable Le per link e ∈ E.
The user of NetDice simply specifies for each link e the failure
probability P(Le = 0). The distribution represented by the BN is:
P(L) =

∏
e ∈E P(Le).

Example: Node and SRLG failures Node and SRLG failures can
be modeled by adding a variable Nv for each node v ∈ V (resp.
SRLG) to the BN and connecting them with the variables for adja-
cent links (resp. links belonging to the SRLG).

For example, the BN modelling node failures for the topology
in Fig. 3 is shown in Fig. 7. Assuming the probability of a node
(resp. link) failure is 0.1 (resp. 0.01), the BN would declare:

P(NC = 0) = 0.1 P(LC–F = 0 | NC = 0 ∨ NF = 0) = 1
P(NF = 0) = 0.1 P(LC–F = 0 | NC , 0 ∧ NF , 0) = 0.01.

Such probabilities can be estimated, e.g., from network log data [6,
20, 38]. Note the dependency of LC–F on its parents NC and NF: the
link fails if any of its adjacent nodes fails.

By adding more variables to the BN with similar dependencies,
one can express more complex failure models such as correlated
SRLG failures.

Inference We will see in §7 how NetDice repeatedly queries the
BN model for probabilities P(L) or any of its marginals when com-
puting P(ϕ). NetDice uses Variable Elimination [41] to compute
exact marginals from the failure model BN.

7 EXPLORING THE FAILURE SPACE
We now show how NetDice explores the space of link failures to
compute P(ϕ) for a single- or multi-flow property ϕ.

The target probability P(ϕ) can be expanded as follows:

P(ϕ) =
∑
L P(ϕ | L) · P(L). (1)

We have seen in §6 how to compute P(L) for a given link state L.
Further, given L the value of ϕ is deterministic (i.e., P(ϕ | L) is either
0 or 1): We can construct the forwarding graphs for flows(ϕ) and
verify the property using the Check function (see §3.4). Hence, we
can rewrite (1) to:

P(ϕ) =
∑
L s.t. ϕ holds for L P(L). (2)

Skipping cold edge failures Rather than exploring all possible
states L to compute (2), we can leverage the idea of cold edges from
§5 to visit only a few states. The main idea of NetDice’s exploration
algorithm is to recursively introduce failures of hot edges while
skipping failures of cold edges. Due to the result in Lemma 7.1, the
latter can be covered implicitly.

Lemma 7.1. Let C ⊆ E be cold for a link state L and every flow in

flows(ϕ) for a single- or multi-flow property ϕ. Further, let L′ be the
link state L where some links in C fail. Then, P(ϕ | L) = P(ϕ | L′).

Proof. By Def. 5.1, any failures of links in C will not change
the forwarding graphs for any flow in flows(ϕ). □

States We define a state to be a function s : E → {1, 0, ?} assigning
to each link one of 1 (up), 0 (down) or “?” (undecided). The value 1
“locks” a link (see e.g. D–E in L3 of Fig. 2), while “?” means that the
link is up, but may fail later. A state should not be confused with
the random vector L. A state is ground if no link is assigned “?”.
A state s ′ is compatible with s iff s(e) ∈ {0, 1} ⇒ s ′(e) = s(e)
and compat(s) is the set of ground states compatible with s . The
state fill(s) assigns 1 to all undecided links in s and s[e ← c] (resp.
s[E ← s]) is the state s where link e (resp. every link in the set E) is
assigned c ∈ {0, 1}. We define prob(s) to be the marginal probability
of L over the ground states compatible with s:

prob(s) := P
(∧

e ∈E s.t. s(e),? Le = s(e)
)
. (3)

This quantity can be computed using marginal inference in the
Bayesian Network representing P(L) (see §6).

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev

Algorithm 4 Failure exploration to compute P(ϕ)
1: procedure Explore(s)
2: L ← fill(s), H ← ∅, ρ ← 0
3: for each flow (ui , di) ∈ flows(ϕ) do
4: compute forwarding graph (V i

fwd, E
i
fwd) for (ui , di) under L

5: H ← H ∪ HotBgp(ui , di , Eifwd, L) ▷ Alg. 3
6: H? ← H ∩ {e | e ∈ E ∧ s(e) = ?} ▷ undecided hot edges
7: if Check(ϕ, (V 1

fwd, E
1
fwd), . . . , (V

n
fwd, E

n
fwd)) then ▷ §3.4

8: ρ ← ρ + prob(s[H? ← 1]) ▷ marginal prob. (§6)
9: s′ ← s

10: for l ∈ H? do
11: s′ ← s′[l ← 0] ▷ introduce failure
12: ρ ← ρ + Explore(s′) ▷ explore recursively
13: s′ ← s′[l ← 1] ▷ “lock” link
14: return ρ ▷ ρ =

∑
L∈compat(s) P (ϕ | L) · P (L)

Failure exploration NetDice explores a tree of states, starting
with the all-undecided state s0, to build up the sum in (2). When
visiting a state, it checks whether ϕ holds, assuming all undecided
links are up. It then introduces failures of undecided hot edges and
recursively visits these new states.

This procedure is detailed in Alg. 4. The function Explore is
initially invoked with s = s0 and begins by setting all undecided
links to “up” (Lin. 2). In Lin. 3–5, we construct all forwarding graphs
relevant for ϕ and collect hot edges as presented in §5. Next, Lin. 6
finds all undecided hot edges. Then, we check the property ϕ for
the forwarding graphs (Lin. 7). If the property holds (Lin. 8), we
compute the marginal probability of link states differing from L at
most by failed undecided cold edges (see §6) and add it to ρ. After
Lin. 8, the value of ρ is

∑
L∈compat(s[H?←1]) P(ϕ | L) · P(L) due to

Lemma 7.1. Finally, in Lin. 9–13 we explore all states with at least
one additional failure of an undecided hot edge.

Lemma 7.2 is proven in App. A.2. Because compat(s0) covers all
link states, it follows that Alg. 4 correctly computes (1).

Lemma 7.2. Explore(s) returns
∑
L∈compat(s) P(ϕ | L) · P(L).

In the worst case (if for every link state, all undecided links are
hot), Alg. 4 visits 2 |E | states. However, our experiments show that
much fewer states are visited in practice (see §8).

Bounded exploration Alg. 4 can be stopped early, in which case
its output is a lower bound pl of P(ϕ). By tracking how much prob-
ability mass of P(L) has been covered and leveraging the fact that
P(ϕ | L) is at most 1, NetDice also obtains an upper bound ph
and returns to the user the interval [pl,ph], which is guaranteed
to contain P(ϕ). Such a result is often sufficient in practice, given
the interval is small. For example, if NetDice determines that the
probability of reachability is in [0.99991, 0.99998], a reachability of
four 9’s is guaranteed.

As presented, Alg. 4 performs a depth-first search. NetDice actu-
ally uses a breadth-first variant, where states are roughly explored
according to their probability (i.e., most likely states first). As a
result, the imprecision ph − pl drops rapidly and the tool can stop
exploration as soon as a desired target imprecision is reached. As
we show in §8, this approach allows trading little precision for large
speedups.

8 IMPLEMENTATION AND EVALUATION
We now evaluate our approach using an end-to-end implementa-
tion of NetDice consisting of ≈3k lines of Python code. 6 As input,
NetDice accepts a network configuration, eBGP announcements
after import policies, a failure model, and a property. NetDice cur-
rently supports link and node failure models, and the properties in
Tab. 1. The tool can easily be extended to other failure models and
additional single- and multi-flow properties.

After introducing our methodology (§8.1), we analyze NetDice’s
performance for different real-world topologies with synthetic con-
figurations (§8.2–§8.3). Next, we discuss how increasing the number
of flows for multi-flow properties impacts the performance of Net-
Dice (§8.4). Finally, we demonstrate NetDice’s success in analyzing
the real-world configurations of a nation-level ISP (§8.5).

Overall, we show that NetDice verifies few-flow properties for
networks with hundreds of links in few minutes with imprecision
below 10−4, sufficient for four 9s availability guarantees.

8.1 Methodology and Dataset
Our experiments run on a machine with 32 GB of RAM and 12 cores
at 3.7 GHz. The presented numbers are for sequential execution
(verification of a property is not parallelized), however one can
easily run multiple queries in parallel.

For the synthetic experiments (§8.2–§8.4), we combine 80 topolo-
gies from the Topology Zoo [27] (topologies with ≥ 50 links) with
the 10 publicly available7 tier 1 and transit topologies from [30].
The resulting dataset T includes 90 topologies containing between
18 (resp. 50) and 754 (resp. 2 320) nodes (resp. links). We assume
uniform link weights 1 and do not setup static routes.

In all our experiments, we use a node failure model with failure
probabilities 0.0001 (for nodes) and 0.001 (for links). This is in line
with previous studies [20, 38] which report WAN links being up
between 99.9 to 99.99 percent of time.

8.2 Different Network Sizes
We now analyze NetDice’s performance for verifying a waypoint
property in the topologies T . The actual property check (call to
Check in Lin. 7 of Alg. 4) only accounts for a negligible part of the
runtime (all properties in Tab. 2 are decided by simple variants of
depth-first searches). Hence, the runtime is only noticeably affected
by the number of flows involved in the property. The following
results are thus representative for any single-flow property with
efficient Check function (see §8.4 for multi-flow properties).

Because the topologies in T do not include any BGP configura-
tions, we create synthetic BGP setups with 2 route reflectors and
10 border routers having 2 external peers each. This is in line with
previous studies [9] on next hop diversity in real networks (see §8.3
for other setups). Following the best common practices for ISPs [21],
the route reflectors (resp. border routers) are randomly sampled
with a bias towards (resp. away from) the network center. 8

6Our implementation is available on GitHub: https://github.com/nsg-ethz/netdice
7https://inl.info.ucl.ac.be/content/mrinfo (Accessed: 04.02.2020)
8The sampling probability decreases (resp. increases) according to the squared distance
to the center in terms of number of links.

https://github.com/nsg-ethz/netdice
https://inl.info.ucl.ac.be/content/mrinfo

Probabilistic Verification of Network Configurations SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

102 103

links

100

101

102

103

tim
e

[s
]

1 h (timeout)
maximum
median

ISP
0

25

50

75

100

tim
e

[s
]

+ 2

Figure 8: Runtime for verifying a single-flow waypoint property in
different topologies by size (left) and for the real ISP configuration
(right; outliers 233 s and 497 s not shown).

For the external announcements, we use the worst case scenario
where all external peers send the same attributes. As a result, Top3
(see §4.2) does not remove any announcements and the number of
hot edges added in Lin. 5 and Lin. 13 of Alg. 3 is maximal. Note
that NetDice’s runtime is primarily determined by the number of
hot edges, which depends on the size of BrL (see Alg. 3, Lin. 3) but
not on the specific announcement attributes (the runtime of Top3 is
negligible). The presented results are hence representative for any
scenario with additional, less preferred announcements.

Runtime We measure the runtime of NetDice verifying a random
waypoint property of a single random flow for a target imprecision
of 10−4 (i.e., we stop exploration once the target is reached). For each
network in T , we run 10 experiments with fresh random choices.
Fig. 8, left shows for each network the maximum and median in-
ference time. While inference in larger networks is generally more
expensive, most networks (including the largest network, 2 320
links) can be analyzed within 1 h. Only for 12 (resp. 6) networks,
at least one experiment times out after 1 h (resp. 3 h). For 7 out of
these, the imprecision at the point of timeout is below 10−3.

We note that the runtime is currently dominated by Variable
Elimination (VE) for Bayesian network inference (see §6). Experi-
ments showed that with link failures only (where VE is not required),
performance improves by a factor 5–10×. While the expressiveness
of our failure model currently comes at a cost, the performance
can likely be significantly improved by leveraging more advanced
inference algorithms.

To summarize, NetDice can efficiently and precisely analyze
most networks with hundreds of links in few minutes.

Fraction of hot edges We also collect the fraction of edges marked
as hot in the first 10 visited states of the previous experiments and
plot the CDF in Fig. 9, left. For 50 (resp. 80) percent of the states,
less than 32 (resp. 42) percent of edges are hot. This clearly shows
that NetDice effectively prunes the failure space already in the first
few states.

Evolution of imprecision Fig. 9, right shows how NetDice re-
duces the imprecision while exploring states for the Colt network
(191 links). Observe that an imprecision of 10−3 is already reached
within 100 to 1 000 states (i.e., few seconds).

0.0 0.5

fraction of hot edges

0.00

0.25

0.50

0.75

1.00

CD
F

100 101 102 103

explored states

10−4

10−3

10−2

im
pr

ec
isi

on

Figure 9: Left: Fraction of hot edges in the first 10 visited states for
the experiments of Fig. 8, left. Right: Precision evolution (10 runs)
for Colt.

In Fig. 1, we compare the imprecision traces of NetDice and par-
tial exploration for the Colt network and a link failure model. 9 To
reach an imprecision of 10−4, partial exploration needs to consider
almost 600 times more states than NetDice (1 107 359 vs. 1 854 states
for NetDice).

8.3 Different BGP Setups
We now inspect the performance of NetDice under an increasing
number of route reflectors and border routers. Note that by increas-
ing these numbers, we introduce more dependencies in the BGP
protocol and hence increase the number of hot edges (see Lin. 5
and Lin. 13 in Alg. 3).

We re-run the experiments from §8.2 for the Uninett2010 topol-
ogy (74 nodes, 101 links), but vary the number of border routers (see
Fig. 10a) and route reflectors (see Fig. 10b). Note that in practical
networks, only few prefixes see more than 20 equally preferred next-
hops [9]. As expected, both the median runtime and its variance
generally increase with more border routers and route reflectors.
Still, the network can be analyzed within 1 hour for all setups.

8.4 Multi-Flow Properties
Next, we inspect the performance of NetDice for multi-flow prop-
erties. Recall that a flow corresponds to a pair of ingress router and
destination prefix, and does not refer to a UDP/TCP flow. In partic-
ular, we let NetDice verify a congestion property (see Tab. 1) for
k = 1, . . . , 8 random flows with distinct destinations and random
flow volumes in the AS 3549 topology (235 links, 10 runs, target
imprecision 10−4). Instead of randomly sampling border routers
and external peers, we use the 21 external peers known for the
topology. 10 Route reflectors and announcements are chosen as
in §8.2.

We present the results in Fig. 10c. As expected, more flows lead
to slower inference (due to more hot edges, see Lin. 3–5 in Alg. 4).
While NetDice cannot scalably analyze congestion involving all

flows in a network, it is a useful and efficient tool for analyzing the
interaction of the few largest flows, which often already cover a
significant amount of traffic.

9With node failures, the imprecision for partial exploration can not be computed in
closed form and the optimal order of visiting states is not known a priori. Hence, our
comparison uses a link failure model.
10Sampling 10 new border routers for each destination (as done in §8.2) would not be
realistic. Most networks have only few border routers.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev

6 8 10 12 14 16 18 20
number of border routers

0

20

40

tim
e

[m
in

]

(a) More border routers.

1 2 3 4 50
number of route re�ectors (0 = iBGP full mesh)

0

5

10

15

tim
e

[m
in

]

(b) More route reflectors.

1 2 3 4 5 6 7 8
number of �ows

0

25

50

75

100

tim
e

[m
in

]

timeout (2 h): 1 2 3

(c) More flows for a congestion property.

Figure 10: Varying the number of (a) border routers and (b) route reflectors in the Uninett2010 network for a single-flow waypoint property.
(c) Increasing the number of flows for a congestion property in the AS 3549 network.

8.5 Real-Wold Configuration
We finally extract the IGP and BGP settings from the raw configura-
tion files of a nation-level ISP comprising around 100 nodes and 180
links. 11 Like in §8.2, we verify a random single-flow waypoint prop-
erty (10 runs, imprecision 10−4) under worst-case announcements
(we argue why doing so is representative in §8.2). The runtimes
are summarized in Fig. 8, right. The median runtime is less than
2 min. We conclude that NetDice can efficiently verify properties
for real-world network configurations.

9 RELATED WORK
Control plane analysis Our work is complementary to a large
amount of recent work on control plane analysis. Batfish [16] and
C-BGP [32] take as input a configuration and a concrete envi-
ronment (including failures), simulate the control plane, and ana-
lyze the resulting data-plane. This however takes non-negligible
time, preventing the effective analysis of many environments. Sim-
ilarly to NetDice, the latest generation of network analyzers such
as Minesweeper [4], BagPipe [40], ARC [19], Tiramisu [1], and
ERA [12], are able to verify properties considering a wide range
of failure scenarios. While useful, none of these approaches rea-
sons about the probability that a network is in a given state, which
precludes inference on the probability of a property holding.

Data-plane analysis Many prior works focus on data-plane anal-
ysis with systems such as Anteater [29], HSA [25], NetPlumber [24],
and VeriFlow [26]. While useful, the results of data-plane analysis
are limited to the considered failure scenario. These tools cannot be
used for pro-active verification and probabilistic reasoning, unlike
NetDice.

Probabilistic network languages ProbNetKat [17] brings prob-
abilistic extensions to NetKat [2, 18]. The authors of [35] give a
foundation for building solvers for ProbNetKat models. While Prob-
NetKat [17] can model the data-plane, it cannot capture control
plane protocols as it does not model state at routing nodes. NetDice
supports these protocols with custom inference procedures that
scale to real-world networks.

11Unfortunately, Batfish [16] could not parse the configurations directly, forcing us to
extract the information ourselves.

Traffic engineeringunder probabilistic failures A complemen-
tary line of work [6, 8] studies synthesis of forwarding rules for
traffic engineering in the face of probabilistic failures.

Lancet [8] finds a link-based protection routing that is congestion-
free with high probability. Like NetDice, it recursively explores a
tree of failure scenarios. In contrast to NetDice, which uses custom
algorithms to determine equivalent scenarios and prune the search
space at each visited state, Lancet’s Divide-and-Conquer approach
leverages linear programming to decide if a visited state represents
a single set of equivalent scenarios (which can be pruned) or has to
be divided and analyzed recursively.

TEAVAR [6] optimizes bandwidth allocation subject to a target
availability probability in tunnel-based WAN routing, leveraging
ideas from financial risk theory. Unlike NetDice, TEAVAR explores
failures according to a fixed order and does not determine or prune
equivalent failure scenarios.

Similarly to NetDice, these works support complex correlated
failure models and avoid exploring very unlikely scenarios using a
“cutoff”. Unlike NetDice, which supports BGP and shortest-paths
routing, they target path-based WAN routing. Addressing power-
ful but specific synthesis problems, they complement NetDice’s
verification of more diverse but simpler properties.

10 CONCLUSION
We presented NetDice, a scalable and precise tool for probabilistic
network verification. NetDice is based on a novel inference algo-
rithm able to effectively prune the failure space for BGP and com-
mon IGPs. We implemented NetDice and evaluated it on real-world
configurations. NetDice can verify relevant properties for networks
with hundreds of links within minutes with high precision.

NetDice’s notion of cold edges may also prove useful in non-
probabilistic settings (e.g. to speed up existing verifiers). We en-
courage future work to explore this direction.
Ethical issues This work does not raise any ethical issues.

ACKNOWLEDGMENTS
We thank our shepherd Sanjay Rao and the anonymous reviewers
for their helpful feedback. This work was partially supported by an
ETH Research Grant ETH-03 19-2.

Probabilistic Verification of Network Configurations SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast Multilayer Network Verification. In 17th USENIX Symposium

on Networked Systems Design and Implementation (NSDI ‘20). USENIX Associ-
ation, Santa Clara, CA, 201–219. https://www.usenix.org/conference/nsdi20/
presentation/abhashkumar

[2] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations
for Networks (POPL ‘14).

[3] Anindya Basu, Chih-Hao Luke Ong, April Rasala, F. Bruce Shepherd, and Gordon
Wilfong. 2002. Route Oscillations in I-BGP with Route Reflection. In Proceedings

of the 2002 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications (Pittsburgh, Pennsylvania, USA) (SIGCOMM ’02).
ACM, New York, NY, USA, 235–247. https://doi.org/10.1145/633025.633048

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A general
approach to network configuration verification. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication (SIGCOMM ‘17). ACM,
155–168.

[5] Christopher M. Bishop. 2006. Pattern recognition and machine learning. Springer,
New York.

[6] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjørner,
Asaf Valadarsky, and Michael Schapira. 2019. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineering. In Proceedings of

the ACM Special Interest Group on Data Communication (SIGCOMM ‘19). ACM,
Beijing China, 29–43. https://doi.org/10.1145/3341302.3342069

[7] Lawrence D. Brown, T. Tony Cai, and Anirban DasGupta. 2001. Interval
Estimation for a Binomial Proportion. Statist. Sci. 16, 2 (05 2001), 101–133.
https://doi.org/10.1214/ss/1009213286

[8] Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay Rao, and Mohit Tawar-
malani. 2019. Lancet: Better Network Resilience by Designing for Pruned Failure
Sets. Proceedings of the ACM on Measurement and Analysis of Computing Systems

3, 3 (Dec. 2019), 1–26. https://doi.org/10.1145/3366697
[9] Jaeyoung Choi, Jong Han Park, Pei chun Cheng, Dorian Kim, and Lixia Zhang.

2011. Understanding BGP next-hop diversity. In 2011 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS). 846–851. https://doi.org/10.
1109/INFCOMW.2011.5928930

[10] Luca Cittadini, Stefano Vissicchio, and Giuseppe Di Battista. 2010. Doing don’ts:
Modifying BGP attributes within an autonomous system. In Network Operations

and Management Symposium (NOMS), 2010 IEEE. IEEE, 293–300.
[11] Mary Kathryn Cowles and Bradley P. Carlin. 1996. Markov Chain Monte Carlo

Convergence Diagnostics: A Comparative Review. J. Amer. Statist. Assoc. 91, 434
(1996), 883–904. https://doi.org/10.1080/01621459.1996.10476956

[12] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis
Using a Succinct Control Plane Representation. In Proceedings of the 12th USENIX

Conference on Operating Systems Design and Implementation (OSDI ‘16) (Savannah,
GA, USA). USENIX Association, USA, 217–232.

[13] N. Feamster and J. Rexford. 2007. Network-Wide Prediction of BGP Routes.
IEEE/ACM Transactions on Networking 15, 2 (April 2007), 253–266. https://doi.
org/10.1109/TNET.2007.892876

[14] Ashley Flavel, Jeremy McMahon, Aman Shaikh, Matthew Roughan, and Nigel
Bean. 2010. BGP route prediction within ISPs. Computer Communications 33, 10
(2010), 1180–1190.

[15] Ashley Flavel, Matthew Roughan, Nigel Bean, and Aman Shaikh. 2008. Where’s
Waldo? practical searches for stability in iBGP. In IEEE International Conference

on Network Protocols. ICNP 2008. IEEE, 308–317.
[16] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network
Configuration Analysis. In 12th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ‘15). USENIX Association, Oakland, CA, 469–483.
[17] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexan-

dra Silva. 2016. Probabilistic NetKAT. In Programming Languages and Systems

(ESOP ‘16), Peter Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
282–309.

[18] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thomp-
son. 2015. A coalgebraic decision procedure for NetKAT. In ACM SIGPLAN

Notices, Vol. 50. ACM, 343–355.
[19] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Maha-

jan. 2016. Fast Control Plane Analysis Using an Abstract Representation. In
Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil) (SIG-
COMM ’16). Association for Computing Machinery, New York, NY, USA, 300–313.
https://doi.org/10.1145/2934872.2934876

[20] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications. In
Proceedings of the ACM SIGCOMM 2011 Conference (Toronto, Ontario, Canada)
(SIGCOMM ’11). ACM, New York, NY, USA, 350–361. https://doi.org/10.1145/
2018436.2018477

[21] Barry Raveendran Greene and Philip Smith. 2002. Cisco ISP essentials. Cisco
Press.

[22] Timothy G Griffin and Gordon Wilfong. 2002. On the correctness of IBGP
configuration. In ACM SIGCOMM Computer Communication Review, Vol. 32.
ACM, 17–29.

[23] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random
Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30.

[24] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Presented as part of the 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ‘13). USENIX, Lombard, IL, 99–111.
[25] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In Presented as part of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ‘12). USENIX,
San Jose, CA, 113–126.

[26] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ‘13). USENIX, Lombard, IL, 15–27.
[27] Simon Knight, Hung X Nguyen, Nick Falkner, Rhys Bowden, and Matthew

Roughan. 2011. The internet topology zoo. IEEE Journal on Selected Areas

in Communications 29, 9 (2011), 1765–1775.
[28] Pierre Simon Laplace. 1812. Théorie analytique des probabilités. Ve. Courcier.
[29] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten

Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. In Proceedings of the ACM SIGCOMM 2011 Conference (Toronto, Ontario,
Canada) (SIGCOMM ’11). Association for Computing Machinery, New York, NY,
USA, 290–301. https://doi.org/10.1145/2018436.2018470

[30] Pascal Mérindol, Virginie Van den Schrieck, Benoit Donnet, Olivier Bonaventure,
and Jean-Jacques Pansiot. 2009. Quantifying Ases Multiconnectivity Using Multi-
cast Information. In Proceedings of the 9th ACM SIGCOMM Conference on Internet

Measurement (IMC ’09). Association for Computing Machinery, New York, NY,
USA, 370–376.

[31] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and
Matthew Caesar. 2020. Plankton: Scalable network configuration verification
through model checking. In 17th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ‘20). USENIX Association, Santa Clara, CA,
953–967. https://www.usenix.org/conference/nsdi20/presentation/prabhu

[32] Bruno Quoitin and Steve Uhlig. 2005. Modeling the routing of an autonomous
system with C-BGP. IEEE network 19, 6 (2005), 12–19.

[33] Y. Rekhter, T. Li, and S. Hares. 2006. A Border Gateway Protocol 4 (BGP-4). RFC
4271 (Draft Standard). http://www.ietf.org/rfc/rfc4271.txt

[34] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. 2002. BGP routing stability
of popular destinations. In Proceedings of the 2nd ACM SIGCOMMWorkshop on

Internet measurment. ACM, 197–202.
[35] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva.

2017. Cantor Meets Scott: Semantic Foundations for Probabilistic Networks. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages (Paris, France) (POPL ‘17). ACM, New York, NY, USA, 557–571. https:
//doi.org/10.1145/3009837.3009843

[36] M. Steinder and A. S. Sethi. 2002. End-to-end service failure diagnosis using
belief networks. In Network Operations and Management Symposium (NOMS ‘02).

375–390.
[37] M. Steinder and A. S. Sethi. 2002. Increasing robustness of fault localization

through analysis of lost, spurious, and positive symptoms. In Proceedings of the

Twenty-First Annual Joint Conference of the IEEE Computer and Communications

Societies, Vol. 1. 322–331 vol.1.
[38] Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan Savage. 2010. Cali-

fornia Fault Lines: Understanding the Causes and Impact of Network Failures. In
Proceedings of the ACM SIGCOMM 2010 Conference (New Delhi, India) (SIGCOMM

’10). ACM, New York, NY, USA, 315–326.
[39] Stefano Vissicchio, Luca Cittadini, and Giuseppe Di Battista. 2015. On iBGP

Routing Policies. IEEE/ACM Trans. Netw. 23, 1 (Feb. 2015), 227–240. https:
//doi.org/10.1109/TNET.2013.2296330

[40] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krish-
namurthy, and Zachary Tatlock. 2016. Scalable verification of border gateway
protocol configurations with an SMT solver. In ACM SIGPLAN International Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications,

(OOPSLA ‘16). https://doi.org/10.1145/2983990.2984012
[41] Nevin Lianwen Zhang and David Poole. 1996. Exploiting Causal Independence

in Bayesian Network Inference. J. Artif. Int. Res. 5, 1 (Dec. 1996), 301–328. http:
//dl.acm.org/citation.cfm?id=1622756.1622765

https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://doi.org/10.1145/633025.633048
https://doi.org/10.1145/3341302.3342069
https://doi.org/10.1214/ss/1009213286
https://doi.org/10.1145/3366697
https://doi.org/10.1109/INFCOMW.2011.5928930
https://doi.org/10.1109/INFCOMW.2011.5928930
https://doi.org/10.1080/01621459.1996.10476956
https://doi.org/10.1109/TNET.2007.892876
https://doi.org/10.1109/TNET.2007.892876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1145/2018436.2018470
https://www.usenix.org/conference/nsdi20/presentation/prabhu
http://www.ietf.org/rfc/rfc4271.txt
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1109/TNET.2013.2296330
https://doi.org/10.1109/TNET.2013.2296330
https://doi.org/10.1145/2983990.2984012
http://dl.acm.org/citation.cfm?id=1622756.1622765
http://dl.acm.org/citation.cfm?id=1622756.1622765

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and Martin Vechev

A APPENDIX
Appendices are supporting material that has not been peer-reviewed.

A.1 Operator Survey
To substantiate the need for a probabilistic network analysis system
like NetDice, we conducted an anonymous and voluntary survey
amongst network operators in the NANOG mailing list. We received
52 responses over a period of two weeks. 62% (resp. 31%) of par-
ticipants operate networks connecting more than 10k (resp. 100k)
individual users. In the following, we report the three main key
findings.

Uncertain events significantly affect forwarding behavior. 56% of
operators reported that link and router failures impact forwarding
behavior for at least few hours per year, 19% for more than 24h
per year. Participants also reported power outages, fiber cuts, and
weather events (e.g. floods, storms, tsunamis) to have had noticeable
impact in the past. All of which are probabilistic events that can be
modeled as failures.

Probabilistic analysis is hard today. While 94% of operators con-
firmed that they care about probabilistic behaviors, 83% agree or
strongly agree that it is currently hard to analyze them. Only 37%
use simulators for such analysis and 48% reported not to perform
any probabilistic analysis.

The vast majority of the operators would consider using a system

such as NetDice. They also note that NetDice’s properties (Tab. 1)

are practically relevant. 83% would consider using a system that
computes the likelihood of a forwarding state under uncertain
environments.

A.2 Proofs
Proof of Lemma 5.6. Let C = E \ H be the complement of the

setH returned by Alg. 3. Let NoFail be the scenario described by
link states L, and Fail a scenario where additionally, some links in
C fail. We prove that the forwarding graph for the considered flow
(u,d) is the same in NoFail and Fail.

Stability of pre-processing All routers in BrL ∪ RrL remain con-
nected in Fail: If there is at least one route reflector in RrL , Lin. 5
of Alg. 3 makes sure that the routers are connected by hot edges.
Otherwise, this is ensured by Lin. 13. Note that there exists a global
order on announcements for the pre-processing step Top3. Hence,
even if any border router pruned by Top3 is disconnected from
the routers BrL in Fail, the result of Top3 in Lin. 1 is the same in
NoFail and Fail.

Stability of sent announcements Now, we prove that in every
round of Alg. 1 (Lin. 2–6), all non-internal routers send the same
announcements to their peers. The proof works by induction on
the rounds.

Base case. In the first round, only the external nodes send an-
nouncements. These are independent of link failures and hence
identical in NoFail and Fail.

Step case. Consider round i . As an induction hypothesis, assume
that in round i − 1, all non-internal nodes sent the same announce-
ments to their peers in NoFail and Fail. Because non-internal
nodes in X remain connected (see above), we can use the induction

hypothesis to prove that they receive the same announcements from
their peers in round i .

Consider any r ∈ RrL . For each b ∈ BrL , all edges on a shortest
path from r to b are in H (due to Lin. 5). Hence, the IGP cost to-
wards any such b is identical in NoFail and Fail. Because all other
attributes involved in the BGP decision process (Tab. 2) do not de-
pend on failures, r selects the same best announcement. Therefore,
r sends the same announcements to its peers in round i for NoFail
and Fail.

Now, consider any b ∈ BrL . We distinguish two cases. Case (i): b
does not send an announcement in round i of NoFail. This can only
happen if b receives no announcement at all in NoFail (which will
also be the case in Fail), or the best announcement in NoFail is
received from an internal peer. In the latter case,b will also select an
internal announcement in Fail (due to possibly changed IGP costs,
this announcement may however be different from the one selected
in NoFail). As internal announcements are not re-distributed, b
also does not send any announcement in round i of Fail.

Case (ii): b sends an announcement A in round i of NoFail. This
can only be the case if A is an external announcement, because
internal announcements are not re-distributed. Because of step 5
in Tab. 2, b will for sure also select an external announcement in
Fail. As the preference relation between external announcements
according to Tab. 2 does not depend on failures (there is no IGP
cost comparison), b will also select and send A in round i of Fail.

In summary, all non-internal nodes inX send the same announce-
ments to their peers in round i for NoFail and Fail, which con-
cludes the inductive proof.

Stability of selected next hops Next, we show that the selected
next hops Nhd (v) of all decision points v ∈ D (see Lin. 6–8 of
Alg. 3) are the same in NoFail and Fail. We distinguish two cases.

Case (i): the source u does not select a next hop in NoFail. This can
only happen if u does not receive any announcements in NoFail.
Under additional failures, this fact will not change and hence u will
also not select a next hop in Fail. Note that the forwarding graph
is empty in this case, therefore there are no other decision points
in D.

Case (ii): otherwise. Let v ∈ D be an arbitrary decision point,
which selects x as next hop in NoFail. Further, let A be the selected
best announcement at v in NoFail in the converged state of Alg. 1
(A has next hop attribute x). In this case, Lin. 10 of Alg. 3 adds the
links on a shortest path from v to x to the setH . Hence, the IGP
costs between v and x are identical in NoFail and Fail, while the
IGP costs towards all other border routers can at most increase due
to the failures. Due to our previous argument, v receives the same
set of announcements in the converged state of Alg. 3 in NoFail
and Fail. Therefore, the BGP decision process (Tab. 2) at v also
selects A as the best announcement in Fail in the converged state,
leading to the same next hop x .

Stability of forwarding decisions Next, we prove local stability
for all nodes in the forwarding graph. Let y be such a node. We
distinguish three cases.

Case (i): y has a configured static route. Lin. 11 of Alg. 3 ensures
that y is locally stable under Fail w.r.t. (u,d).

Probabilistic Verification of Network Configurations SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Case (ii): y ∈ D. Lin. 10 ensures that the forwarding decision of
y for flow (u,d) is the same in NoFail and Fail, because the failure
of cold edges cannot change the shortest path towards Nhd (y).

Case (iii): otherwise. In this case, all of y’s parents x in the for-
warding graph select the same next hop as y and rely on shortest
path routing (otherwise, y would be a decision point by Lin. 7 and
Lin. 8). By simple induction, we can recursively apply Lemma 5.4
until we reach a decision point and prove that y is locally stable
under Fail w.r.t. (u,d).

Finally, we apply Lemma 5.3 to prove that C is cold. □

Proof of Lemma 7.2. Define s ′′ := s[H ? ← 1] to be the state
where all hot edges are up. First, note that the ground states compat-
ible with s ′ passed to Explore in Lin. 12, together with compat(s ′′),
form a partition of compat(s). Each ground state compatible with
s ′′ or some s ′ is also compatible with s . Furthermore, sets of com-
patible ground states for s ′′ and all instantiations of s ′ are disjoint
because they differ in at least one failed link (Lin. 11) that is locked
to be up in Lin. 12 for subsequently considered s ′. Last, it is easy to
see that each ground state in s is covered by at least one s ′ or s ′′.

We prove the lemma using structural induction over the tree
of recursive calls to Explore. As induction hypothesis, assume
Explore(s ′) returns

∑
L∈compat(s ′) P(ϕ | L) · P(L) in Lin. 12 (if this

line is reached).
Note that any L ∈ compat(s ′′) differs from fill(s) at most by

failed cold edges. Hence, according to Lemma 7.1, it is
P(ϕ | L = fill(s)) = P(ϕ | L ∈ compat(s ′′))

and the value of ρ in line 9 is
ρ̂ :=

∑
L∈compat(s ′′) P(ϕ | L) · P(L).

Using the induction hypothesis and the fact that s ′ and s ′′ par-
tition the ground states compatible with s , the returned value in
Lin. 12 is

ρ̂ +
∑
L∈compat(s)\compat(s ′′) P(ϕ | L) · P(L),

which proves the claim. □

	Abstract
	1 Introduction
	2 Overview
	3 Network Model and Properties
	3.1 Network Model
	3.2 Control Plane
	3.3 Forwarding Plane
	3.4 Properties
	3.5 Failures and Problem Statement

	4 Modelling BGP
	4.1 Notation and BGP Overview
	4.2 Simulating BGP

	5 Pruning the Failure Space
	5.1 Cold and Hot Edges
	5.2 Incorporating Static Routes
	5.3 Incorporating BGP
	5.4 Extensions

	6 Probabilistic Failure Model
	7 Exploring the Failure Space
	8 Implementation and Evaluation
	8.1 Methodology and Dataset
	8.2 Different Network Sizes
	8.3 Different BGP Setups
	8.4 Multi-Flow Properties
	8.5 Real-Wold Configuration

	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Operator Survey
	A.2 Proofs

