
Race Detection in Two Dimensions

Dimitar Dimitrov
Department of Computer

Science, ETH Zürich
Universitätstrasse 6

8092 Zürich, Switzerland
dimitar.dimitrov@inf.ethz.ch

Martin Vechev
Department of Computer

Science, ETH Zürich
Universitätstrasse 6

8092 Zürich, Switzerland
martin.vechev@inf.ethz.ch

Vivek Sarkar
Department of Computer
Science, Rice University

6100 Main St.,
Houston, TX, USA
vsarkar@rice.edu

ABSTRACT

Dynamic data race detection is a program analysis technique
for detecting errors provoked by undesired interleavings of
concurrent threads. A primary challenge when designing
efficient race detection algorithms is to achieve manageable
space requirements.
State of the art algorithms for unstructured parallelism

require Θ(n) space per monitored memory location, where n
is the total number of tasks. This is a serious drawback when
analyzing programs with many tasks. In contrast, algorithms
for programs with a series-parallel (SP) structure require only
Θ(1) space. Unfortunately, it is currently poorly understood
if there are classes of parallelism beyond SP that can also
benefit from and be analyzed with Θ(1) space complexity.
In the present work, we show that structures richer than

SP graphs, namely that of two-dimensional (2D) lattices, can
be analyzed in Θ(1) space: a) we extend Tarjan’s algorithm
for finding lowest common ancestors to handle 2D lattices;
b) from that extension we derive a serial algorithm for race
detection that can analyze arbitrary task graphs having a
2D lattice structure; c) we present a restriction to fork-join
that admits precisely the 2D lattices as task graphs (e.g., it
can express pipeline parallelism).
Our work generalizes prior work on race detection, and

aims to provide a deeper understanding of the interplay be-
tween structured parallelism and program analysis efficiency.

1. INTRODUCTION
Ensuring correctness of parallel programs is a notoriously

difficult matter. A primary reason for this is the potential for
harmful interference between concurrent threads (or tasks).
In particular, a root cause for interference is the presence
of data races: two conflicting accesses to the same memory
location, done by two concurrent tasks. The interference
caused by data races increases the number of schedules that
have to be considered in ensuring program correctness. That
is the case because the outcome of a data race might depend
on the execution order of the two conflicting accesses.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

SPAA ’15 June 13-15, Portland, OR, USA

Copyright 2015 by the authors. Publication rights licensed to ACM.

ACM 978-1-4503-3588-1/15/06 ... $15.00

DOI:10.1145/2755573.2755601

Race detection challenges.
Automatic data race detection techniques are extremely

valuable in detecting potentially harmful sources of concur-
rent interference, and therefore in ensuring that a parallel
program behaves as expected. Designing precise race detec-
tion algorithms (i.e., not reporting false positives) which scale
to realistic parallel programs is a very challenging problem.
In particular, it is important that a race detection algorithm
continues to perform well as the number of concurrently
executing threads increases.

Unfortunately, state of the art race detection techniques [13]
that handle arbitrary parallelism suffer from scalability issues:
their memory usage is Θ(n) per monitored memory location,
where n is the number of threads in the program. As n gets
larger the analyzer can quickly run out of memory, or at the
very least incur prohibitive slowdowns due to overwhelming
memory consumption.

A principled approach to address this problem is to design
race detectors which leverage the parallel structure of a
program. Languages like Cilk [5], X10 [8] or Habanero [7]
provide structured-parallel constructs which express task
graphs of restricted shape, namely that of series-parallel (SP)
graphs. Several race detection algorithms [12, 3, 18, 17]
target these specific structured-parallel constructs and are
able to achieve Θ(1) memory consumption per monitored
location.

Key question.
The success of race detectors which achieve Θ(1) space

overhead per memory location for series-parallel graphs leads
to the following fundamental question:

Are there structures richer than SP graphs which
can be analyzed in a sound and precise manner
with Θ(1) space overhead per memory location?

This work.
In this work we show that structures richer than SP graphs

are in fact analyzable in Θ(1) space per monitored location.
We present an online race detection algorithm for programs
that have the parallel structure of a two-dimensional lattice
(2D lattice) [10]. Unlike prior work, we formulate our algo-
rithm directly in terms of the graph structure and not on the
programming language. Decoupling structure from language
constructs leads to a clearer and deeper understanding of
how the algorithm works, and also of the assumptions that
it rests upon. To close the loop, we introduce a restriction
of the classic fork-join constructs which expresses only those



A B

C D

spawn A()
B( )
sync

spawn C()
D( )
sync

f inish {
async A()
B( )

}

f in ish {
async C()
D( )

}

Figure 1: Two different programs having the same
series-parallel task graph, one using spawn-sync
while the other using async-finish.

task graphs that have a 2D lattice structure. This restriction
easily captures useful forms of pipeline parallelism [15], and
so our race detector can be directly applied to analyze such
pipelined programs. Our work can be seen as a generalization
of existing race detectors for SP graphs to richer classes of
graphs and language constructs.

Contributions.
The main contributions of this work are:

• an extension of Tarjan’s algorithm for finding lowest
common ancestors in trees, to finding suprema in 2D
lattices (Tarjan’s algorithm is the foundation behind
prior works for SP graphs as well);

• a race detector, based on the suprema finding algorithm,
that works on any task graph with a 2D lattice structure
(i.e., independent of any language constructs), and has
Θ(1) space overhead per tracked memory location;

• a restriction of the classic fork-join constructs which
captures precisely the task graphs with a 2D lattice
structure (e.g., applicable to pipeline parallelism).

Our work is a step in understanding the inherent trade-offs
between parallelism structure and the resource requirements
of race detection over that structure.

2. OVERVIEW
In this section we discuss several graph structures (SP

graphs, 2D lattices) as well as how these are obtained from
programs. We then provide an intuitive explanation of the
concepts behind our online race detector for 2D lattices.

Task graphs.
Task graphs capture the ordering between operations in a

particular execution of a parallel program. Operations are
represented by graph vertices, and arcs (x, y) indicate that
one operation y is ordered after another operation x. Thus,
a task graph is a directed acyclic graph. Figures 1 and 2
show task graphs over the operations A, B, C and D, as well
as some other, unnamed ones. Each of these graphs belongs
to a particular class: the first is a series-parallel (SP) graph,
while the second one is not SP but has the structure of a
two-dimensional (2D) lattice.

r r

w

A B

C D

fork a {
A()

}
B()
fork c {

join a
C( )

}
D()
join c

Figure 2: A fork-join program having a task graph
with a two-dimensional lattice structure. Routines
A and B read from the same location that D writes
to. Accordingly, there is a race between A and D as
they execute concurrently.

2.1 SP graphs and language constructs
We now turn our attention to SP graphs, and well-known

structured parallel constructs that produce such graphs. In
short, an SP graph is a single-source, single-sink, directed
graph which is either a series or a parallel composition of
two smaller SP graphs G1 and G2. The serial composi-
tion S(G1, G2) simply glues the sink of G1 to the source of
G2, ordering the vertices in G1 before the vertices in G2.
The parallel composition P (G1, G2) glues the two graphs
source-to-source and sink-to-sink, without imposing addi-
tional ordering on the vertices. The graph in Figure 1 can
be readily constructed in this way.

Cilk’s spawn-sync.
The spawn-sync parallel constructs were introduced by the

Cilk [5] programming language. The spawn f() statement
activates a new parallel task to execute the given routine,
while the sync statement suspends the currently executing
task until all of its spawned children terminate. Each task
has an implicit sync at its end. The first program in Figure 1
illustrates these two constructs. The informal semantics of
spawn and sync are as follows: “spawn G1; G2” means
P (G1, G2), while “G1; sync; G2” means S(G1, G2).

X10’s async-finish.
The async-finish parallel constructs were introduced by

the X10 [8] programming language, and are inherited by its
descendant Habanero [7]. Here, the async block construct
activates a new parallel task to execute the given block.
Synchronization is done via the finish block construct, which
executes the given block of code, ensuring that tasks created
inside the block finish their execution together with the block.
The second program in Figure 1 illustrates these constructs.
An informal semantics would be: “async G1; G2” means
P (G1, G2), while “finish G1; G2” means S(G1, G2). Note
that the shown async-finish program has exactly the same
task graph as the spawn-sync program to its left.

2.2 Two-dimensional lattices
In our work, we focus on task graphs which have two-

dimensional (2D) lattice structure. This class of graphs is
more general and extends the class of SP graphs. Two-
dimensional lattices can be thought of as directed graphs
that have a single source, single sink, and a monotonic planar
drawing: no arcs intersect, and tracing any directed path on



the drawing will always advance in the same direction, e.g.,
downwards. Figure 2 shows an example of a 2D lattice task
graph. The monotone-planar structure is what enables us to
detect races much more efficiently.

Structured fork-join.
To express programs with a 2D lattice parallel structure, we

will introduce a restricted version of the fork-join constructs.
We chose fork and join because they are general enough,
and with them we can naturally capture variety of other
constructs such as futures. As usual, a fork x block activates
a new task to execute the given block, and stores the identifier
of the new task into the variable x. The join x statement
simply suspends the current thread until the task identified
by x terminates.

Figure 2 demonstrates a fork-join program with a 2D lattice
task graph. In contrast with the previous two programs, here
A and D execute in parallel, and thus the computation does
not proceed in phases. In order to ensure two-dimensionality,
we shall restrict with whom a thread may join with: if a
thread y executes join x, then x must appear immediately
on the left of y in a planar diagram of the task graph. Details
are discussed in Section 5.

2.3 Online race detection
We now describe the core ideas behind our online race

detection algorithm (details follow in Sections 3 and 4):

1. formulating race detection as computing suprema in
an execution’s task graph;

2. computing suprema efficiently by traversing a 2D lattice
in a particular order;

3. showing how to obtain such traversal orders from our
structured fork-join constructs.

An example of a race.
Recall that a race in a particular execution occurs when two

concurrent operations access the same memory and at least
one of the two is a write. An online race detector runs the
program, searching for races between the current operation
being executed and any of the previously executed operations.
The soundness guarantee that state of the art online race
detectors provide is that if the program terminates with no
reported races, then indeed, the program is deterministic
(from the particular input state). In addition, the detector is
guaranteed to be precise up to the first reported race (later
ones might be false positives).
Now, consider the program in Figure 2 together with the

execution of A B C D in that order. Operations A and B
read and operation D writes to the same memory location,
while C is a nop. A race exists between operations A and D,
which an online race detector must flag when seeing D. The
race occurs because operation D conflicts with A, and the
two are not ordered in the task graph. Performing the same
check for B and D, we observe that a directed path connects
them, so the two are ordered, and not racing.

A naive algorithm.
These observations lead to a direct method for detecting

races. For every location l we track the set R of prior
operations that read from l, and the set W of prior operations

that wrote to l. If the current operation t reads from l, then
it potentially races with an operation from K = W ; if it
writes to l, then it potentially races with an operation from
K = R ∪W . In our case, t = D and K = R ∪W = {A,B}.
When executing the current operation we simply need to
check whether all potentially racing operations are ordered
before it, as indicated by the task graph. Denoting with
x ❁ y that y is reachable from x, we have:

no race between K and t ⇐⇒ K ⊑ t.

Race detection via suprema.
This naive algorithm, however, is prohibitively expensive

both in space and time, as it suggests tracking and checking
against O(|R ∪W |) operations. Efficient methods for online
detection represent the sets R and W indirectly, in a way
guaranteeing that a race is detected if and only if a race
exists. Inspired by [12, 18], we shall represent each of R and
W with a single vertex in the task graph. Recall that the
supremum of a set K is the unique vertex supK such that

K ⊑ t ⇐⇒ supK ⊑ t.

For the graph in Figure 2 we have that sup{A,B} equals the
vertex C. From the defining property of suprema, we make
the following key observation:

To detect races it is sufficient to track supR and
supW for every location x.

If the current operation t writes to x, then we can simply
check whether both supR ⊑ t and supW ⊑ t hold, and flag
a race if this is not the case. Similarly, for a read we compare
against supW only. This way we can keep track only of two
vertices per location, and perform at most two reachability
checks per memory access. We discuss this approach to race
detection in more details in Section 4.

Finding suprema efficiently.
However, applying suprema to race detection requires the

ability to compute them efficiently, or otherwise we will not
benefit over the naive algorithm. This is where we leverage
the structure of 2D lattices. We extend Tarjan’s efficient
algorithm for finding lowest common ancestors in trees to
finding suprema in 2D lattices, as discussed in Section 3.
This way we obtain a detector that runs in constant space
per location and nearly constant time per memory access.
Our extension was inspired by the SP-bags race detection
algorithm [12] which implicitly applies Tarjan’s algorithm to
the decomposition trees of SP task graphs. The key insight
of Tarjan’s algorithm, and consequently of SP-bags and our
extension, is to traverse the input graph in an order that is
simultaneously topological, depth-first and left-to-right.
As an example, our algorithm would traverse the graph

in Figure 2 in the order A B C D, but not A B D C, which
is not left-to-right (nor right-to-left). To obtain an online
race detection algorithm, the program execution order must
match the required traversal order. A central insight from
SP-bags is that for Cilk programs this can be achieved by
executing the program in a serial, fork-first fashion. Similarly,
this is also the case for our structured fork-join discussed in
Section 5. This requirement makes the algorithm serial, but
that is the price we pay for efficiency.



1

2

3

4

5

6

7

8

9

Figure 3: A planar diagram of a two-dimensional
lattice. If we trace any directed path, then we always
advance downwards. Arcs “intersect” only at their
endpoints.

3. SUPREMA IN TWO DIMENSIONS
We continue with an efficient algorithm for computing the

suprema in two-dimensional lattices, a key building block
for our online race detector (discussed in the next section).
The algorithm takes as input a lattice diagram, and answers
supremum queries on the fly while it traverses the diagram.

Lattices.
Recall that a lattice is a partially ordered set (P,❁) such

that every pair of elements x, y ∈ P has a greatest lower
bound inf{x, y} and a smallest upper bound sup{x, y}, also
called the infimum and the supremum. The closure of any
subset U ⊆ P is the smallest superset of U closed under
infima and suprema of pairs of elements.
We represent a lattice by an acyclic digraph G = (V,E)

whose reachability relation is identical to ❁. A diagram is a
monotonic drawing of such a representation in the Euclidean
plane, as shown in Figure 3. By monotonic we mean that
tracing a directed path on the diagram will always advance in
the same direction, e.g., downwards. Further, if arcs intersect
at most at their endpoints, then the diagram is called planar
and the lattice is called two-dimensional (Figure 3).

Non-separating traversals.
We shall traverse both the arcs and the vertices of the given

planar diagram in a way that reveals its lattice structure,
and provides us with a direct way to answer suprema queries.
We formally equate a traversal T of the digraph G = (V,E)
with a permutation of E ∪ {(x, x) | x ∈ V }, where each loop
(x, x) represents the vertex x ∈ V .

Definition 1. A non-separating traversal1 is one which is
obtained by traversing a planar diagram in a topological,
depth-first and left-to-right order.

Let us denote with <T the linear order in which T visits
all the arcs and vertices of G. By a topological traversal we
mean that (a, x) ≤T (y, b) whenever y is reachable from x.
This implies that incoming arcs, loops, and outgoing arcs are
visited in the order (x, y) ≤T (y, y) ≤T (y, z).

A non-separating traversal of the diagram in Figure 3 is
shown in Figure 4. The black part of the picture corresponds

1The name comes from the non-separating linear extensions
of lattice orders, defined by Dushnik and Miller [10].

1

2

3

4

5

6

7

8

9

(1, 1)(1, 2)(2, 2)(2, 3)(3, 3)(3, 6)(2, 5)(1, 4)(4, 4)(4, 5)(5, 5) · · ·

· · · (5, 6)(6, 6)(6, 9)(5, 8)(4, 7)(7, 7)(7, 8)(8, 8)(8, 9)(9, 9)

Figure 4: A non-separating traversal of the arcs and
the vertices of a diagram. The current point of the
traversal is (5, 5). The black part has been “visited”,
while the gray part remains to be. The last-arcs are
drawn solid and the rest are dashed.

to the prefix ending in (5, 5). Because the traversal has to be
topological, (6, 6) cannot be visited immediately after (3, 6)
because we must visit (5, 6) before (6, 6).

The problem.
We are given a planar diagram of a digraph G = (V,E)

representing a two-dimensional lattice (P,❁). We wish to
traverse this diagram, and for each visited vertex t ∈ V ,
answer supremum queries of the form Sup(x, t). We shall
impose the following precondition on all queries Sup(x, t)

x is in the closure of the traversal prefix ending in t. (1)

For example, given the traversal in Figure 4 the query
Sup(6, 5) is valid, while Sup(7, 5) is not.
For a fixed vertex t, let us collect all queries of the form

Sup(x, t) into the set Q(t). Then, our task is to process the
sequence of such query sets, one per every visited vertex:

Q(t1), . . . , Q(tn) (2)

This setting is adequate when the i-th query set Q(ti) is
not given in advance to the traversal, but is determined on
the fly from the prefix ending in ti (as is the case in race
detection).

Connection via forests.
We connect a non-separating traversal T to suprema via

certain forests associated with the prefixes of T . Consider
a fixed vertex x ∈ V and the last visited arc2 (x, y) ∈ T
that exits x. We refer to it as the last arc of x, or just as a
last-arc. Taken together, the last-arcs form a tree directed
towards its root (Figure 4). Thus, the last-arcs that belong
to any given prefix of T form a forest:

Definition 2. For any traversal T and arc (s, t) ∈ T , define
the last-arc forest T/(s, t) to be the collection of all last-arcs
(x, y) ≤T (s, t) belonging to the prefix ending in (s, t). The
forest vertices are those incident to some arc in the forest.

2Equivalently, a last-arc (x, y) is the right-most arc exiting
the vertex x.



Walk(T,Q)

1 for (s, t) ∈ T
2 if (s, t) is a loop
3 t.visited ← True

4 answer Q(t)
5 if (s, t) is a last-arc
6 Union(t, s)

Sup(x, t)

1 r ← Find(x)
2 if r.visited
3 return t
4 else
5 return r

Figure 5: An algorithm for finding suprema in two-
dimensional lattices. The input lattice is encoded by
a non-separating traversal T . The algorithm answers
queries Sup(x, t) ∈ Q(t). In practice, Q can be thought
of as a callback invoking Sup.

We think of (s, t) as the “current” point in the traversal,
splitting it into visited prefix and unvisited suffix. For the
traversal in Figure 4, the current point is (5, 5), and the
forest T/(5, 5) is the union of the trees {(3, 6)}, {(2, 5)} and
{(1, 4)}. Note that vertex 6 belongs both to the closure of
the visited prefix and also to the forest T/(5, 5). In general,
the closure of the prefix ending in (t, t) always equals the
vertices of the forest T/(t, t).

The connection between a non-separating traversal T and
suprema goes through the roots of the forest T/(t, t) as
described by the following

Theorem 1. Given a non-separating traversal T and a
pair of vertices x and t, where x belongs to the closure of
prefix ending in (t, t), let r be the root of the tree in T/(t, t)
that contains x. Then sup{x, t} attains the form:

sup{x, t} =

{

t if r ≤T t

r if t ≤T r.

If on Figure 4 we let x = 3 and t = 5, then r = 6. Vertex
6 is traversed after 5, and so sup{x, t} equals vertex 6. On
the other hand, if x = 1 and t = 5, then r = 4 and sup{x, t}
equals vertex 5. We shall prove Theorem 1 in Section 6.

Suprema finding algorithm.
Theorem 1 leads directly to an algorithm for answering

supremum queries. Perform a non-separating traversal T ,
and maintain the forest T/(s, t) at every point (s, t) ∈ T .
When at a vertex t, answer all queries of the form Sup(x, t):

Find the root r of the tree containing x; if the root has
been visited, then answer t; otherwise answer r.

Figure 5 lists a pseudo-code for this algorithm. The main
routine Walk performs the traversal and maintains the
last-arc forest, while the subroutine Sup answers individual
queries. The main routine accepts the traversal T directly,
and also a description Q of all queries. The subroutine then
answers each query Sup(x, t) ∈ Q(t). The algorithm uses an
union-find data structure to maintain the mapping from each
visited vertex to its root in the last-arc forest: the vertices
of each tree are kept in a disjoint set labeled by the root
of the tree. The Find(x) operation returns the label of the
set containing x. The Union(y, x) operation merges the sets
containing y and x under the label of the set containing y.
Initially, every vertex x is alone in a set {x} labeled by x.

Theorem 2. The algorithm in Figure 5 is correct.

Proof. By Theorem 1 it is sufficient to argue that we
maintain the vertices of each tree in their own set labeled
by the tree root. Assume this holds for the step (x, y) ∈ T
before we visit a last-arc (s, t) ∈ T . Because T is topological
both s and t are roots in T/(x, y). The new forest T/(s, t)
differs by having s attached as a child of t. This is exactly
what lines 5–6 of the main routine Walk accomplish.

We now elaborate on the algorithm’s resource require-
ments. An union-find data structure can be implemented
very efficiently, guaranteeing nearly constant amortized time
per operation. The precise asymptotics is given in terms of
Tarjan’s functional inverse α of the Ackermann function.

Theorem 3. The algorithm in Figure 5 needs at worst
Θ
(
(m+ n)α(m+ n, n)

)
time and Θ(n) space to answer m

supremum queries on a lattice with n elements.

Proof. In total at most m+ n union-find operations are
executed over n elements: one Find per query and at most
one Union per element. With a fast union-find implementa-
tion they shall take at most Θ

(
(m+ n)α(m+ n, n)

)
time, as

analyzed by Tarjan [19, 20], and Θ(n) space. Additionally,
by Euler’s formula at most 3n− 6 = Θ(n) arcs are traversed,
as the input diagram is planar.

Remark 1. We assumed that a planar diagram or a non-
separating traversal are directly given as input. Therefore,
there stands the question of whether we can obtain them
efficiently in the context of online race detection. In Section 5
we discuss a restriction to fork-join for which this is the case.

In a more general context, it is worth recalling how to
obtain a planar diagram or a non-separating traversal given
the input digraph alone. Without loss of generality, we can
consider graphs with a single source s, a single sink t, and
an arc (s, t) connecting the two. For such digraphs, we can
obtain a monotonic planar drawing (or a non-separating
traversal) from a any planar drawing where the arc (s, t)
lies on the external face [2, 14]. Planar drawings can be
constructed efficiently in linear time, e.g., by [6, 9].

Remark 2. The algorithm we presented can be seen as
an extension of Tarjan’s offline algorithm for finding lowest
common ancestors in trees. A lowest common ancestor is
just another name for infimum, and by reversing the arcs
in a directed graph (poset) we switch infima and suprema.
Thus, we can see Tarjan’s algorithm as finding suprema in a
semilattice with the shape of a tree. In this case, a simpler
version of Theorem 1 holds:

For the root r of the tree in T/(t, t) containing x,
it is always the case that t ≤T r, and therefore:

sup{x, t} = r.

That is, in this case we do not need to track whether the
root has already been visited or not.
Our extension to Tarjan’s algorithm is inspired by the

SP-bags algorithm due to Feng and Leiserson [12]. SP-bags
basically applies Tarjan’s algorithm to the decomposition
tree of a series-parallel graph, which can be shown to be
equivalent to applying Theorem 1 to the series-parallel graph
directly.

Next, we show how our algorithm can be used as a building
block in an online race detector.



4. ONLINE RACE DETECTION
In this section we consider the problem of detecting races

in programs whose task graphs have a two-dimensional lat-
tice structure. In particular, we apply the algorithm for
finding suprema from Section 3 in an efficient race detection
algorithm. Interestingly, as we discuss below, non-separating
traversals are not always obtainable in the context of online
race detection (as these traversals may consist of events that
have not yet occurred in an execution). Thus, we show how
to slightly adapt the class of traversals we consider in order
to achieve a fully online algorithm for 2D lattices.

Races.
Recall that given a program execution, a race between a

pair of conflicting memory operations exists if these opera-
tions are not synchronized to occur in a fixed order. Two
operations conflict whenever they access the same memory
location, and at least one of them writes to that location.
The presence of racing operations indicates potentially non-
deterministic behavior, as executing them in different orders
might lead to different results.
We reason about operation order by querying the task

graph G = (V,E) of the particular execution that we are
analyzing. An operation x is ordered before y, if from x
we can reach y via a directed path in G. The execution
itself corresponds to a traversal of the graph in topological
order. A race manifests as two vertices not connected by a
directed path and whose corresponding operations do conflict.
To keep the graph-theoretic terminology we shall refer to
operations as vertices.

The problem.
We are given a program such that the task graph of any of

its executions has a two-dimensional (2D) lattice structure,
i.e., a planar diagram. Our goal is to detect races online as
we execute the program. In abstract terms, the execution
produces a task graph G and a traversal T that we follow.
For each visited vertex t, we wish to detect whether t races
with another visited vertex x <T t. We shall assume that T
has a certain structure, namely, be non-separating. Finding
an execution order which ensures that structure depends on
the class of programs under consideration. In Section 5 we
discuss a structured use of fork-join for which an appropriate
execution order can be easily determined.

Suprema based race detector.
We arrive at a race detector by applying the algorithm for

answering supremum queries from Section 3 to the lattice
(P,❁) determined by the task graph (recall that ❁ equals
the reachability relation of the task graph G). Of course,
the traversal T dictated by the program execution must be
non-separating. While traversing the task graph along T , we
consider the set K of visited vertices that conflict with the
current vertex t. Unless every vertex in K is ordered before
t we have a race:

no K-t race ⇐⇒ K ⊑ t ⇐⇒ supK ⊑ t. (3)

We can therefore reduce race detection to tracking suprema
in the lattice (P,❁). Note that supK need not even access
the same memory location as K and t (cf. Figure 2).
The overall approach is summarized in Figure 6. Two

routines On-Read and On-Write handle respectively read

On-Read(t)

1 if Sup(R[t. loc], t) 6= t
2 report a race on t. loc
3 R[t. loc]← Sup(R[t. loc], t)

On-Write(t)

1 if Sup(R[t. loc], t) 6= t or Sup(W [t. loc], t) 6= t
2 report a race on t. loc
3 W [t. loc]← Sup(W [t. loc], t)

Figure 6: Online race detection via suprema. For
every memory operation t in an program execution a
corresponding routine is performed. The maps R[loc]
and W [loc] accumulate the suprema of respectively
all reads and writes per location loc.

and write operations. For every memory location loc they
accumulate into R[loc] the supremum of those visited vertices
that read from loc, and accumulate intoW [loc] the supremum
of those visited vertices that write to loc. To check for races
on the location t. loc accessed by the current vertex t, the
routines compare R[t. loc] or W [t. loc] with t in the lattice
order ❁. Such comparison x ⊑ t is implemented with the
query Sup(x, t) = t. The suprema R[t. loc] and W [t. loc] are
always in the closure of the vertices visited up to t as required
by the problem definition in Section 3.

Obstacles to online race detection.
In general, a program may not have an execution that

corresponds to a non-separating traversal, even though its
task graphs have a two-dimensional lattice structure. That is
because a non-separating traversal might require us to visit
an arc (s, t) at a moment where t is not yet determined by
the execution so far. For example, suppose that (s, t) is the
only arc exiting s, the vertex s is the last operation of some
thread, and t is a join operation joining that thread. Then,
the presence of the arc (s, t) is determined only upon the
execution of t, while a non-separating traversal requires that
(s, t) is visited right after (s, s). A similar difficulty arises in
answering supremum queries: when visiting a vertex t the
supremum sup{x, t} might be indeterminate as well. These
cases are demonstrated by Figure 2 in Section 2.

In order to obtain an online race detector, we shall do two
things: 1) employ a slightly different class of traversals that
have no obstacle to being executable; 2) relax the problem
of finding suprema, such that it can be solved over the new
class of traversals, and moreover still facilitate race detection.

Delayed traversals.
We shall now define delayed non-separating traversals.

First, let us characterize the arcs (s, t) that can potentially
prevent a traversal T from being executable. Assume that T
visits (s, t) before it visits a vertex x on which the vertex t
depends on, i.e., assume that

(s, t) <T (x, x) and x ❁ t. (4)

Whether the arc (s, t) is present in the task graph is usually
determined right before the execution of t, and therefore only
after the execution of x. In this case no execution corresponds
to T . An example of (4) is given by (3, 6) <T 5 ❁ 6 in
Figure 4, Section 3.



1

2

3

4

5

6

7

8

9

(1, 1) · · · (3, 3)(3,×)(2,×)(1, 4)(4, 4)(2, 5)(4, 5)(5, 5) · · ·

p

p

pp

Figure 7: A delayed non-separating traversal. The
traversal of the crossed arcs has been delayed so they
are visited together with their target vertices. The
stop-arcs (3,×), (2,×), etc. (not drawn) mark the
original places of the delayed arcs.

To remove this obstacle, we shall delay the traversal of
all arcs (4) until immediately before t. Hence, in the old
place of (s, t) we leave the special marker (s,×) that we call
a stop-arc. We obtain the transformation T 7→ T ′:

T : ·· (si, t) ·· (sj , t) ·· (sn, t)(t, t)
↓ ↓ ↓

T ′ : ·· (si,×)
︸ ︷︷ ︸
stop-arc

·· (sj ,×)
︸ ︷︷ ︸
stop-arc

·· ..(si, t)..(sj , t)..
︸ ︷︷ ︸

delayed arcs

(sn, t)(t, t)

Definition 3. A delayed non-separating traversal is one
which is obtained in the same way as a non-separating traver-
sal except that the arcs (4) have been delayed and stop-arcs
mark their original places (Figure 7).

In Section 5 we discuss a restriction to fork-join for which
delayed traversals can easily be obtained.

Relaxed query problem.
As sup{x, t} might be indeterminate at the moment of

execution of t, we shall relax the original query problem (2)
from Section 3. Observe that the race detection algorithm
in Figure 6 uses the result of a query only to compare it
with the current vertex. Therefore, we may answer queries
differently as long as any such sequence of comparisons leads
to the same outcome. Recall that the defining property of
suprema is given by

sup{x, y} ⊑ t ⇐⇒ x ⊑ t, y ⊑ t, (5)

for all x, y and t. It is therefore sufficient to come up with a
routine Sup(x, t) that answers the relaxed query problem

Sup(x, t) = t ⇐⇒ x ⊑ t (6)

Sup(Sup(x, y), t) = t ⇐⇒ Sup(x, t) = t,Sup(y, t) = t (7)

for all vertices x, y and t that satisfy the precondition (1) to
Sup from Section 3. For example, if we execute the program
in Figure 2, Section 2 in the order A B C D, then Sup(A, B)
is allowed return A instead of the true supremum C.

The condition (5) and the conditions (6)-(7) are of course
not equivalent, for otherwise Sup(x, y) must always equal
sup{x, y}. The difference is that for (6)-(7) the possible
combinations of x, y and t are restricted by the Sup precon-
dition (1), while for (5) they are unrestricted.

Walk(T,Q)

1 for (s, t) ∈ T
2 if (s, t) is a loop
3 t.visited ← True

4 answer Q(t)
5 if (s, t) is a last-arc
6 Union(t, s)
7 if (s, t) is a stop-arc
8 s.visited ← False

Sup(x, t)

1 r ← Find(x)
2 if r.visited
3 return t
4 else
5 return r

Figure 8: An algorithm for answering relaxed supre-
mum queries (6)-(7) along delayed non-separating
traversals. The only difference with the algorithm
in Figure 5 is that this one handles stop-arcs (s,×)
by marking the vertex s as unvisited.

Modified algorithm.
We shall adapt the algorithm in Figure 5, Section 3 to

solve the relaxed query problem (6)-(7) along delayed non-
separating traversals. In answering queries Sup(x, t), we
need to decide what to do when the supremum s = sup{x, t}
has not been visited yet. Recall that along a normal non-
separating traversal T , we can simply find the root of x in the
forest T/(t, t). Because s is not visited, by Theorem 1 this
root must equal s. However, in the corresponding delayed
traversal T ′ the root r of tree in T ′/(t, t) that contains x
does not equal s, but merely has the last-arc (r, s) pointing
to s. Because the last-arc (r, s) has been delayed after t, at
this point we do not know what the true supremum is.
To deal with this situation, we shall answer such queries

with Sup(x, t) = r, pretending that r is the supremum s.
We need to make sure that r is marked as unvisited, so in
future queries it behaves the same way as s does. When
we later visit the arc (r, s) we have the chance to correct
this deception by attaching r as a child of s, so that no one
will notice. The moment when r should start acting like s,
is when we visit the stop-arc (r,×). Then, we mark r as
unvisited. Recall that the stop-arc stands in the original
place of the last-arc (r, s) in the traversal T .

In essence, by marking the root r as unvisited, we make it
observationally equivalent to the supremum s with respect
to (6)-(7). This approach is summarized in Figure 8.

Theorem 4. The algorithm in Figure 8 is correct with
respect to the relaxed conditions (6)-(7).

Proof. We begin with condition (6). Recall that along a
non-separating traversal T the forest T/(s, t) changes with
every visited last-arc (s, t) by attaching the root s as a child
of the root t. In the corresponding delayed traversal T ′

exactly the same changes occur but at the point right before
t is visited. Consider the state of the algorithm along T ′ and
compare the two forests T/(t, t) and T ′/(t, t). The trees in
T/(t, t) having roots visited before t are precisely the trees
in T ′/(t, t) having roots marked as visited. Therefore, by
Theorem 1 we obtain (6). As for condition (7), compare
the answer r = Sup(x, y) over T ′ and s = sup{x, y}. By
the definition of a delayed traversal, (r, s) must be a last-
arc. Moreover, this arc is visited before t, and so r must be
attached as a child of s before t is visited. Then, assuming
either side of the equivalence (7), the vertices x, y and t all
belong to the same tree in T ′/(t, t), with t being its root.
Therefore, the other side of (7) follows.



Space and time and requirements.
We now turn to the question of resource requirements. As

currently formulated, the algorithm requires storing every
visited vertex, i.e., requires at minimum space proportional
to the number of executed operations. This can be too
expensive in practice, and we now discuss how to reduce this
number significantly. The idea is to decompose the vertices
of the task graph into “threads” and identify each vertex with
the thread that it belongs to, while ensuring that the race
detection algorithm is sound and precise. This way we need
to store only the threads and not the vertices themselves.
For a given delayed traversal T ′ of the graph G = (V,E),

we define a thread as the set of vertices of a maximal path of
non-delayed last-arcs. For example, the threads in Figure 7
are {2}, {3}, {5}, {6}, and {1, 4, 7, 8, 9}. We assume that
each thread is assigned an unique identifier, and let tid(x)
denote the identifier of the thread containing x. Instead
of feeding the delayed traversal T ′ to the race detector, we
transform it T ′ 7→ T ′′ by replacing every arc3 according to

(x, y) 7→ (tid(x), tid(y)). (8)

This way the race detector operates on threads instead of
vertices, and does bookkeeping proportional to the number
of threads. Moreover, the transformation preserves every
comparison made by the race detection:

Sup(x, t) = t ⇐⇒ Sup(tid(x), tid(t)) = tid(t). (9)

This follows from the fact that a thread intersects at most
one tree in T ′/(s, t) for every (s, t) ∈ T ′.
From the already calculated resource bounds of the algo-

rithm in Section 3 (i.e., Theorem 3), we directly obtain:

Theorem 5. The race detection algorithm in Figure 6
needs Θ(α(m+ n, n)) amortized time per executed operation,
where m is the number of operations, and n is the number of
threads. Also, it needs Θ(1) space per thread and per tracked
memory location.

For the structured fork-join program constructs, discussed
in the next section, the threads defined here correspond to
actual program threads (i.e., tasks).

5. STRUCTURED FORK-JOIN
In this section we restrict the fork-join parallel constructs,

such that they produce the task graphs with a two-dimensional
lattice structure. For the sake of presentation we will deal
with task graphs in which every vertex has at most two
incoming arcs, and at most two outgoing arcs. The general
case is easily obtainable from this one.

Structured fork-join.
We shall structure the use of fork and join constructs by

restricting with which tasks a given task is allowed to join.
The basic idea is to maintain all running tasks as points in
a line. Each task may join only its left neighbor, removing it
along the way. Similarly, a newly forked child becomes the
left neighbor of the parent. This way each task x splits the
line into a left part L and a right part R, or more graphically
into L · x · R. The restrictions mean that task x may add
and remove tasks only at the right end of L (treat it like a
LIFO stack), but cannot touch R at all.

3We assume that the information about what operation
corresponds to a vertex is preserved somewhere else.

L · {x | fork y β;α} ·R −→ L · {y | β} · {x | α} ·R

L · {y |} · {x | join y;α} ·R −→ L · {x | α} ·R

Figure 9: Fork-join rules that capture task graphs
with a 2D lattice structure. Each task is represented
by a pair {x | α}, where x is the task identifier and
α is a list of statements. All tasks are organized as
points in a line. A forked task goes on the left of its
parent, and a task may only join the one on its left.

We state these rules more formally in Figure 9. Each
task is represented as a pair {x | α}, where x is an unique
identifier, and α is the sequence of statements that the task
executes. The program in Figure 2, Section 2 follows the
rules. Figure 10 shows a 2D task graph along with lines of
task points at various moments in the execution.

Vertices in a task graph correspond to transitions taken by
the program, e.g, fork y or join y. Edges signify immediate
dependencies of one transition upon another, e.g., a join y
transition depends on the previous transition by the same
thread and also on the final transition by the joined thread.
(This is essentially Lamport’s happened-before relation.)

Theorem 6. The rules in Figure 9 generate task graphs
with a two-dimensional lattice structure.

Proof. From an execution that follows the rules we can
easily construct a planar diagram of the task graph. Recall
that a diagram is required to be monotonic, i.e., that directed
paths always advance in a fixed direction. Let us choose this
direction to be downwards. Now, each program transition
transforms Ti 7→ Ti+1 the current line Ti of task points, and
so we have a history of line snapshots T1, . . . , Tn.

Let us lay out the lines such that each Ti is horizontal and
placed above Ti+1 (Figure 10). Observe that every task x
intersects each line Ti at exactly zero or one points xi ∈ Ti.
To build the task graph, for each Ti 7→ Ti+1 add arcs between:

1. xi and xi+1,

2. xi and yi+1 if x forks y

3. yi and xi+1 if x joins y

and then collapse all task points that represent the same task
state. The resulting diagram is monotonic as Ti is above
Ti+1. It is also planar, because when forking or joining the
two involved points xi, yi ∈ Ti are always next to each other.
The resulting diagram is a diagram of a lattice by a well-know
result [1, 11] in poset dimension theory.

An extension of the rules with forking and joining any
number of tasks would capture all possible 2D lattices.

Obtaining delayed traversals.
The proof of Theorem 6 indicates a direct way to obtain a

delayed non-separating traversal from an execution. On the
resulting diagram (Figure 10) a newly forked task stays on
the left of its parent task. Therefore, to traverse the diagram
from left to right, we can simply execute the program serially,
fork-first, and emit arcs on the way. Here, x and y designate
task identifiers, according to (8), Section 4:

T
x forks y
7−−−−−−→ T · (x, y), T

x steps
7−−−−−→ T · (x, x),

T
x joins y
7−−−−−−→ T · (y, x), T

x halts
7−−−−−→ T · (x,×),



f

f f

j

f

j j

j

p

p p

p

Figure 10: A fork-join task graph with a 2D lattice
structure. Fork edges are dashed, step edges are
solid, and join edges are crossed. A serial fork-first
execution corresponds to a delayed non-separating
traversal of the task graph. Lines of task points from
the fork-join rules are drawn horizontally.

To motivate this construction, observe that a last-arc in the
task graph connects either two consecutive operations on
the same task, or a final operation on one task and a join
operation from another. The one between a final operation
and a join must be delayed, which is done by emitting a
stop-arc when a task halts, and a last-arc when one task
joins another.
To instantiate our race detection algorithm, we simply

need to stream the constructed traversal T on the fly to the
Walk routine in Figure 8, with the race detector in Figure 6
passed as the callback Q.

Generalization of series-parallel constructs.
It is instructive to understand how the structured fork

and join presented here generalize constructs that produce
series-parallel graphs, such as Cilk’s spawn-sync or X10’s
async-finish. Consider a stylized version of the rules in
Figure 9, where for clarity, program statements are omitted
and only the task identifiers are kept:

L · x ·R
x forks y
−−−−−−⇀↽−−−−−−
x joins y

L · y · x ·R. (10)

A situation that produces non-SP graphs can arise here.
Consider which task could have forked y. As a newly forked
task is placed on the left of its parent, the task that have
forked y must be either x or some task in R. For example,
we can have the passage

t
t forks y
−−−−−−→ y · t

t forks x
−−−−−−→ y · x · t

x joins y
−−−−−−→ x · t.

This results in a non-SP task graph (cf. Figure 2, Section 2).
One way to ensure that the produced task graph is SP, is
to require y to be a descendant of x. This is achieved by
bracketing x in (10) together with its descendants S:

L · [S · x] ·R
x forks y
−−−−−−⇀↽−−−−−−
x joins y

L · [S · [y] · x] ·R. (11)

This way x cannot join a task outside S. It is easy to estab-
lish that (11) indeed produces series-parallel task graphs, e.g,
we recover the semantics of sync by automatically joining
with the whole set S in addition to y.

Handling pipeline parallelism.
Before we conclude this section, we discuss another setting

which can benefit from our race detector. Many applications
exhibit parallel structure in the form of a linear pipeline
as described in [16]: they take as input a sequence of data
items x1, . . . , xn, and feed each item xj through a sequence
of computation stages S1(xj), . . . , Sm(xj).
A task Si(xj) is allowed to depend on any Sk(xl) where

k < i or l < i, but otherwise tasks are run in parallel. Thus,
the task graph of a linear pipeline can be embedded into a
two-dimensional grid, i.e., it forms a two-dimensional lattice.
This pattern can be directly captured in our structured
fork-join and can also be analyzed with the race detection
algorithm presented in this paper.
Blelloch and Reid-Miller [4] made the observation that

many pipelined programs are more naturally expressed in a
fork-join fashion. However, their model is more relaxed than
ours as it allows non-linear pipelines, therefore leaving open
the question for efficient race detection in their case. Linear
pipelines are the focus of the work of Lee et al. [15] which
extends Cilk with support for this setting. Interestingly, their
language constructs are easily expressible in our restricted
fork-join, but not the other way around, even though both
models can express exactly the same task graphs, i.e., the
ones having a two-dimensional lattice structure.

6. PROOFS
In this section we prove Theorem 1 in a series of four

lemmas, which are basically weaker versions of it.
Let (P,❁) be a two-dimensional lattice represented by a

given planar diagram with digraph G = (V,E), and let T be
a non-separating traversal of the diagram. Without loss of
generality we assume that P = V , and that the diagram is
monotonic in the downwards direction, and that the traversal
is from left to right. Recall that x and y are comparable if
either x ⊑ y or y ⊑ x, i.e., they lie on a directed path in G.

Lemma 1. Let x and t be two incomparable vertices such
that x belongs to T/(t, t). Then, sup{x, t} is reachable from
x via a directed path consisting of last-arcs only.

Proof. Because the traversal is depth-first left-to-right,
we can choose the planar diagram such that the vertical line
crossing sup{x, t} has x on its left and t on its right. The
diagram is planar and monotonic, hence we can select the
rightmost path exiting x and the leftmost path exiting t.
Then, sup{x, t} must lie on the intersection of the two paths,
or it would not be the least upper bound of {x, t}. Any
rightmost path by definition consists of last-arcs only.

Lemma 2. For all vertices x and t such that x belongs to
T/(t, t) we have that sup{x, t} also belongs to T/(t, t).

Proof. If x and t are comparable then the statement is
trivial, so let us assume that x and t are incomparable, and
let s = sup{x, t}. Select the last-arc (p, s) lying on the path
from Lemma 1 that connects x and s. The two vertices p and
t must be incomparable, and therefore (p, s) must be visited
before t, for otherwise the traversal would not be depth-first
left-to-right. We conclude that the last-arc (p, s) belongs to
the forest T/(t, t) and so does s.

Lemma 3. For all vertices x and t such that x belongs to
T/(t, t) we have that sup{x, t} is a root of T/(t, t).



Proof. From Lemma 2 we known that s = sup{x, t}
belongs to T/(t, t). Because T/(t, t) consists of last-arcs
only, if s is not a root, then its last-arc must also belong to
T/(t, t), and therefore be visited before t. This contradicts
the assumption that the traversal is topological as by the
definition of supremum t ⊑ s.

Lemma 4. For every vertex t and root r in T/(t, t) we
have that r is comparable with t.

Proof. Assume r and t are incomparable. By Lemma 1
we conclude that s = sup{r, t} must be reachable from either
r or t via a directed path of last-arcs. But by Lemma 3
we know that s is a root of the last-arc forest T/(t, t), and
therefore r and t cannot both be roots, a contradiction.

Theorem 1. Given a non-separating traversal T and a
pair of vertices x and t, where x belongs to the closure of
prefix ending in (t, t), let r be the root of the tree in T/(t, t)
that contains x. Then sup{x, t} attains the form:

sup{x, t} =

{

t if r ≤T t

r if t ≤T r.

Proof. It is not difficult to see that the set of vertices
of T/(t, t) equals the closure of the prefix ending in t. Now,
by Lemma 4 and because the traversal is topological, the
following equivalences hold (recall that <T is a linear order):

r ≤T t ⇐⇒ r ⊑ t (12)

t <T r ⇐⇒ t ❁ r. (13)

If r ≤T t, then the theorem follows directly, and so let us
consider the case when t <T r and t ❁ r. Then, x and t are
incomparable, and by Lemma 1 we have that s = sup{x, t}
is reachable from x by a path of last-arcs. But by Lemma 3
s is a root in T/(t, t), and therefore must equal r.

Remark 3. Introducing two dimensional lattices as those
having planar diagrams is intuitive. However, the original
(and more flexible) definition due to Dushnik and Miller [10]
describes them as those being the intersection of two linear
orders. The fact that this is equivalent to having a planar
diagram was proved by Baker et al. [1].

7. CONCLUSION
We presented an online algorithm for race detection in

task graphs with a two-dimensional (2D) lattice structure.
These 2D lattices are richer than SP-graphs and thus our
algorithm generalizes race detectors for SP-graphs. Our
algorithm is founded in reducing race detection to finding
suprema in program task graphs. Building on prior work [12,
18], we extended Tarjan’s algorithm for finding lowest com-
mon ancestors in trees, to finding suprema in 2D lattices.
Efficient computation of suprema is based on performing a
non-separating traversal of the lattice graph. However, such
a traversal need not correspond to any program execution,
thus precluding an online algorithm. To overcome this ob-
stacle, we observed that a race detector can pose suprema
queries with a relaxed semantics. We adopted our suprema
finding algorithm to answer the relaxed queries over a wider
class of traversals, and obtained a fully online race detector.
Finally, we introduced restricted fork-join constructs which
permit only task graphs with a 2D lattice structure, resulting
in programs directly analyzable by our online algorithm.

8. ACKNOWLEDGMENTS
We thank Raghavan Raman and Boris Peltekov for helpful

discussions on earlier versions of this work. We are also
grateful to the anonymous reviewers for their questions and
well-placed remarks which improved the paper.

9. REFERENCES
[1] K. A. Baker, P. C. Fishburn, and F. S. Roberts. Partial

orders of dimension 2. Networks, 2(1):11–28, 1972.

[2] G. D. Battista and R. Tamassia. Algorithms for plane
representations of acyclic digraphs. Theoretical
Computer Science, 61(2-3):175 – 198, 1988.

[3] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E.
Leiserson. On-the-fly maintenance of series-parallel
relationships in fork-join multithreaded programs.
SPAA, pages 133–144. ACM, 2004.

[4] G. E. Blelloch and M. Reid-Miller. Pipelining with
futures. SPAA, New York, NY, USA, 1997. ACM.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. PPOPP, 1995.

[6] J. Boyer, P. Cortese, M. Patrignani, and G. Di Battista.
Stop minding your P’s and Q’s: Implementing a fast
and simple DFS-based planarity testing and embedding
algorithm. Graph Drawing ’04. Springer, 2004.

[7] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-
Java: The new adventures of old X10. PPPJ, 2011.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: An object-oriented approach to non-uniform
cluster computing. OOPSLA, 2005.

[9] H. de Fraysseix and P. O. de Mendez. Trémaux trees
and planarity. E. J. Comb., 33(3):279 – 293, 2012.

[10] B. Dushnik and E. W. Miller. Partially ordered sets.
American Journal of Mathematics, 63(3):600–610, 1941.

[11] S. Felsner, W. T. Trotter, and V. Wiechert. The
dimension of posets with planar cover graphs. Graphs
and Combinatorics, pages 1–13, 2014.

[12] M. Feng and C. E. Leiserson. Efficient detection of
determinacy races in Cilk programs. SPAA, 1997.

[13] C. Flanagan and S. N. Freund. FastTrack: Efficient and
precise dynamic race detection. PLDI, 2009.

[14] D. Kelly. Fundamentals of planar ordered sets. Discrete
Mathematics, 63(2-3):197 – 216, 1987.

[15] I.-T. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha,
and Z. Zhang. On-the-fly pipeline parallelism. SPAA.
ACM, 2013.

[16] M. McCool, J. Reinders, and A. Robison. Structured
Parallel Programming: Patterns for Efficient
Computation. Elsevier Science, 2012.

[17] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and
E. Yahav. Scalable and precise dynamic datarace
detection for structured parallelism. PLDI, 2012.

[18] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and
E. Yahav. Efficient data race detection for async-finish
parallelism. RV, 2010.

[19] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. J. ACM, 22(2):215–225, Apr. 1975.

[20] R. E. Tarjan and J. van Leeuwen. Worst-case analysis
of set union algorithms. J. ACM, 31(2):245–281, 1984.


