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Abstract—We present DP-Sniper, a practical black-box method
that automatically finds violations of differential privacy.

DP-Sniper is based on two key ideas: (i) training a classifier
to predict if an observed output was likely generated from one
of two possible inputs, and (ii) transforming this classifier into
an approximately optimal attack on differential privacy.

Our experimental evaluation demonstrates that DP-Sniper
obtains up to 12.4 times stronger guarantees than state-of-the-art,
while being 15.5 times faster. Further, we show that DP-Sniper
is effective in exploiting floating-point vulnerabilities of naively
implemented algorithms: it detects that a supposedly 0.1-
differentially private implementation of the Laplace mechanism
actually does not satisfy even 0.25-differential privacy.

Index Terms—differential privacy; differential distinguishabil-
ity; inference attacks; machine learning; classifiers

I. INTRODUCTION

Differential privacy [1] is considered the gold standard for
quantifying the level of privacy guaranteed by an algorithm.
Traditionally, it assesses randomized algorithms M : A→ B
that operate on databases a ∈ A and produce output
M(a) ∈ B. Intuitively, M is differentially private if changing
the data of a single user in a does not significantly affect
the distribution of M(a). In particular, differential privacy
precludes attackers from deciding if an output M(A) was
generated using A = a or A = a′, if a and a′ differ in the
data of a single user.

Formally and more generally, M is ε-differentially private
(ε-DP) if for every pair of neighboring inputs (a, a′) ∈ N and
for every attack S ∈ P (B),

ln(Pr[M(a) ∈ S])− ln(Pr[M(a′) ∈ S]) ≤ ε, (1)

where P (B) denotes the power set of B, and the neighbor-
hood N captures the effect of changing the data of a single
user. We note that the probability in Eq. (1) is over M ,
which may return a different output value for the same input
in different runs. Perhaps unintuitively, smaller ε provides
stronger privacy guarantees: ε = 0 ensures perfect privacy and
ε =∞ offers no privacy, while achieving ε < 0 is impossible.

Guaranteeing privacy in practice raises the following key
question: what level of differential privacy does an algo-
rithm satisfy? Accurately answering this question is critical,
since overestimating privacy guarantees leads to privacy leaks,
while underestimation motivates unnecessary changes to the
algorithm such as adding more noise and thereby decreasing
the output’s utility. As a consequence, automatically verify-
ing that a given algorithm is ε-DP is an important area of

Fig. 1. Differential distinguishability (DD) and differential privacy (DP).

research [2]–[10]. However, automated verification is gener-
ally incomplete and may fail to prove that an algorithm is
ε-DP, even if that is the case.
Differential Distinguishibility. A complementary line of
work [11]–[16] is concerned with showing that a given algo-
rithm cannot be ε-DP by establishing differential distinguisha-
bility. 1 Formally, a randomized algorithm M : A → B is
ξ-differentially distinguishable (ξ-DD) if there exists a witness
(a, a′,S) with (a, a′) ∈ N and S ∈ P (B), for which

ln(Pr[M(a) ∈ S])− ln(Pr[M(a′) ∈ S]) ≥ ξ. (2)

Relationship to ε-DP. Fig. 1 illustrates the relationship be-
tween ξ-DD and ε-DP: If M is ξ-DD, it cannot be ε-DP for any
ε < ξ. Equivalently, if M is both ξ-DD and ε-DP, then ξ ≤ ε.
Therefore, differential distinguishability yields a lower bound
on differential privacy, implying in particular that larger dif-
ferential distinguishability is strictly more informative. Fig. 1
also illustrates E (discussed next) and E≥c (see §II).
Applications. Automatically detecting differential distin-
guishability is useful in a wide range of scenarios. First, it
allows developers to evaluate whether algorithms or proposed
implementations are differentially private. Second, a witness
demonstrating differential distinguishability may indicate why
a given algorithm is not differentially private. Third, even for
algorithms which are well-known to be differentially private,
investigating differential distinguishability is valuable, as a
failure to demonstrate strong differential distinguishability
may suggest that such algorithms are more private than
previously known.
Search Problem. Demonstrating strong differential distin-
guishability requires finding a witness (a, a′,S) with maximal
power, defined by 2

E(a, a′,S) := ln(Pr[M(a) ∈ S])− ln(Pr[M(a′) ∈ S]). (3)

1While this goal has been formally described before e.g. in [13], we are
the first to introduce the term differential distinguishability.

2Note that this terminology is used differently than in the context of
statistical hypothesis testing.



As indicated in Fig. 1, witness (a, a′,S) demonstrates ξ-DD
for ξ = E(a, a′,S), and differential privacy cannot hold for
ε < E(a, a′,S). Further, Fig. 1 shows that the most powerful
witness has power ε?, which is simultaneously (i) the largest
possible parameter ξ for which M is ξ-DD and (ii) the smallest
possible parameter ε for which M is ε-DP.

Key Challenge: Searching for Attacks. Searching for powerful
witnesses amounts to searching for (i) inputs (a, a′) ∈ N and
(ii) attacks S ∈ P (B). Existing work has shown that for (i),
simple sampling, heuristic, or exhaustive approaches are often
sufficient (see §VII-A).

However, searching for attacks S is inherently challenging,
as the number of possible attacks is 2|B| (in contrast, the input
search space has size |N | ≤ |A|2), meaning that exhaustive
search is intractable even for small B, and clearly infeasible
for continuous B. Due to this difficulty, existing work does
not sufficiently address the search for attacks, as it uses
simple heuristics that do not generalize well [12] or exhaustive
approaches that do not scale [17]. As a consequence, these
approaches perform poorly on state-of-the-art differentially
private algorithms such as RAPPOR [18].

This Work. Our work addresses this problem and aims to find
the most powerful attack3 for given inputs (a, a′) ∈ N :

arg max
S∈P(B)

E(a, a′,S). (4)

Unfortunately, solving Eq. (4) exactly is impossible (cp.
[19, Thm. 10]) because computing E(a, a′,S) requires deter-
mining probabilities Pr[M(a) ∈ S] and Pr[M(a′) ∈ S] that
can typically only be estimated, given black-box access to M .
As these probabilities can become arbitrarily small, the result-
ing estimate of E(a, a′,S) can become arbitrarily imprecise,
assuming bounded runtime.

Key Insight. To address this problem, we introduce a tractable
surrogate problem to Eq. (4) that can be solved without
estimating small probabilities, and present an algorithm DP-
Sniper solving this problem approximately optimally.

DP-Sniper (i) trains a machine learning classifier to de-
termine the probability that b = M(A) was generated us-
ing A = a instead of A = a′, and (ii) transforms this
classifier into an approximately optimal attack S, inspired
by the Neyman-Pearson lemma [20, Thm. 3.2.1]. At a high
level, we select the attack S to consist of outputs b which
are particularly likely to originate from A = a, i.e., for
which Pr[A = a |M(A) = b] ≥ t for a threshold t. By
controlling t, we control the probabilities Pr[M(a) ∈ S] and
Pr[M(a′) ∈ S], which in turn define E(a, a′,S). We select t
as large as possible to maximize E(a, a′,S), but small enough
to avoid estimating arbitrarily small probabilities.

Main Contributions. Our main contributions are:

• DP-Sniper, a practical black-box approach to demonstrate
differential distinguishability using classifiers (§III).

3Note that we do not suggest a novel solution to find powerful inputs, but
instead rely on an existing approach [12].
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Fig. 2. Properties of Laplace mechanism L0.5 (top to bottom): probability
density function, cumulative distribution function, power, and posterior prob.

• A derivation of DP-Sniper’s formal guarantees, showing its
results are approximately optimal (§IV).

• A thorough evaluation of an end-to-end implementation4

of DP-Sniper, showing it can demonstrate substantially
stronger differential distinguishability by a factor of up to
12.4, while being 15.5 times faster on average, compared
to a state-of-the-art baseline (§VI).

• The first automated approach testing if a supposedly dif-
ferentially private implementation of an algorithm exhibits
floating-point vulnerabilities (§VI-D).

II. PROBLEM STATEMENT

In this section, we introduce the surrogate problem ad-
dressed by this work. In contrast to Eq. (4), this problem can
be solved without estimating arbitrarily small probabilities. We
start by introducing a running example.

Example 1. The Laplace mechanism L0.5 : R → R adds
Laplace noise with mean 0 and scale 1/0.5 = 2 to its
input: L0.5(a) = a + lap(0, 2) [1, Ex. 1]. Fig. 2 shows
the probability density function and cumulative distribution
function (top two panels) for L0.5(0) and L0.5(1). It is well-
known (see [1, Prop. 1]) that L0.5 is 0.5-DP for neighborhood
N = {(a, a′) | |a− a′| ≤ 1}.

A. Avoiding Small Probabilities

Finding the most powerful attack according to Eq. (4) is typ-
ically impossible, as exactly computing the power E(a, a′,S)
of a given attack is usually intractable. This is because the
probabilities Pr[M(a) ∈ S] and Pr[M(a′) ∈ S] determining
the power can generally only be estimated. Specifically, pro-
vided samples b0, . . . , bN−1 from M(a), we can estimate
Pr[M(a) ∈ S] for a given S as

P̂NM(a)∈S := 1
N

∑N−1
i=0 [bi ∈ S],

4Publicly available at https://github.com/eth-sri/dp-sniper

https://github.com/eth-sri/dp-sniper
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Fig. 3. Empirical standard deviation of Ê(a, a′,S) for arbitraryM , depending
on the magnitude of probabilities Pr[M(a) ∈ S] and Pr[M(a′) ∈ S], using
n = 107 samples to estimate each probability.

where [φ] is the Iverson bracket that evaluates to 1 if φ is
true and 0 otherwise. From P̂NM(a)∈S and P̂NM(a′)∈S (computed
analogously), we can then estimate E(a, a′,S) as

Ê(a, a′,S) := ln
(
P̂NM(a)∈S

)
− ln

(
P̂NM(a′)∈S

)
. (5)

Effect of Small Probabilities. As demonstrated in Fig. 3,
the standard deviation of Ê(a, a′,S) increases significantly
as Pr[M(a) ∈ S] and Pr[M(a′) ∈ S] become smaller. For
example, if both probabilities are 0.001, the standard deviation
of Ê(a, a′,S) when using 107 samples is 10−1.85 ≈ 0.014,
which is substantial if we want to demonstrate 0.1-DD: even if
we find (a, a′,S) with E(a, a′,S) = 0.1, we can only estimate
Ê(a, a′,S) in the range 0.1± 0.014.

To address this problem, we avoid estimating probabilities
below some small constant c ∈ (0, 1], and instead search for
a witness (a, a′,S) with maximal c-power defined as

E≥c(a, a′,S) := ln
≥c (Pr[M(a) ∈ S])

− ln
≥c (Pr[M(a′) ∈ S]) ,

(6)

where ln
≥c (x) = ln(max(c, x)). If both Pr[M(a) ∈ S] ≤ c

and Pr[M(a′) ∈ S] ≤ c, then E≥c(a, a′,S) = 0, reflecting the
fact that we cannot derive meaningful information from proba-
bilities below c. Hence, maximizing the c-power automatically
avoids estimating small probabilities. In our experiments, we
use c = 0.01.

Example 2 (c-Power). For L0.5, a = 0, and a′ = 1, the
solid green line in Fig. 2 (third from top) shows the c-power
E≥c(0, 1,S) of a specific family of attacks S = (−∞, b].

In contrast to power (dotted red line in Fig. 2), c-power
takes into account that attacks with small b are less desirable
as quantifying them requires estimating small probabilities.

Importantly, E≥c provides DD guarantees analogous to E .
In particular, every witness (a, a′,S) demonstrates that M is
E≥c(a, a′,S)-DD, as shown in Lem. 1.

Lemma 1 (Guarantees for c-power). For any algorithm
M : A → B, and any witness (a, a′,S) with (a, a′) ∈ N ,
M satisfies ξ-DD for ξ = E≥c(a, a′,S).

We provide a proof of Lem. 1 in App. B. Note that under
the reasonable assumption that we cannot accurately estimate
probabilities below c, Lem. 1 provides the strongest possible
guarantee for a given witness (a, a′,S).
Surrogate Problem Statement. In this work, we aim to find
an attack that maximizes c-power for given (a, a′) ∈ N :

arg max
S∈B→[0,1]

E≥c(a, a′,S) (7)

In contrast to Eq. (4), Eq. (7) replaces power by c-power,
and deterministic attacks S ∈ P (B) by randomized attacks
S ∈ B→ [0, 1] (discussed shortly).

Example 3. A (deterministic) solution for Eq. (7) on our
running example is S? = (−∞,−0.8]. In particular, we have
E≥c(0, 1,S?) = 0.5 (indicated by the vertical dashed line). A
more powerful attack does not exist because L0.5 is 0.5-DP.

B. Randomized Attacks

We now discuss randomized attacks and demonstrate that
they can be more powerful than deterministic attacks in terms
c-power. Importantly, the guarantees of Lem. 1 also apply to
randomized attacks (see App. C), meaning that we can safely
extend our search space to randomized attacks.
Determinstic vs. Randomized. We first note that the domain
of deterministic attacks P (B) is isomorphic to the set of
functions B → {0, 1}, as any attack S ∈ P (B) decides for
every b ∈ B if b ∈ S (encoded as S(b) = 1) or b /∈ S (encoded
as S(b) = 0). In contrast, a randomized attack S ∈ B→ [0, 1]
can also include portions of elements from B by controlling
S(b) ∈ [0, 1]. For example, S(b) = 0.5 includes b in S with
probability 0.5. In the following, we write Pr[b ∈ S] for S(b).

Throughout this work, we treat S as a randomized set whose
elements are selected probabilistically. We consistently write
S to indicate randomized attacks from B → [0, 1], and S to
indicate deterministic attacks from P (B).
Limitations of Deterministic Attack. Randomized attacks are
at least as powerful as deterministic attacks, because every
deterministic attack can be interpreted as a randomized attack.
However, as we demonstrate next, randomized attacks can
be strictly more powerful than deterministic attacks when
avoiding small probability attacks.

Example 4. Consider a threshold version of the Laplace mech-
anism L♠0.5 : R→ {0, 1} which returns whether the output of
L0.5 lies below −1.83, i.e., L♠0.5(a) := [L0.5(a) ≤ −1.83].
Tab. I shows that for L♠0.5 and c = 0.2, E≥c(0, 1,S) ≈ 0 for
all possible deterministic attacks S.

This is because attacks {} and B always have power zero
(regardless of the algorithm M ), attack {0} has negative



TABLE I
Output distribution and power of all attacks S for L♠0.5.

S {} {0} {1} {0, 1}
Pr[L♠0.5(0) ∈ S] 0.00 0.80 0.20 1.00

Pr[L♠0.5(1) ∈ S] 0.00 0.88 0.12 1.00

E(0, 1,S) 0.0 -0.1 0.5 0.0
E≥0.2(0, 1,S) 0.0 -0.1 0.0 0.0

power because Pr[L♠0.5(0) ∈ {0}] < Pr[L♠0.5(1) ∈ {0}], and
the only promising attack S = {1} with power 0.5 gives
Pr[L♠0.5(0) ∈ {1}] ≈ c and Pr[L♠0.5(1) ∈ {1}] < c.

The key problem in Ex. 4 is that deterministic attacks cannot
partially select outputs. In principle, we would like to use the
most powerful attack {1}. This however forces us to estimate
the probability Pr[L♠0.5(1) ∈ {1}] ≈ 0.12, which is smaller
than c = 0.2. The only option to increase this probability is
to add the output 0 to the attack set. However, this results in
the trivial attack B = {0, 1} with power 0.

To avoid this problem, we generalize attacks to be random-
ized. As shown below, this allows for more powerful attacks.

Example 5. For L♠0.5 and c = 0.2, consider S with
Pr[0 ∈ S] = 0.1 and Pr[1 ∈ S] = 1. Then, E≥c(0, 1,S) is

ln
≥c
(

Pr
[
L♠0.5(0) ∈ S

])
− ln

≥c
(

Pr
[
L♠0.5(1) ∈ S

])
= ln

≥c (0.80 · 0.1 + 0.20)− ln
≥c (0.88 · 0.1 + 0.12) ≈ 0.3.

We note that Ex. 5 only demonstrates 0.3-DD, even
though L♠0.5 is actually 0.5-DD, as can be seen in Tab. I.
However, proving 0.5-DD would require precisely estimating
Pr[M(a′) ∈ {1}] ≈ 0.12, which lies below c = 0.2.

Technicalities. The formal part of this work glosses over some
technical details, which we discuss in the following.

First, in Eq. (1) and throughout this work, we follow the
convention ln(0)− ln(0) := 0. Further, a solution to Eq. (4) or
Eq. (7) might technically not exist because only the supremum
(but not the maximum) exists—a subtlety ignored in this work.

III. OVERVIEW

We now introduce our main algorithm DP-Sniper, which
finds approximately optimal attacks S according to Eq. (7).
We then introduce DD-Search, which leverages DP-Sniper to
find witnesses (a, a′,S) with high power.

A. DP-Sniper: Searching Attack

Alg. 1 presents the algorithm DP-Sniper. We discuss the
individual steps in detail below. For a discussion of the theory
behind DP-Sniper, we refer to §IV.

Threshold Attacks. The high-level goal of DP-Sniper is to
construct a threshold attack St,q ∈ B → [0, 1] that contains
elements b ∈ B which are likely to originate from M(a), as
opposed to M(a′).

Algorithm 1 DP-Sniper: Searching Attack S.
Hyper-parameters: probability bound c ∈ (0, 1], sample sizes N , Ntrain,

family of classifiers {pθ(a|b)}θ∈Θ

1: function DP-Sniper(M : A→ B, a, a′) . (a, a′) ∈ N
2: θ ← TrainClassifier(M , a, a′)

3: b′0, . . . , b
′
N−1 ∼M(a′) . sample N times from M(a′)

4: p′i = pθ(a|b′i) for i ∈ {0, . . . , N − 1} . score samples

5: p′′0 , . . . , p
′′
N−1 ← sort p′0, . . . , p

′
N−1 in descending order

6: t] ← p′′
min(bc·Nc, N−1)

. at most c ·N probabilities above t]

7: q] ←
(
cN −

∑N−1
i=0

[
p′i > t]

] )
/
(∑N−1

i=0

[
p′i = t]

] )
8: St

],q]

θ (·)← pθ(a|·) � (t], q]) . construct attack, see Eq. (9)

9: return St
],q]

θ

10: function TrainClassifier(M : A→ B, a, a′)

11: b0, . . . , bNtrain−1 ∼M(a) . sample Ntrain times from M(a)

12: b′0, . . . , b
′
Ntrain−1 ∼M(a′) . sample Ntrain times from M(a′)

13: D ← {(a, bi)}Ntrain−1
i=0 ∪ {(a′, b′i)}

Ntrain−1
i=0 . prepare training data

14: θ ← train pθ(a|b) on D . train classifier

15: return θ

In particular, St,q compares the posterior probability5

p(a|b) := Pr[A = a |M(A) = b] (8)

to t, assuming that the input A to M is chosen uniformly at
random from {a, a′}, i.e., Pr[A = a] = Pr[A = a′] = 1

2 .
Intuitively, t acts as a threshold on p(a|b), ensuring St,q

contains values b whose posterior probability p(a|b) lies
above t. In the case where p(a|b) = t, parameter q acts as a
tie-break by including a portion q of b. We can interpret St,q as
a check of the (probabilistic) constraint p(a|b) � (t, q), which
is defined to be always satisfied if p(a|b) > t, and satisfied
with probability q if p(a|b) = t. Formally, for p := p(a|b):

Pr
[
b ∈ St,q

]
= Pr[p � (t, q)] := [p > t] + q · [p = t] . (9)

As we show later in §IV, only considering threshold attacks
is sufficient when maximizing E≥c(a, a′,S), which can be
derived from the Neyman-Pearson lemma.
Classifier. Line 2 trains a machine learning classifier pθ(a|b)
parametrized by θ, which approximates the probability p(a|b)
that any given output b ∈ B was sampled from M(a), as
opposed to M(a′). We discuss this in more detail in §III-B.
Searching Parameters. Lines 3–7 of Alg. 1 select the
parameters t], q] ∈ [0, 1] for the threshold attack con-
structed in Line 8. The goal is to select t], q] such that
Pr
[
M(a′) ∈ St],q]

]
= c, which yields an optimal attack when

using the perfect classifier pθ(a|b) = p(a|b) (see §IV).
First, Line 3 generates N fresh samples b′i from M(a′).

Fig. 4 demonstrates the steps of Lines 3–7 on an example,
where Line 3 results in samples b′0 to b′4 (top panel).

Second, Line 4 scores each sample b′i by the posterior
probability p′i = pθ(a|b′i), using the classifier parameter θ from

5We note that if the output of M is continuos, we must replace the
probability in Eq. (8) by a probability density. For simplicity, we only discuss
the case where the output of M is discrete.



Fig. 4. Example run of Alg. 1 (Lines 3–7) for c = 0.3 and N = 5.

Line 2. In Fig. 4, this results in p′0 to p′4 (second panel).

Then, Lines 5–7 find parameters t], q] ∈ [0, 1] such that:
N−1∑
i=0

[
p′i > t]

]
+ q]

N−1∑
i=0

[
p′i = t]

]
= cN. (10)

Intuitively, Eq. (10) ensures that t], q] (in expectation) cover a
fraction c of all N samples as follows: they cover all samples
whose probabilities p′i lie above the threshold t], and a fraction
q] of samples for which p′i = t].

To satisfy Eq. (10), Line 5 sorts the probabilities in descend-
ing order. In Fig. 4 (third panel), this results in

p′′0 = p′3, p′′1 = p′1, p′′2 = p′4, p′′3 = p′2, and p′′4 = p′0.

Then, Line 6 selects t] as p′′min(bc·Nc, N−1), which ensures that
at most c · N probabilities lie below t]. In Fig. 4, we select
t] = p′′1 = 0.5, since min(bc ·Nc, N − 1) = 1. Visually, this
corresponds to using the value p′i at position cN = 1.5 (the
third panel in Fig. 4 shows the array indices i to the left of
each value p′i). The fourth panel in Fig. 4 illustrates the effect
of selecting t] = 0.5: probabilities p′i > t] are definitively
covered (colored in dark blue), while probabilities p′i = t] can
be partially covered by controlling q] (colored in light blue).
We note that min(·, N − 1) is technically necessary to avoid
out-of-bounds array accesses to p′N in case of c = 1.

Next, Line 7 selects q] to satisfy Eq. (10). The last panel in
Fig. 4 shows how selecting q] = 0.25 ensures that we cover a
fraction of cN = 1.5 samples in total. We note that q] is well-
defined and can be interpreted as a probability (see App. D).

Finally, Lines 8–9 construct and return attack St
],q]

θ , which
includes an output b if pθ(a|b) � (t], q]) as defined in Eq. (9).

Selecting Sample Size N . We provide an empirical guideline
for selecting N in order to maximize c-power up to a given
error. This guideline is inspired by our theoretical results in
Thm. 2 and Thm. 3, see §IV.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 b
0.0

0.5

1.0

p(0 | b)
p−1,−0.5(0 | b)

p−4,−2(0 | b)

Fig. 5. Learning the posterior probability of L0.5 using logistic regression.

Guideline 1 (Empirical Precision). Given neighboring
(a, a′) ∈ N , c ∈ (0, 1], and a desired precision ω > 0, using

N = max

(
2(1− c)
ω2 · c

,
8(1− c)

c

)(
erf−1(1− 2α)

)2

in Alg. 1 yields St
],q]

θ for which, with probability 1− α,

E≥c(a, a′,St
],q]

θ ) ≥ max
S∈B→[0,1]

E≥c(a, a′,S)− ω,

where erf−1 is the inverse error function.

In our experiments, we use c = 0.01 and target ω = 0.005
with α = 0.05, yielding N = 10.7 · 106 according to
Guideline 1.

B. Learning the Posterior Probability

Next, we discuss how DP-Sniper learns the posterior prob-
ability p(a|b).
Training. Given a family of classifiers {pθ(a|b)}θ∈Θ param-
eterized by θ, TrainClassifier selects a parameter θ such that
pθ(a|b) approximates the posterior probability p(a|b) well.

First, it generates Ntrain samples from M(a) (Line 11) and
from M(a′) (Line 12), and concatenates them as training
data D (Line 13). Then, Line 14 trains the classifier pθ(a|b)
distinguishing M(a) from M(a′) on D (i.e., it picks θ)
according to a family-specific optimization procedure.
Quality of Approximation. As we show in §IV, DP-Sniper
returns an approximately optimal attack under the assumption
that it learns the correct posterior probability pθ(a|b) = p(a|b).
While learning the exact posterior is unrealistic in practice, we
can rely on learning a good approximation. Because DP-Sniper
can conveniently generate an arbitrary amount of training data
(in our experiments, we used Ntrain = N ), the key factor
determining the quality of the learned posterior is the choice
of classifier family.
Families of Classifiers. In our evaluation (§VI), we consider
two widely used classifier families. Specifically, we find that
even basic logistic regression [21, §4.3.2] and small neural
networks [21, §5] yield good results in practice, showing that
the choice of classifier family is not a concern. Alternative
valid choices include any family of classifiers computing a
posterior probability, such as classification trees [21, §14.4]
or different neural network architectures.
Logistic Regression. Logistic regression is a commonly used
model, appealing due to its simplicity and efficient train-
ing [22, §11.2]. Its parameter space is Θ = {θ ∈ Rn, θ0 ∈ R},



and it classifies b ∈ Rn according to pθ,θ0(a|b) = σ
(
bT θ+θ0

)
,

where σ : R→ [0, 1] is defined as σ(x) = 1/(1 + e−x).
Fig. 5 visualizes two possible logistic regression models

approximating p(0|b) for L0.5. While neither model is a
perfect fit, both correctly capture the fact that smaller values of
b are more likely to originate from L0.5(0) than from L0.5(1).
Thus, intuitively, the attacks considered by DP-Sniper with
logistic regression are equivalent to attacks of the form b ≤ t.

In general, logistic regression yields linear decision bound-
aries, meaning that the attacks considered by DP-Sniper
are equivalent to attacks of the form bT θ � (t, q). As a
consequence, logistic regression is highly effective for many
differentially private algorithms, which typically admit such a
linear decision boundary. This is the case even for advanced
mechanisms such as RAPPOR [18], which relies on hash
functions and random bit flips.

To train our logistic regression model, we used regularized
stochastic gradient descent optimization over 10 epochs with
learning rate 0.3, momentum 0.3 and regularization weight
0.001 with binary cross entropy loss.

Neural Network. To demonstrate that the effectiveness of DP-
Sniper is not limited to logistic regression, we also employ
a simple neural network model. Neural networks are widely
used in practice and have demonstrated to successfully learn
complex distributions. Our architecture comprises two hidden
layers with sizes 10 and 5 using ReLU activation functions,
and a single output neuron using the sigmoid activation
function σ. For training with binary cross entropy loss, we
use the Adam [23] optimizer over 10 epochs with learning rate
0.1, β1 = 0.9, β2 = 0.999 and regularization weight 0.0001.

Feature Transformation. In both models, we apply standard
feature transformations to the input. Namely, we (i) encode
output values that indicate special outcomes (such as “abort”
in SVT variants, see §VI-B) as additional boolean flags, and
(ii) normalize all dimensions to ensure they exhibit the same
mean and empirical variance.

C. DD-Search: Searching Witness

We now introduce DD-Search (Alg. 2), which combines DP-
Sniper with a heuristic for selecting inputs (a, a′) ∈ N to find
a witness (a, a′,S) with high power. DD-Search is designed
to satisfy the following theorem.

Theorem 1 (DD-Search). With probability 1−α, DD-Search
returns a witness (a, a′,S) and a lower bound Ē for which
Ē ≤ E(a, a′,S), showing that M is Ē-DD.

We note that DD-Search is parametrized by α (used in
Line 9), Ncheck (used in Line 4), and Nfinal (used in Line 5).
In particular, modifying α is possible without modifying the
sampling effort (Ncheck or Nfinal). However, selecting smaller α
without increasing the sampling effort will lead to loose
bounds on E (i.e., a lower value of Ē in Thm. 1).

Searching Inputs. DD-Search leverages a heuristic to explore
a set of neighboring inputs (ai, a

′
i), see GenerateInputs (Line 2

Algorithm 2 DD-Search: Searching Witness (a, a′,S).
Hyper-parameters: confidence 1−α < 1, sample sizes 0 < Ncheck ≤ Nfinal

1: function DD-Search(M : A→ B)

2: for (ai, a
′
i) ∈ GenerateInputs() do . select inputs by heuristic

3: Si ← DP-Sniper(M , ai, a′i) . select attack by Alg. 1

4: i← arg max
Ninput−1

i=0 EstimateE(M , ai, a′i, Si, Ncheck)

5: return (ai, a
′
i,Si) and LowerBoundE(M , ai, a′i, Si, Nfinal)

6: function EstimateE(M , a, a′, S, N ) . estimate E(a, a′,S)

7: return ln
(
P̂N
M(a)∈S

)
− ln

(
P̂N
M(a′)∈S

)
8: function LowerBoundE(M , a, a′, S, N ) . lower bound E(a, a′,S)

9: return ln
(

¯
P
N,α/2
M(a)∈S

)
− ln

(
P̄
N,α/2
M(a′)∈S

)

in Alg. 2). In our evaluation (§VI), we instantiate GenerateIn-
puts by the pattern heuristic of [12] (see Tab. II). 6 For each
input pair (ai, a

′
i), Line 3 then finds an approximately optimal

attack by calling DP-Sniper.

Estimating Power. Next, Line 4 selects the best witness
according to an estimate using Ncheck samples, following
the approach from Eq. (5). Note that DD-Search estimates
E(a, a′,S) and not E≥c(a, a′,S). This is not a problem as DP-
Sniper never returns an attack S for which Pr[M(a) ∈ S] or
Pr[M(a′) ∈ S] is significantly smaller than c.

Finally, Line 5 returns a lower bound on E(a, a′,S) using
Nfinal samples. This bound is computed by LowerBoundE ,
which is constructed to satisfy Thm. 1 as follows.

Proof of Thm. 1. LowerBoundE computes a lower bound

¯
P
N,α/2
M(a)∈S on Pr[M(a) ∈ S] and an upper bound P̄

N,α/2
M(a′)∈S

on Pr[M(a′) ∈ S], which both hold except with probability
α/2 each. By to the union bound, the probability that either
bound does not hold is at most α/2 + α/2 = α. Hence, with
probability 1−α, both bounds hold and Line 9 returns a lower
bound on E(a, a′,S).

To compute bounds
¯
P
N,α/2
M(a)∈S and P̄N,α/2M(a′)∈S in Line 9, our

implementation leverages the Clopper-Pearson interval [24].

Hyper-parameters. In our experiments (§VI), we use the
hyper-parameters Ncheck = N = 10.7·106, and Nfinal = 2·108.

Underestimating Differential Distinguishability. As shown
in Thm. 1, DD-Search never overestimates differential distin-
guishability for an analyzed algorithm. In fact, Thm. 1 even
holds for arbitrary instantiations of GenerateInputs and DP-
Sniper. In particular, it also holds if the classifier learned by
DP-Sniper is not accurate.

However, DD-Search may return a witness with suboptimal
power and hence underestimate differential distinguishability.
Finding a maximally powerful witness requires that (i) Gen-
erateInputs produces inputs admitting attacks with maximal
power, and (ii) DP-Sniper learns the correct posterior proba-
bility pθ(a|b) = p(a|b).

6We note that this instantiation of DD-Search does not run in time Ω(|A|2),
as it only investigates the specific patterns (ai, a

′
i) listed in Tab. II.



max
S∈B→[0,1]

E≥c(a, a′,S) max
t∈[0,1],q∈[0,1]

E≥c(a, a′,St,q) E≥c(a, a′,St?,q? ) E≥c(a, a′,St],q] ) + ρ
c

+ 2
( ρ
c

)2≤ ≤ ≤†

Lem. 2 Lem. 4: Pr[M(a) ∈ St?,q? ]
!
= c Lem. 5: Pr[M(a) ∈ St],q] ]

!
≈ c

Fig. 6. Steps to derive optimality of DP-Sniper’s attack, where the last inequality is subject to the additional conditions from Lem. 5 (indicated by †).

These assumptions are typically not realistic. However, as
we demonstrate in our evaluation (§VI), we obtain good results
when (i) GenerateInputs uses a heuristic for selecting inputs
admitting powerful attacks, and (ii) DP-Sniper learns a good
approximation pθ(a|b) ≈ p(a|b) of the posterior probability.

IV. FORMAL GUARANTEES

Next, we discuss the formal guarantees of DP-Sniper.
Specifically, we provide a step-by-step derivation of Thm. 2.

Theorem 2 (Approximatly Optimal Attack). For all neighbor-
ing (a, a′) ∈ N , the attack St],q] returned by Alg. 1 satisfies

E≥c(a, a′,St
],q]) ≥ max

S∈B→[0,1]
E≥c(a, a′,S)− ρ

c − 2
(
ρ
c

)2
with probability at least 1− α ∈ [0, 1), for N > 0, c ∈ (0, 1],

ρ =
√

ln(2/α)
2N , and assuming ρ

c ≤
1
2 .

Accuracy of Classification. In Thm. 2, St],q] denotes the
threshold attack p(a|·) � (t], q]) that uses the perfect classifier
p(a|b) = Pr[A = a |M(A) = b].

In practice, pθ(a|b) is only an approximation of p(a|b).
Still, due to Thm. 1, using DP-Sniper within DD-Search
allows us to demonstrate (potentially sub-optimal) differential
distinguishability, regardless of the accuracy of pθ(a|b).

Proof of Thm. 2. Fig. 6 shows the necessary steps to prove
Thm. 2 and serves as an outline for the following sub sections.
First, we show that parametrized threshold attacks St,q are as
powerful as arbitrary randomized attacks S (Lem. 2 in §IV-A).
Next, we demonstrate that ensuring Pr

[
M(a) ∈ St?,q?

]
= c

yields optimal parameters t?, q? (Lem. 4 in §IV-B). Because
selecting optimal parameters t?, q? is intractable in practice,
we conclude by selecting approximately optimal parameters
t], q] with Pr[M(a) ∈ St],q] ] ≈ c (Lem. 5 in §IV-C).

Motivation for Guideline 1. Guideline 1 is inspired by Thm. 2
as follows. First, we ignore the higher order term 2

(
ρ
c

)2
from

Thm. 2, as it is negligible compared to ρ
c if ρ� c.

As we will see later, ρ bounds the estimation error of
Pr[M(a) ∈ St,q] and Pr[M(a′) ∈ St,q] using the Dvoretzky-
Kiefer-Wolfowitz (DKW) inequality [25], which is overly
conservative in practice. Hence, for Guideline 1, we further
replace ρ by the (smaller) Wald interval:

ρ =
√

2·c·(1−c)
N erf−1(1− 2α).

This empirical bound is inspired by the Central Limit Theorem
[26, Prop. 2.18] and is quite precise for sufficiently large N ,
and holds because Pr[M(a) ∈ St,q] and Pr[M(a′) ∈ St,q] are
roughly equal to c.

We obtain Guideline 1 by solving for the smallest N that
satisfies the resulting constraints.

A. Restriction to Threshold Attacks

We now show that we can restrict our attention to the family
of threshold attacks {St,q}t,q∈[0,1] introduced in §III-A, which
significantly reduces the search space of possible attacks while
still admitting optimal attacks.

Intuition. Intuitively, in order to maximize E≥c(a, a′,S), the
probability that S incudes b ∈ B should be high if b is likely
to be an output from M(a), i.e., if p(a|b) is high.

Example 6. The purple line in Fig. 2 (bottom panel) shows
p(a|b) for L0.5. It is maximal for b ≤ 0, decreases for b
between 0 and 1, and then remains constant.

Fig. 2 also illustrates the strong connection between p(a|b)
and E≥c(0, 1, (−∞, b]): if (−∞, b] only contains values b′ for
which p(a|b′) is maximal (which is the case for b ≤ 0),
E≥c(0, 1, (−∞, b]) is also maximal, unless b is too small. In
contrast, if (−∞, b] also contains values b′ with sub-optimal
p(a|b′), then E≥c(0, 1, (−∞, b]) decreases.

Optimality. Threshold attacks St,q formalize the above in-
tuition by (i) always selecting elements b whose posterior
probability p(a|b) lies above t, (ii) probabilistically select-
ing elements whose posterior probability is tied with t, and
(iii) never selecting elements with lower posterior probability.
Lem. 2 demonstrates that this approach is optimal.

Lemma 2 (Threshold Attacks Optimal). For all (a, a′) ∈ N ,

max
S∈B→[0,1]

E≥c(a, a′,S) ≤ max
t∈[0,1],q∈[0,1]

E≥c(a, a′,St,q).

In order to prove Lem. 2, we prove the stronger Lem. 3.

Lemma 3. For all (a, a′) ∈ N and any S ∈ B→ [0, 1], there
exists a threshold attack St,q with

Pr
[
M(a) ∈ St,q

]
≥ Pr[M(a) ∈ S] and (11)

Pr
[
M(a′) ∈ St,q

]
= Pr[M(a′) ∈ S]. (12)

Proof of Lem. 3. We first note that there exist t, q which
satisfy Eq. (12), as shown by Lem. 12 in App. G. We
illustrate this visually on our running example L0.5 in Fig. 8.
In particular, starting from t ≈ 0.62 and q = 0 yields
Pr[M(a′) ∈ St,q] = 0. From there, we can gradually increase
the probability to obtain any value p′, by either (i) increasing
q or (ii) decreasing t and resetting q to 0, as shown in Fig. 8.

Second, Lem. 13 in App. G uses the Neyman-Pearson
lemma (Lem. 9 in App. F) to show that satisfying Eq. (12)
implies that we also satisfy Eq. (11). We note that the Neyman-



Fig. 7. Selecting approximately optimal t], q].
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Fig. 8. Relationship of Pr
[
M(a) ∈ St,q)

]
, Pr

[
M(a′) ∈ St,q)

]
, and (t, q)

for L0.5. The top panel shows Pr
[
M(a) ∈ St,q)

]
and Pr

[
M(a′) ∈ St,q)

]
for different choices of (t, q), while the bottom panel shows the appropriate
(t, q) required to obtain any given value of Pr

[
M(a′) ∈ St,q

]
.

Pearson lemma is often used in the context of differential
privacy, e.g., in [27, §IV-A], [28, §9.1], and [29].

Proof of Lem. 2. Lem. 3 is sufficient to prove Lem. 2, since
it shows there exists t, q for which:

E≥c(a, a′,S)

= ln
≥c
(

Pr[M(a) ∈ S]︸ ︷︷ ︸
≤Pr[M(a)∈St,q] by Eq. (11)

)
− ln

≥c
(

Pr[M(a′) ∈ S]︸ ︷︷ ︸
=Pr[M(a′)∈St,q] by Eq. (12)

)
≤ E≥c(a, a′,St,q).

B. Optimal Attack

As can be seen in Fig. 8, every choice of t, q yields a
different trade-off between Pr[M(a) ∈ S] (which should be
maximized) and Pr[M(a′) ∈ S] (which should be minimized).
Among all possible values for t, q, Lem. 4 shows how to find
the optimal choice of t?, q?.

Lemma 4 (Optimal Attack). For c ∈ (0, 1] and all neighboring
inputs (a, a′) ∈ N , there exist (t?, q?) that satisfy

Pr
[
M(a′) ∈ St

?,q?
]

= c. (13)

For any such t?, q?, we have

max
t∈[0,1],q∈[0,1]

E≥c(a, a′,St,q) ≤ E≥c(a, a′,St
?,q?). (14)

Proof. Parameters t?, q? that satisfy Eq. (13) exist by a
reasoning analogous to our proof of Lem. 3.

Next, we provide the intuition for proving Eq. (14), for-
malized in App. H. We proceed by case distinction. If
Pr[M(a′) ∈ St,q] < c, then replacing St,q by St?,q? in

ln
≥c
(
Pr
[
M(a) ∈ St,q

])
− ln

≥c
(
Pr
[
M(a′) ∈ St,q

])
increases the minuend (as St?,q? contains more elements
than St,q) but not the subtrahend (as ln

≥c is constant for
inputs below c). Otherwise, if Pr[M(a′) ∈ St,q] > c, then
replacing St,q by St?,q? increases the minuend more than the
subtrahend, as it removes the “worst” elements from St,q .

C. Approximately Optimal Attack

Based on Lem. 4, we would like DP-Sniper to find t?, q?

that satisfy Eq. (13):

Pr
[
M(a′) ∈ St

?,q?
]

= c.

Unfortunately, finding (t?, q?) which satisfy this equation
exactly is not possible in practice, as Pr[M(a′) ∈ St,q] can
generally only be estimated. Therefore, a more tractable goal
is selecting (t], q]) that approximately satisfy Eq. (13).

Fig. 7 illustrates how DP-Sniper achieves this goal. First,
we rewrite Pr[M(a′) ∈ St,q] according to Eq. (9). Second,
we interpret p(a|M(a′)) as a random variable P ′ and estimate
Pr[P ′ � (t, q)] using samples p′0, . . . , p

′
N−1 from P ′. Finally,

we pick t], q] for which our estimate yields exactly c. Note
that this is achieved by DP-Sniper in Lines 6–7, as Eq. (10)
is equivalent to 1

N

∑N−1
i=0 Pr

[
p′i � (t], q])

]
= c.

Lem. 5 formalizes the obtained optimality guarantees.

Lemma 5 (Approximate Optimal Attack). With probability at
least 1− α,

E≥c(a, a′,St
],q]) ≥ E≥c(a, a′,St

?,q?)− ρ
c − 2

(
ρ
c

)2
,

for ρ =
√

ln(2/α)
2n and assuming ρ

c ≤
1
2 .

Proof Sketch. Our proof in App. J relies on the DKW in-
equality (App. I), which indicates that with probability 1− α,
the estimate in Fig. 7c is simultaneously accurate (up to
a precision of ρ) for all possible choices of t, q. We can
then prove Lem. 5 by applying multiple insights about the
relationship of Pr[M(a) ∈ St,q] and Pr[M(a′) ∈ St,q].

We note that the regret ρ
c + 2

(
ρ
c

)2
in Lem. 5 is almost

optimal. Specifically, if our probability estimates achieve an
accuracy of ±ρ, we should expect a regret of roughly 1

2
ρ
c , as

we show in App. E.
From this, we conclude that we cannot significantly improve

Lem. 5, Thm. 2, or Guideline 1.



TABLE II
Input patterns used in StatDP, from [12, Tab. 1].

Category a a′

One Above [1, 1, 1, 1, 1] [2, 1, 1, 1, 1]
One Below [1, 1, 1, 1, 1] [0, 1, 1, 1, 1]

One Above Rest Below [1, 1, 1, 1, 1] [2, 0, 0, 0, 0]
One Below Rest Above [1, 1, 1, 1, 1] [0, 2, 2, 2, 2]

Half Half [1, 1, 1, 1, 1] [0, 0, 0, 2, 2]
All Above & All Below [1, 1, 1, 1, 1] [2, 2, 2, 2, 2]

X Shape [1, 1, 0, 0, 0] [0, 0, 1, 1, 1]

V. COMPARISON BASELINE

To put our results in perspective, we decided to use
StatDP [12] as a baseline. It reports state-of-the-art results and,
unlike many other tools detecting differential distinguishabil-
ity, is not limited by fundamental assumptions (see §VII).

Unfortunately, StatDP (§V-A) does not directly yield a
suitable baseline: it does not address the exact same problem
statement as DD-Search (§V-B) and its implementation ex-
hibits multiple issues (§V-C). In the following, we discuss both
of these challenges and how we addressed them by extending
StatDP to a system we refer to as StatDP-Fixed.

A. StatDP

At a high level, StatDP iterates over a search space of pre-
determined witnesses (a, a′,S), and applies a statistical test to
determine whether they demonstrate ξ0-DD for a given ξ0.

When searching for input pairs (a, a′), StatDP considers
the simple patterns shown in Tab. II. Its attack search space is
more advanced: an attack S applies a post-processing function
f : B → Rn to the output M(A) and checks if the result
f(M(A)) lies inside an n-dimensional hypercube. Formally,
the attacks considered in StatDP can be written as:

S = {b | f(b) ∈ [l1, u1]× · · · × [ln, un]} , (15)

for li, ui ∈ R ∪ {−∞} and post-processing f ∈ F . StatDP
focuses on mechanisms whose output b is a list. Amongst
others, the collection F of possible post-processings includes
the length of b, numerical statistics about b such as the mean
and maximum, and the Hamming distance between b and
a reference output M̃(a) computed by evaluating M on a
without using any noise (F implicitly depends on a). See [12,
§4.3] for details about the collection F .

B. Different Problem Statement

The problem statements addressed by our work and StatDP
are different: StatDP tests for ξ0-DD with a fixed value of ξ0,
while DD-Search searches for a witness with maximal power.
As shown in Fig. 9, StatDP guarantees that when it finds a
witness (a, a′,S), this witness demonstrates ξ0-DD (testing).
When StatDP does not find such a witness, it reports a failure.
In contrast, DD-Search always returns both ξ and a witness
(a, a′,S) demonstrating ξ-DD (maximizing power).

Fig. 9. Comparison of testing to maximizing power.

Conversion. As shown in Fig. 9 (middle), there exists a con-
version from any testing algorithm Tξ0 (left) to an algorithm
B maximizing power (right) by searching for the largest ξ for
which the testing algorithm finds a witness. This approach is
in line with the original evaluation of StatDP [12, Fig. 2].

In StatDP-Fixed, we use a binary search to find the largest
ξ for which StatDP’s statistical test succeeds with high con-
fidence (p-value ≤ 0.05), up to a precision of 0.001 for ξ.
To determine an upper bound on ξ to be used by the binary
search, StatDP-Fixed uses exponential search.

We note that it is also possible to convert any algorithm
maximizing power into a testing algorithm Tξ0 by returning
(a, a′,S) if ξ ≥ ξ0, and reporting a failure otherwise. Thus,
DD-Search can directly solve the problem statement of StatDP.

C. Issues with StatDP Implementation

Unfortunately, the StatDP implementation [30] exhibits
multiple issues discussed next. In particular, it (i) does not
follow the description in [12], (ii) is unsound in some cases,
and (iii) produces unstable results for some mechanisms.
Hard-Coded Post-Processing. The StatDP implementation
does not search for a post-processing f ∈ F as described
in [12, §4.3], but instead hard-codes an appropriate post-
processing f for each algorithm evaluated in its publica-
tion [12, §5]. A request for clarification on this discrepancy
between publication and implementation did not receive a
response up to this day. 7

As a consequence, the existing implementation of StatDP
cannot be used to reproduce the results reported in its publi-
cation. For example, StatDP crashes when provided a correct
implementation of SVT3 (see §VI-B, this is iSVT4 in [12])
that does not include a post-processing, as SVT3 produces
outputs of varying length. If we pad the output of SVT3 to its
maximum output length 10, StatDP also crashes—it requires
more than 500 GB of memory, because its search space is
exponentially large in the output length.

In order to enable the usage of StatDP described in its
publication, StatDP-Fixed includes a search over the possible
post-processings described in [12, §4.3]. As a consequence,
the runtimes we report in this work are incomparable to the
runtimes reported in [12, Tab. 3], which assumed a fixed post-
processing. We stress that this is not a shortcoming of this
work, but an artifact of the incorrect evaluation from [12].
Unsoundness. Moreover, the results reported by StatDP are
sometimes unsound, meaning that StatDP may claim that a
witness (a, a′,S) demonstrates ξ0-DD with high confidence,

7https://github.com/cmla-psu/statdp/issues/4

https://github.com/cmla-psu/statdp/issues/4


even if this is not the case. Therefore, StatDP-Fixed includes
a confirmation phase that validates the results reported by
StatDP. Specifically, we employ the same lower bound esti-
mation as DD-Search (Line 5 in Alg. 2).

Fig. 10 (§VI-C) demonstrates the unsoundness of StatDP,
where the unfilled bars indicate the power of the witnesses
according to StatDP, and the filled bars indicate the true power
according to StatDP-Fixed. For example, StatDP claims 0.2-
DD for SVT1 with p-value ≤ 0.05, even though SVT1 is
known to be 0.1-DP [31].

These findings indicate that the statistical test employed
by StatDP is not always sound. Possible reasons include an
incorrect design or implementation of the test, or numerical is-
sues. This issue typically occurs when StatDP returns (a, a′,S)
for which Pr[M(a) ∈ S] and Pr[M(a′) ∈ S] are small—a
situation we explicitly avoid in our problem statement (§II).

Instability. Finally, even after addressing the above issues,
StatDP-Fixed is highly unstable for some algorithms, reporting
vastly different results in independent runs.

In our evaluation (§VI-C), we therefore perform two inde-
pendent runs of StatDP-Fixed on all algorithms. For instance,
while the first run of StatDP-Fixed demonstrates 0.471-DD
for OneTimeRAPPOR, the second run only finds 0.060-
DD. Similar instabilities were observed for RAPPOR, SVT3
and SVT34Parallel (see Fig. 10). We conjecture these to be
artifacts of the power overestimation by StatDP.

VI. EVALUATION

In the following, we evaluate DD-Search by comparing it to
StatDP-Fixed (see §V), using the default parameters suggested
by StatDP. As DD-Search mainly relies on DP-Sniper, this
approach also evaluates DP-Sniper implicitly. We ran all
experiments on a machine with 500 GB RAM and 128 cores
at 1.2 GHz. We note that our implementation never required
more than 16.2 GB of memory.

A. Implementation

We implemented DP-Sniper and DD-Search in Python,
using PyTorch8 for instantiating and training classifiers.

Input Search. For GenerateInputs in Line 2 of Alg. 2, we
use the same patterns as StatDP (see Tab. II). Unlike StatDP,
we also include flipped inputs in our search: If (a, a′) is a
pattern included in StatDP, we include both (a, a′) and (a′, a).
This is not required in StatDP, as StatDP implicitly assumes
a symmetric neighborhood.

Vectorization and Parallelization. Our implementations of
the evaluated algorithms rely on NumPy9 for vectorization.
Further, our implementation of DD-Search exploits the fact
that the loop in Line 2 of Alg. 2 can be trivially parallelized.

8https://github.com/pytorch/pytorch
9https://github.com/numpy/numpy

TABLE III
Evaluated algorithms with their neighborhoods and DP guarantees.

Algorithm N ε

NoisyHist1 [12, Alg. 9] ‖·‖1 0.1
NoisyHist2 [12, Alg. 10] ‖·‖1 10
ReportNoisyMax1 [12, Alg. 5] ‖·‖∞ 0.1
ReportNoisyMax2 [12, Alg. 6] ‖·‖∞ 0.1
ReportNoisyMax3 [12, Alg. 7] ‖·‖∞ ∞
ReportNoisyMax4 [12, Alg. 8] ‖·‖∞ ∞
SVT1 [31, Alg. 1] ‖·‖∞ 0.1
SVT3 [31, Alg. 3] ‖·‖∞ ∞
SVT4 [31, Alg. 4] ‖·‖∞ 0.18
SVT5 [31, Alg. 5] ‖·‖∞ ∞
SVT6 [31, Alg. 6] ‖·‖∞ ∞
LaplaceMechanism L0.1 Ex. 1 ‖·‖1 0.1
LaplaceParallel a 7→

(
L0.005(a), . . . ,L0.005(a)

)
‖·‖1 0.1

NumericalSVT [10, Fig. 10] ‖·‖∞ 0.1
OneTimeRAPPOR [18, Steps 1-2] ‖·‖1 0.8
PrefixSum [10, App. C.3] ‖·‖∞ 0.1
RAPPOR [18, Steps 1-3] ‖·‖1 0.4
SVT2 [31, Alg. 2] ‖·‖∞ 0.1
SVT34Parallel a 7→

(
SVT3(a), SVT4(a)

)
‖·‖∞ ∞

TruncatedGeometric [32, Ex. 2.2], impl. [33, Alg. 4.8] ‖·‖1 0.12

B. Evaluated Algorithms

We evaluated the tools on all algorithms in Tab. III, which
includes widely used differentially private algorithms as well
as variations of them. The second column indicates the used
neighborhood, where ‖·‖p denotes the p-norm neighborhood
N = {(a, a′) | ‖a− a′‖p ≤ 1}.

Only the algorithms up to and including SVT6 were used
in the original evaluation of StatDP [12]. This will be rele-
vant later, where we demonstrate that StatDP-Fixed does not
generalize well to new algorithms.

NoisyHist1–2 create a noisy version of a given histogram,
using parameters ε0 = 0.1 (the targeted DP guarantee) and
input length 5 as in [12]. ReportNoisyMax1–4 are variants
determining the maximum of an array, where we have instanti-
ated the parameters in [12] by ε0 = 0.1 (targeted DP) and input
length 5. Algorithms SVT1–6 are variants of an algorithm
for detecting which elements of an array lie above a given
threshold T . In all variants, we instantiated the parameters by
ε = 0.1 (targeted DP), ∆ = 1 (maximum distance of inputs),
c = 1 (maximum number of responses), input length 10, and
threshold T = 1 (except T = 0.5 for SVT1) following the
notation in [31]. We have selected these parameters to remain
consistent with the evaluation of StatDP [12].

LaplaceParallel applies the Laplace mechanism to the same
output 20 times, testing whether the evaluated tools can handle
parallel composition—a key operation in differential privacy.
NumericalSVT is an interesting variant of SVT which outputs
numerical query answers when the query answer is large. One-
TimeRAPPOR collects statistics over categorical data, and was
instantiated with k = 20, h = 4, and f = 0.95. This algorithm
is particularly interesting as it involves complex operations
such as evaluating hash functions, which cannot be handled by
non-black-box tools such as DiPC [14]. PrefixSum computes
all prefix sums of a given array, where we used arrays of
length 10, and parameter ε = 0.1. RAPPOR is a variant of

https://github.com/pytorch/pytorch
https://github.com/numpy/numpy


OneTimeRAPPOR that provides stronger privacy guarantees,
and we instantiated it with k = 20, h = 4, f = 0.75, q = 0.55,
and p = 0.45. SVT34Parallel is the parallel composition of
SVT3 and SVT4. Finally, TruncatedGeometric obfuscates its
input by adding noise sampled from a two-sided geometric
distribution.
Guaranteed Level of Differential Privacy. The last column
in Tab. III shows the level of differential privacy guaranteed
by each algorithm according to existing literature (as cited in
Tab. III). We note that for some incorrect algorithms (e.g.,
SVT5), the guarantees are weaker than originally intended
(i.e., the actually guaranteed ε is higher than the targeted ε).

Unfortunately, it is typically unclear if these guarantees are
tight, or if an algorithm satisfies ε-DP for smaller ε than
indicated in Tab. III. Our results (discussed in §VI-C) indicate
the guarantees are often tight, but not always. For example,
NoisyHist1 is known to be 0.1-DP, and we demonstrate 0.098-
DD. In contrast, RAPPOR is 0.4-DP, but we only demonstrate
0.301-DD. Such a gap may either indicate that DD-Search
does not find good witnesses, or that RAPPOR satisfies
stronger differential privacy guarantees than previously known.
For example, the differential distinguishability of Report-
NoisyMax3 is only ∞ for inputs of arbitrary size. For inputs
of size 5 (as investigated in §VI-C), a more precise analysis
shows that ReportNoisyMax3 satisfies 0.25-DP, meaning that
our demonstration of 0.249-DD is actually very tight.

We note that the values of ε in Tab. III assume idealized
implementations—as we demonstrate in §VI-D, floating point
vulnerabilities may invalidate these theoretical guarantees.

C. Results
Fig. 10 shows the lower bounds on the power of the

witnesses returned by DD-Search with logistic regression and
neural network classifiers, and StatDP-Fixed. Because the
results of StatDP-Fixed are unstable (see §V-C), we show the
results of two independent runs. The solid bars in Fig. 10
display the lower bounds computed according to Line 8 in
Alg. 2. StatDP-Fixed throws an exception for NumericalSVT,
which is due to an exception raised in StatDP.
Detected Distinguishability. On algorithms that were already
used to evaluate StatDP in [12] (top plot in Fig. 10), DD-
Search and StatDP-Fixed perform similarly in most cases.
In some cases, DD-Search can demonstrate ξ-DD for sub-
stantially higher ξ, specifically for ReportNoisyMax3–4 and
SVT1. For two cases with extremely high differential distin-
guishability, StatDP-Fixed performs better. However, as both
tools demonstrate these algorithms are clearly not ε-DP for
the target parameter ε = 0.1, the exact level of differential
distinguishability is less relevant in these cases. For SVT6,
StatDP-Fixed finds a witness whose power is roughly 20%
higher than the one returned by DD-Search. DD-Search cannot
find this witness as it induces probabilities below c = 0.01. We
note that decreasing c and increasing N would likely yield an
equally powerful witness, but at the cost of increased runtime.

The fundamental improvement of DD-Search over StatDP-
Fixed becomes apparent when evaluating both tools on new

benchmark algorithms (bottom plot in Fig. 10). On these, DD-
Search performs consistently and substantially better, by a
factor of up to 7.9 (compared to 1st run) resp. 12.4 (2nd run).
This suggests that the search space of StatDP-Fixed overfits
to the examples StatDP was originally evaluated on.

Both classifier families for DD-Search yield similar powers.
The more complex neural network model only significantly
outperforms logistic regression for PrefixSum. We conclude
that the choice of classifier family is not essential.
Runtime. Fig. 11 compares the runtimes of DD-Search and
StatDP-Fixed. It demonstrates that DD-Search with logistic
regression is almost always significantly faster than StatDP-
Fixed, on average by a factor of 15.5. Due to higher training
costs, using neural networks in DD-Search is more expensive.
Still, compared to to StatDP-Fixed, this combination admits
an average speedup of 3.4. We note that the reported runtimes
are generous towards StatDP-Fixed, as they do not include
computing a lower bound on the power of its returned witness.

The runtime of StatDP-Fixed varies significantly between
algorithms due to the different number of binary search eval-
uations, valid input patterns, and applicable post-processings.
In contrast, the runtime of DD-Search is more predictable.

As discussed in §V-B, StatDP-Fixed applies multiple ξ-DD
tests in a binary search. For some algorithms, running a single
such test is much faster than running DD-Search (e.g., 5.5
times faster for LaplaceMechanism), while it is much slower
for others (e.g., 4.5 times slower for LaplaceParallel).

D. Floating Point Vulnerabilities
In order to highlight the versatility of our approach, we

also used it to demonstrate differential distinguishability of
seemingly differentially private algorithms by exploiting vul-
nerabilities that arise from floating-point arithmetic.
Bit Pattern Features. Past work [34] discovered floating-point
vulnerabilities in common implementations of the Laplace
mechanism. However, exploiting these required a tedious
analysis of the effect of floating-point imprecisions on the
algorithm’s output—we refer to [34] for a thorough and
insightful discussion. In contrast, with DP-Sniper, we can
simply conjecture that the bit patterns of the output may reveal
information about the input, and use an appropriate family of
classifiers that exploits this information.

To this end, we extended the neural network classifier family
described in §III-B by a pre-processing step extracting the 64
bit IEEE 754 floating point representation of the mechanism
output. In particular, we use an input layer of size 64 (one
neuron per bit), followed by two hidden layers with sizes 10
and 5 using ReLU activation functions. As an example, for the
mechanism output −1.5 we would feed its bit-representation
10111111111110 · · · 0 to the first layer.
The Laplace Mechanism is Differentially Distinguishable.
We ran DD-Search with this classifier family to investigate our
implementation of L0.1, which uses NumPy’s implementation
of Laplace noise. To generate input pairs, we again used
the StatDP patterns as described in §VI-A. In this case, the
patterns yield four input paris: (1, 0), (0, 1), (1, 2), (2, 1).
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TABLE IV
Comparison of tools that demonstrate differential distinguishability.

Tool Category Input search Attack search Assumptions Code
Tpriv [11] testing distribution exhaustive oracle for Pr[M(a) = b] -
StatDP [12] testing℘ patterns patterns semi-black-box access to M [30]
DP-Finder [13] maximizing℘ gradient descent patterns limited class of programs [35]
DiPC [14] testing exhaustive exhaustive limited class of programs [17]
DP-Stochastic-Tester [15] maximizing℘ Halton sequence small intervals B ⊆ R [36]
CheckDP [37] testing symbolic solver symbolic solver limited class of programs [38]
DD-Search [this work] maximizing℘ patterns classifier black-box access to M Footnote 4

Our results indicate that this implementation is 0.25-DD and
hence clearly violates its theoretical privacy level of 0.1-DP.
Running this experiment took 36 min. Note that finding this
vulnerability is completely automatic.

We stress that existing tools cannot detect floating-point vul-
nerabilities, either because their search space is not expressive
enough (e.g., StatDP-Fixed), or because they assume idealized
computation on real numbers (e.g., DiPC [14]). For the same
reason, DP verifiers also miss such vulnerabilities.

Evaluating a Fixed Version. The snapping mechanism [34,
§5.2] has been proposed as a defense against floating-point
vulnerabilities in the Laplace mechanism. We implemented
this defense to obtain a fixed version of the mechanism with
target ε = 0.1 and ran the above experiments again. Indeed,
DD-Search is only able to demonstrate 0.098-DD in this case,
indicating that the snapping mechanism defeats our attack.

VII. RELATED WORK

Next, we discuss existing approaches detecting differential
distinguishability (§VII-A) and inference attacks determining
the input of an algorithm from its output (§VII-B).

A. Goal: Detecting Differential Distinguishability

Tab. IV compares different tools detecting differential dis-
tinguishability. It does not discuss verification of differential
privacy [2]–[10], as this is not the focus of our work. Further,
it omits ADP-Estimator [16], which only targets (ε, δ)-DP.
Finally, we note that DPCheck [39] is not a testing approach
in the sense of Fig. 9 (left), as it may incorrectly report DD
for algorithms not meeting specific technical conditions.

Tools. Tpriv [11] assumes oracle access to Pr[M(a) = b],
which is typically not available. Specifically, it exhaustively
iterates over all outputs b ∈ B, samples inputs a ∈ A, and
evaluates Pr[M(a) = b] for every choice of a and b. It then
applies a Lipschitz test to determine if varying a can lead to
substantial changes in Pr[M(a) = b].

We have already discussed StatDP [12] in detail in §V. We
note that StatDP requires semi-black-box access to M , as one
of its post-processings requires running M without any noise.

DP-Finder samples sets S, and then maximizes E(a, a′,S)
using gradient descent on (a, a′). This requires making
E(·, ·,S) differentiable, which is only possible for a limited
class of programs M . For example, DP-Finder does not
support arbitrary loops or hash functions (used in RAPPOR).

DiPC [14] exhaustively iterates over inputs a ∈ A and
outputs b ∈ B, and uses a symbolic solver to decide if
Pr[M(a) = b] > eε Pr[M(a′) = b]. Due to the restrictions of
solvers, DiPC cannot handle arbitrary loops or hash functions.

DP-Stochastic-Tester [15] samples inputs (a, a′) and uses
confidence intervals to determine if for specific intervals
[l, u] ⊆ R, Pr[M(a) ∈ [l, u]] > eε Pr[M(a′) ∈ [l, u]], restrict-
ing its applicability to B ⊆ R.

CheckDP [37] synthesizes alignment proofs parameterized
by θ, which, when valid, demonstrate ε-DP. To this end, it uses
a symbolic solver to find a candidate parameter θ valid for a
set of (differently synthesized) inputs I1, . . . , In, and then tries
to confirm that θ is valid for all inputs. If the solver cannot
find any valid θ for a given In, it transforms In to a candidate
witness and uses a probabilistic solver to confirm that this
witness indeed demonstrates ε-DD. As alignment proofs are
incomplete, this confirmation may fail in principle. Like DiPC,
CheckDP is subject to the limitations of (symbolic) solvers.
For instance, it cannot handle hash functions or square roots.

In contrast to these tools, DD-Search (based on DP-Sniper)
only requires black-box access to M .
Categories. The second column of Tab. IV categorizes the
tools into approaches for testing and maximizing power (cp.
Fig. 9). As explained in §V, there exists a conversion between
these two types. Tab. IV uses subscript ℘ to indicate that the
guarantees from Fig. 9 hold with high probability.
Searching Attacks. As discussed above, some existing works
exhaustively check possible mechanism outputs [11, 14]. This
is problematic, as it (i) precludes continuous output spaces
(unless the output is projected to a discrete space, which may
lose information), (ii) does not scale to large output spaces,
and (iii) requires estimating low probabilities (because the
probability of obtaining a specific output is small). We note
that estimating low probabilities is not required in DiPC [14],
as it computes probabilities symbolically.

Other works test for simple, hand-crafted output pat-
terns [12, 13]. Unfortunately, such patterns do not generalize
well to previously unseen algorithms (see §VI).

In contrast to these tools, DD-Search (based on DP-Sniper)
introduces a general method to leverage machine learning
classifiers for detecting differential distinguishability.

B. Technique: (Membership) Inference Attacks

In the following, we discuss attacks that infer if a given
output b = M(A) was generated from A = a or A = a′.



Fig. 12. Statistical hypothesis testing to determine input.

DP-Sniper relies on such attacks for the specific purpose of
demonstrating differential distinguishability. An important spe-
cial case of such attacks are membership inference attacks [27,
40]–[44], also known as tracing attacks, where a = D ∪ {d}
is a database including the information d of an individual and
a′ = D is the same database but excluding d.

Statistical Hypothesis Testing. Fig. 12 (left) phrases the goal
of inference attacks as a statistical hypothesis test detecting
A = a. For consistency with the notation of differential
privacy, we describe the attacker’s decision rule as a set S,
concluding A = a if M(A) ∈ S . Then, the goal of inference
attacks is to simultaneously maximize their true positive rate
and minimize their false positive rate, see Fig. 12 (right).

Differential Privacy Prevents Inference Attacks. Differential
privacy limits the true positive rate of an inference attack in
terms of its false positive rate—an immediate consequence of
the definition of differential privacy (cp. Eq. (1)):

Pr[M(a) ∈ S] ≤ exp(ε) · Pr[M(a′) ∈ S].

Based on this fundamental insight, various works point out
that differential privacy thwarts inference attacks [43, Thm. 1],
[27, §IV-A], [28, Thm. 2.4], [45, Prop. 4], [46, Thm. 2.1].
An immediate but rarely discussed consequence is that con-
versely, any successful inference attack disproves differential
privacy [47, Lem. 2.5].

Complementary to these works, DP-Sniper turns any infer-
ence attack into a demonstration of differential distinguisha-
bility. To this end, it solves the key challenge of calibrating
the true positive rate and false positive rate of this attack to
obtain maximal differential distinguishability, while avoiding
estimating small probabilities (recall §II-A).

Fig. 13. Reference
for different metrics.

Metrics for Inference Attacks. Existing
inference attacks measure their success in
terms of various metrics, including true
positive rate (same as power or preci-
sion) [27, 41, 44], recall [41], false
positive rate (same as error) [27, 44],
accuracy [41, 42, 44], area under
curve [40], or custom notions such as
privacy loss [40], attacker gain [42], or indifferentiability [48].
Unfortunately, these metrics are typically hard to interpret in
terms of privacy impact and often cannot quantify an attack
as a single number. For example, achieving high true positive
rate is uninformative, unless the false positive rate is small.

In contrast, our work can be viewed as quantifying existing
attacks in terms of their impact on differential privacy—a
natural and simple metric for attacks.

VIII. CONCLUSION

We presented DP-Sniper, a practical approach which lever-
ages classifiers to demonstrate that a given algorithm is
differentially distinguishable. DP-Sniper finds approximately
optimal attacks in terms of c-power, and takes into account
that we cannot accurately estimate small probabilities.

Compared to a strengthened baseline, we can prove sub-
stantially stronger differential distinguishability.

We expect that future work can generalize our approach to
(ε, δ)-DP by generalizing the notion of c-power.
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TABLE V
Notational conventions used in this work.

Object Notation
Differential Privacy

Randomized algorithm M : A→ B
Neighborhood N ⊆ A× A
Input value a, a′ ∈ A
Output value b ∈ B
Attack S ∈ P (B)
Level of differential privacy ε ∈ R ∪ {∞}
Level of differential distinguishability ξ ∈ R ∪ {∞}
Power of a witness (a, a′,S) E(a, a′,S)

Random variables (capital latin letters)
Random input A ∈ ∆ (A)
Random output B ∈ ∆ (B)
Randomized attack S ∈ B→ [0, 1]
Generic random variable X,Xi

Probability
Set of distributions over B ∆ (B)
Probability that φ holds for randomly chosen
X1, . . . , Xn

Pr[φ(X1, . . . , Xn)]

Standard deviation of random variable X σ(X)
Confidence 1− α

Probability distributions
Laplace distribution (location µ, scale b) lap(µ, b)

Estimates
Number of samples N
Upper bound on error of estimate ρ

Machine Learning
Family of classifiers {pθ(a|b) | θ ∈ Θ}
Classifier pθ(a|b) or simply θ

APPENDIX

A. Notational Conventions

Tab. V shows notational conventions used in this work.

B. Avoiding Small Probabilities

Lemma 1 (Guarantees for c-power). For any algorithm
M : A → B, and any witness (a, a′,S) with (a, a′) ∈ N ,
M satisfies ξ-DD for ξ = E≥c(a, a′,S).

Proof. If E≥c(a, a′,S) ≤ 0, Lem. 1 holds trivially. Otherwise,
it holds because E≥c(a, a′,S) ≤ E(a, a′,S), see Lem. 6.

Lemma 6 (Lower Bound). E≥c(a, a′,S) ≤ E(a, a′,S) if
E≥c(a, a′,S) > 0.

Proof. We prove the following statement, which is equivalent
to Lem. 1:

max(c,Pr[M(a) ∈ S])

max(c,Pr[M(a′) ∈ S])
≤ Pr[M(a) ∈ S]

Pr[M(a′) ∈ S]
if (16)

max(c,Pr[M(a) ∈ S]) > max(c,Pr[M(a′) ∈ S]). (17)

Case I. If Pr[M(a′) ∈ S] ≥ c, then Pr[M(a) ∈ S] ≥ c due
to Eq. (17). Hence, Eq. (16) holds with equality.

Case II. If Pr[M(a′) ∈ S] ≤ c and Pr[M(a) ∈ S] ≥ c,
Eq. (16) holds.

Case III. If Pr[M(a′) ∈ S] ≤ c and Pr[M(a) ∈ S] ≤ c, then
we contradict E≥c(a, a′,S) > 0.

TABLE VI
Distributions used for proving Thm. 3 (minimum regret).

b b1 b2 b3
∑

p1(b) c+ ρ c 1− 2c− ρ 1
p2(b) c c+ ρ 1− 2c− ρ 1
p′(b) c c 1− 2c 1

C. Randomized Differential Privacy

Lem. 7 shows that randomized differential privacy is equiva-
lent to the standard notion of differential privacy. As an imme-
diate consequence, Lemmas 1 and 6 also hold for randomized
attacks.

Lemma 7 (Randomized ε-DP). For all M : A → B, N ⊆
A× A, and ε ∈ R,

∀(a, a′) ∈ N ,S ∈ P (B) .
Pr[M(a) ∈ S]

Pr[M(a′) ∈ S]
≤ exp(ε)

⇐⇒

∀(a, a′) ∈ N ,S ∈ B→ [0, 1].
Pr[M(a) ∈ S]

Pr[M(a′) ∈ S]
≤ exp(ε)

Proof. " ⇐= ": This direction is straight-forward, because
Pr[M(a) ∈ S] = Pr[M(a) ∈ S] for a distribution S with
Pr[S = S] = 1, and likewise for a′.

" =⇒ ": Let (a, a′) ∈ N and S ∈ B → [0, 1] be arbitrary.
Then, we have:

Pr[M(a) ∈ S] =
∑
S∈P(B)

Pr[S = S] Pr[M(a) ∈ S]

≤
∑
S∈P(B)

Pr[S = S] exp(ε) Pr[M(a′) ∈ S]

= exp(ε) Pr[M(a′) ∈ S]

D. Probability q]

Lemma 8 (Probability q]). Line 7 in Alg. 1 yields q] ∈ [0, 1].

Proof. First, note that q] is well-defined: Line 7 never divides
by zero, as t] = p′i for some i.

Second, q] ≥ 0 as
∑N
i=1

[
p′i > t]

]
≤ cN , because we index

the sorted array p′ at position i ≤ cN .
Third, to show that q] ≤ 1, it suffices to observe that

cN −
∑N
i=1

[
p′i > t]

]
≥
∑N
i=1

[
p′i = t]

]
if and only if cN ≥∑N

i=1

[
p′i ≥ t]

]
.

E. Minimum Regret

In this section, we prove Thm. 3:

Theorem 3 (Minimum Regret). There exist inputs (a, a′) ∈ N
and algorithms M1,M2 : A → B whose probability distribu-
tions differ by at most ρ, i.e., for all x ∈ A and S ∈ B→ [0, 1],

|Pr[M1(x) ∈ S]− Pr[M2(x) ∈ S]| ≤ ρ,



such that for any attack S], we have

E≥cM1
(a, a′,S]) ≤ max

S∈B→[0,1]
E≥cM1

(a, a′,S)− 1
2

ρ
c−ρ or

E≥cM2
(a, a′,S]) ≤ max

S∈B→[0,1]
E≥cM2

(a, a′,S)− 1
2

ρ
c−ρ ,

where E≥cM1
and E≥cM2

denote the c-power of M1 and M2,
respectively.

Proof. Our proof uses the probability distributions in Tab. VI
as follows: Pr[M1(a) = b] = p1(b), Pr[M2(a) = b] = p2(b),
and Pr[M1(a′) = b] = Pr[M2(a′) = b] = p′(b).

For both M1 and M2, the optimal attack yields

max
S
E≥cM1

(a, a′,S) = max
S
E≥cM2

(a, a′,S) = ln(c+ ρ)− ln(c).

Thus, it suffices to show that any given attack S] cannot
perform equally well on both M1 and M2. We can describe any
such attack by Pr

[
bi ∈ S]

]
= λi for i ∈ {1, 2, 3}. Without

loss of generality, we can assume λ3 = 0, as decreasing λ3

increases both E≥cM1
and E≥cM2

. With analogous reasoning, we
can assume that λ1 + λ2 ≥ 1. Then, E≥cM1

(a, a′,S]) yields

ln
≥c (λ1(c+ ρ) + λ2c)− ln

≥c (λ1c+ λ2c)

= ln (λ1(c+ ρ) + λ2c) − ln (λ1c+ λ2c)

= ln
(
λ1(c+ρ)+λ2c

λ1+λ2

)
− ln

(
λ1c+λ2c
λ1+λ2

)
= ln

(
c+ λ1

λ1+λ2
ρ
)

− ln(c)

Thus, we provide a lower bound for the regret as

max
S
E≥cM1

(a, a′,S)− E≥cM1
(a, a′,S])

= ln(c+ ρ)− ln
(
c+ λ1

λ1+λ2
ρ
)

≥
c+ ρ− c− λ1

λ1+λ2
ρ

c+ ρ
= λ2

λ1+λ2

ρ

c+ ρ

Using an analogous derivation for M2, we conclude that

max
S
E≥cM2

(a, a′,S)− E≥cM2
(a, a′,S]) ≥ λ1

λ1+λ2

ρ

c+ ρ
.

Thm. 3 follows because max
(

λ1

λ1+λ2
, λ2

λ1+λ2

)
≤ 1

2 .

F. Neyman-Pearson Lemma

In the following, we show the Neyman-Pearson lemma [49]
and its connection to threshold attacks. For a thorough intro-
duction into the results of this section, we refer to [20, §3.2].

Definition 1 (Likelihood Ratio Test). Let A be selected
uniformly at random from {a, a′}, and M : A → B be
a randomized algorithm. We define the likelihood ratio
Λ: B→ R ∪ {∞} as

Λ(b) :=
Pr[M(a) = b]

Pr[M(a′) = b]
.

Then, for t ∈ R∪{∞} and q ∈ [0, 1], the likelihood ratio test
T t,q ∈ B→ [0, 1] is defined by

Pr
[
b ∈ T t,q

]
= Pr[Λ(b) � (t, q)].

In the domain of hypothesis testing, A = a′ is typically
called the null hypothesis, and A = a is called the alternative
hypothesis. We note that we must assume ∞ >∞ to remain
consistent with the conventions on handling 0 and ∞ in [20].

Lemma 9 (Neyman-Pearson lemma). For any (randomized)
test T ∈ B→ [0, 1] and any t ∈ R ∪ {∞}, q ∈ [0, 1] with

Pr[M(a′) ∈ T ] = Pr
[
M(a′) ∈ T t,q

]
,we have

Pr
[
M(a) ∈ T t,q

]
≥ Pr[M(a) ∈ T ].

Proof. A proof is provided in [20, Thm. 3.2.1].

Lemma 10 (Neyman-Pearson existence). For any p′ ∈ [0, 1],
there exist t ∈ R ∪ {∞} and q ∈ [0, 1] with

Pr
[
M(a′) ∈ T t,q

]
= p′.

Proof. A proof is provided in [20, Thm. 3.2.1].

G. Key Properties of Threshold Attacks

Lemma 11 (Threshold Attacks are Likelihood Ratio Tests).
For any t ∈ [0, 1] and q ∈ [0, 1], we have St,q = T σ(t),q , for
σ(p) = p

1−p , if t < 1 or t = q = 1.
Likewise, for any t ∈ R ∪ {∞} and q ∈ [0, 1], we have

T t,q = Sσ−1(t),q′ , where

q′ =

{
q if t <∞
1 if t =∞

.

Proof. Proof omitted due to space constraints.

Lemma 12 (Threshold to Reach Probability). For any proba-
bility p′ ∈ [0, 1], there exist t, q with

Pr
[
M(a′) ∈ St,q

]
= p′.

Moreover, there exist such t, q which additionally satisfy t < 1
or t = q = 1.

Proof. Due to Lem. 10, there exists T t,q with the right
property, which is equivalent to some St′,q′ by Lem. 11.

Lemma 13 (Highest True Positive Rate for Threshold At-
tacks). Let S ∈ B→ [0, 1] and t, q ∈ [0, 1] with t < 1 or
t = q = 1. If

Pr
[
M(a′) ∈ St,q

]
= Pr[M(a′) ∈ S], then

Pr
[
M(a) ∈ St,q

]
≥ Pr[M(a) ∈ S].

We note that if t, q originate from Lem. 12, the condition
t < 1 or t = q = 1 can always be satisfied.

Proof. Threshold attack St,q is equivalent to a likelihood ratio
test (Lem. 11). Thus, we can apply apply the Neyman-Pearson
lemma Lem. 9.

Definition 2 (τ ). Function τ : [0, 1]→ [0, 1] is defined by

τ(Pr
[
M(a′) ∈ St,q

]
) = Pr

[
M(a) ∈ St,q

]
,

for t < 1 or t = q = 1.



Importantly, function τ is well-defined, as for every input
p′ ∈ [0, 1] to τ , there is exactly one output τ(p′). First,
there is at least one output value because there exist t, q
with Pr[M(a′) ∈ St,q] = p′, due to Lem. 12. Second, there
is at most one output for τ(p′), because for two (t, q) and
(t′, q′), if Pr[M(a′) ∈ St,q] = Pr

[
M(a′) ∈ St′,q′

]
= p′, then

Pr[M(a) ∈ St,q] = Pr
[
M(a) ∈ St′,q′

]
, because both St,q

and St′,q′ have highest true-positive rate according to Lem. 13.

Lemma 14 (τ concave). Function τ is concave: For all
λ ∈ [0, 1] and p′1, p

′
2 ∈ [0, 1], we have

τ
(

(1− λ)p′1 + λp′2

)
≥ (1− λ)τ(p′1) + λτ(p′2).

Further, τ(0) ≥ 0 and τ(1) = 1.

Proof. This fact is a consequence from [20, §3.2]. It shows
that the following set is convex:{(

Pr[M(a′ ∈ S)],Pr[M(a) ∈ S]
) ∣∣S ∈ B→ [0, 1]

}
.

Further, it shows that the upper boundary of this set corre-
sponds to τ , which is sufficient to prove Lem. 14.

Lemma 15 (τ monotone). Function τ is monotone:

Pr
[
M(a′) ∈ St,q

]
≤ Pr

[
M(a′) ∈ St

′,q′
]

=⇒

Pr
[
M(a) ∈ St,q

]
≤ Pr

[
M(a) ∈ St

′,q′
]

Proof. This follows from the nature of St,q , which is essen-
tially a threshold.

Lemma 16 (True Positive Rate Larger). For all t, q ∈ [0, 1],

Pr
[
M(a) ∈ St,q

]
≥ Pr

[
M(a′) ∈ St,q

]
Proof. If t = 1, then the lemma holds because

Pr
[
M(a′) ∈ St,q

]
= Pr[p(a′|M(a)) � (t, q)]

= q · Pr[p(a|M(a′)) = 1]

= 0.

Otherwise, this is a consequence from Lem. 14.

Lemma 17 (Ratio Decreasing). If

Pr
[
M(a′) ∈ St,q

]
≤ Pr

[
M(a′) ∈ St

′,q′
]
,

then
Pr[M(a) ∈ St,q]
Pr[M(a′) ∈ St,q]

≥ Pr[M(a) ∈ St′,q′ ]
Pr[M(a′) ∈ St′,q′ ]

.

Proof. If suffices to show that for p′1 ≤ p′2,

τ(p′1)

p′1
=
τ
(
p′1
p′2
p′2

)
p′1

≥
p′1
p′2
τ(p′2)

p′1
=
τ(p′2)

p′2
,

which holds since τ is concave, for λ = 0.

H. Optimal Threshold Attack

Lemma 4 (Optimal Attack). For c ∈ (0, 1] and all neighboring
inputs (a, a′) ∈ N , there exist (t?, q?) that satisfy

Pr
[
M(a′) ∈ St

?,q?
]

= c. (13)

For any such t?, q?, we have

max
t∈[0,1],q∈[0,1]

E≥c(a, a′,St,q) ≤ E≥c(a, a′,St
?,q?). (14)

Proof. Eq. (13) immediately follows from Lem. 12.
To show Eq. (14), we prove that for any t ∈ [0, 1], q ∈ [0, 1],

E≥c(a, a′,St,q) ≤ E≥c(a, a′,St
?,q?).

Our proof proceeds by case distinction.

Case I. If Pr[M(a′) ∈ St,q] < Pr
[
M(a′) ∈ St?,q?

]
, then

Pr[M(a) ∈ St,q] ≤ Pr
[
M(a) ∈ St?,q?

]
by Lem. 15.

Therefore, we have

ln
≥c
(
Pr
[
M(a ) ∈ St,q

])
≤ ln

≥c
(

Pr
[
M(a ) ∈ St

?,q?
])

and

ln
≥c
(
Pr
[
M(a′) ∈ St,q

])
= ln

≥c
(

Pr
[
M(a′) ∈ St

?,q?
])

︸ ︷︷ ︸
=c

,

which implies Lem. 4.

Case II. If Pr[M(a′) ∈ St,q] > Pr
[
M(a′) ∈ St?,q?

]
, then

Pr
[
M(a) ∈ St,q

]
≥ Pr

[
M(a′) ∈ St,q

]
Lem. 16

≥ Pr
[
M(a′) ∈ St

?,q?
]

Lem. 15

= c.

Thus,

ln
≥c
(
Pr
[
M(a) ∈ St,q

])
− ln

≥c
(
Pr
[
M(a′) ∈ St,q

])
= ln

(
Pr[M(a) ∈ St,q]
Pr[M(a′) ∈ St,q]

)
probs ≥ c

≤ ln

(
Pr
[
M(a) ∈ St?,q?

]
Pr[M(a′) ∈ St?,q? ]

)
Lem. 17

I. Dvoretzky-Kiefer-Wolfowitz Inequality

Theorem 4 (Dvoretzky-Kiefer-Wolfowitz inequality). Let α >
0, and p1, . . . , pN be independent samples from a random
variable P ∈ ∆ (R). Then, the event

sup
t∈R,
q∈[0,1]

∣∣∣∣∣
(

1

N

N∑
i=1

Pr[pi � (t, q)]

)
− Pr[P � (t, q)]

∣∣∣∣∣ ≤ ρ
occurs with probability at least 1− α, for ρ =

√
ln(2/α)

2n .

Proof. See [25] for the original proof, and [50, Thm. 11.5]
for a generalization to randomized thresholds.



J. Approximate the Optimal Attack

Lemma 5 (Approximate Optimal Attack). With probability at
least 1− α,

E≥c(a, a′,St
],q]) ≥ E≥c(a, a′,St

?,q?)− ρ
c − 2

(
ρ
c

)2
,

for ρ =
√

ln(2/α)
2n and assuming ρ

c ≤
1
2 .

Proof. Due to the Dvoretzky-Kiefer-Wolfowitz inequality
(Thm. 4), we know that with probability 1− α, for all t ∈ R
and q ∈ [0, 1],∣∣∣∣∣

(
1

N

N∑
i=1

Pr[p′i � (t, q)]

)
− Pr[P ′ � (t, q)]

∣∣∣∣∣ ≤ ρ. (18)

In this case, since 1
N

∑N
i=1 Pr

[
p′i � (t], q])

]
= c, we have∣∣Pr

[
P ′ � (t], q])

]
− c
∣∣ ≤ ρ. We can thus conclude:∣∣∣Pr

[
M(a′) ∈ St

],q]
]
− c
∣∣∣ ≤ ρ. (19)

We now show that this is sufficient to establish Lem. 5.

Case I. If Pr
[
M(a′) ∈ St],q]

]
≤ Pr

[
M(a′) ∈ St?,q?

]
, then

Pr
[
M(a′) ∈ St

],q]
]
≤ Pr

[
M(a′) ∈ St

?,q?
]

= c.

Therefore,

ln
≥c
(

Pr
[
M(a′) ∈ St

],q]
])

= ln
≥c
(

Pr
[
M(a′) ∈ St

?,q?
])
.

Thus, it suffices to show that

ln
≥c
(

Pr
[
M(a) ∈ St

],q]
])
≥

ln
≥c
(

Pr
[
M(a) ∈ St

?,q?
])
− ρ

c
− 2

(ρ
c

)2

To this end, we derive

ln
≥c
(

Pr
[
M(a) ∈ St

],q]
])

≥ ln
≥c
(

Pr
[
M(a) ∈ St

?,q?
] (

1− ρ

c

))
(†)

≥ ln
≥c
(

Pr
[
M(a) ∈ St

?,q?
])
− ρ

c − 2
(
ρ
c

)2
Lem. 19

For (†), note that

Pr
[
M(a) ∈ St

],q]
]
≥ Pr

[
M(a) ∈ St

?,q?
] (

1− ρ
c

)
⇐⇒ (t 6= 1 as p′ > 0)

τ
(

Pr
[
M(a′) ∈ St

],q]
]︸ ︷︷ ︸

:=p′

)
≥ τ

(
Pr
[
M(a′) ∈ St

?,q?
]︸ ︷︷ ︸

=c

)
(1− ρ

c )

⇐⇒
τ(p′) ≥ τ(c)(1− ρ

c )

⇐=

τ(p′) ≥ τ(c)(1− ρ
c ) + τ(0)ρc︸ ︷︷ ︸

≥0

⇐=

τ(p′) ≥ τ
(
c
(
1− ρ

c

))
Lem. 14

⇐⇒
τ(p′) ≥ τ(c− ρ)

⇐⇒
p′ ≥ c− ρ Lem. 15

which holds due to Eq. (19).

Case II. If Pr
[
M(a′) ∈ St],q]

]
≥ Pr

[
M(a′) ∈ St?,q?

]
, then

Pr
[
M(a) ∈ St

],q]
]
≥ Pr

[
M(a) ∈ St

?,q?
]

Lem. 15

Thus, it suffices to show that

ln
≥c
(

Pr
[
M(a′) ∈ St

],q]
])
≤

ln
≥c
(

Pr
[
M(a′) ∈ St

?,q?
])

+
c

ρ
+

(
c

ρ

)2

.

To this end, we derive

ln
≥c
(

Pr
[
M(a′) ∈ St

],q]
])
≤ ln

≥c (c+ ρ) Eq. (19)

= ln(c+ ρ)

≤ ln(c) +
1

c
ρ Lem. 18

K. Helper Lemmas

In the following, we prove useful helper lemmas.

Lemma 18 (Lipschitz). For all x, y, and c, we have∣∣ln≥c (x)− ln
≥c (y)

∣∣ ≤ 1

c
|x− y| .

Proof. Proof omitted due to space constraints.

Lemma 19. For all p ∈ [0, 1] and R ∈ [0, 1
2 ]:

ln
≥c (p · (1−R)) ≥ ln

≥c (p)−R− 2R2.

Proof. Proof omitted due to space constraints.
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