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Abstract—Aiming to train and deploy predictive models, orga-
nizations collect large amounts of detailed client data, risking
the exposure of private information in the event of a breach.
To mitigate this, policymakers increasingly demand compliance
with the data minimization (DM) principle, restricting data
collection to only that data which is relevant and necessary for
the task. Despite regulatory pressure, the problem of deploying
machine learning models that obey DM has so far received
little attention. In this work, we address this challenge in
a comprehensive manner. We propose a novel vertical DM
(vDM) workflow based on data generalization, which by design
ensures that no full-resolution client data is collected during
training and deployment of models, benefiting client privacy
by reducing the attack surface in case of a breach. We formalize
and study the corresponding problem of finding generalizations
that both maximize data utility and minimize empirical privacy
risk, which we quantify by introducing a diverse set of policy-
aligned adversarial scenarios. Finally, we propose a range of
baseline vDM algorithms, as well as Privacy-aware Tree (PAT),
an especially effective vDM algorithm that outperforms all
baselines across several settings. We plan to release our code
as a publicly available library, helping advance the standard-
ization of DM for machine learning. Overall, we believe our
work can help lay the foundation for further exploration and
adoption of DM principles in real-world applications.

1. Introduction

Advances in machine learning (ML) have enabled orga-
nizations to automate tasks such as credit risk scoring [1] or
fraud detection [2]. As ML models require large amounts of
training samples, organizations increasingly collect different
types of detailed client data, hoping to improve the models’
performance. The deployment of such models, in turn,
necessitates the collection of an even larger amount of highly-
detailed client data for inference. These developments have
led to growing regulatory concerns regarding the effects of
large-scale data collection on individuals’ privacy.

1.1. Data Minimization

In an attempt to address this issue, several authorities have
developed regulations limiting data collection and processing.
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Figure 1: Vertical data minimization (vDM) can greatly
reduce the granularity of the data being collected, while not
significantly impacting downstream ML models. We give a
full overview of the chosen example in Section 8.4.

Most notably, such concerns are an important part of EU’s
General Data Protection Regulation (GDPR) [3], California’s
Privacy Rights Act (CPRA) [4], and the recent Blueprint for
a U.S. AI Bill of Rights [5]. The GDPR, for example, defines
data minimization (DM) in Article 5C as the principle of
only collecting and using data that is “adequate, relevant
and limited to what is necessary in relation to the purposes
for which it is processed”. Similarly, the AI Bill of Rights
Blueprint dictates “ensuring that data collection conforms to
reasonable expectations and that only data strictly necessary
for the specific context is collected.” In the context of ML,
this implies that the collection of any personal data (e.g.,
citizenship) has to be justified by the increase in utility of the
resulting model. Furthermore, these regulations also apply
for model deployment, a setting that many prior approaches
cannot feasibly handle (Section 3).

DM in Practice. DM regulations have already had real-world
impact—the EU has so far issued at least 166 fines due to
DM violations [6]. An example is a fine of 2.75M euros
issued in a case of fraud detection for childcare benefits [7],
where the tax agency collected applicants’ citizenship as a
feature for their fraud detection model, even though it has
later been shown that a simpler feature (being a resident or
not) would have sufficed to achieve the same utility. Similarly,
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the EU has fined a delivery company [8] for recording the
GPS position of drivers every 12s, despite less detailed
information being sufficient for their purpose. Finally, there
are various examples of fines issued when a security breach
exposed sensitive data [6], which could have been avoided
if such data was not unnecessarily collected to begin with.

On a positive note, there are examples of successful DM
applications, e.g., the Norwegian Tax Authority reported
using only 30 out of 500 considered variables in their tax
error detection system [9]. Our experiments in Section 8
further indicate the feasibility of DM approaches in practice—
we illustrate one such example in Figure 1, where collecting
only the age group (e.g., 20-63) and the highest obtained
diploma (e.g., High School) instead of exact age, educational
status, and citizenship, results in minimal utility loss.

1.2. Principled Vertical DM for ML

Reducing the number of data points collected is an
important and well-studied research problem [10], [11], [12],
which can be interpreted as horizontal data minimization
(hDM). We argue that hDM is not a suitable solution to
many of the privacy concerns behind DM, as it offers no
privacy protection for individual clients whose data was
collected. In contrast, we therefore focus on vertical data
minimization (vDM, formalized in Section 4), as the process
of reducing the information collected within each data point,
which directly protects clients that provide data during model
training and especially deployment.

Despite these advantages of vDM, there has so far not
been a well-established framework for the principled appli-
cation and evaluation of vDM for ML. Without standardized
evaluation, practitioners lack insight into how well their DM
solutions protect client privacy in real-world settings. For
example, as we will elaborate on in Section 2.2, one prior
attempt to formalize vDM uses metrics that fail to capture
the vulnerability to practical privacy attacks. This raises two
key questions:

1) What are the unique privacy challenges posed by
DM regulations and why are existing approaches
insufficient for addressing them?

2) Can we devise an approach for principled applica-
tion and evaluation of vDM that addresses these
concerns for practical machine learning use-cases?

1.3. This Work

In this work, we tackle these questions, taking several
steps to lay the foundations of vDM for ML.
The vDM Setting. First, we differentiate the vDM setting
from similar settings highlighting how they are insufficient
for addressing the requirements set forth by DM regulations.
Afterwards we formalize the vDM setting via the concept
of generalization, i.e., replacing detailed attributes with less
granular ones (e.g., age with an age group). We define
a workflow that organizations can employ, which after

choosing a generalization based on a small set of full-
granularity data points, ensures that during future model
training and deployment no full-granularity data is collected
from the clients (e.g., in a data collection survey, as illustrated
in Figure 1), reducing the attack surface in case of a data
breach and aligning with regulatory requirements.

To answer the question of which generalizations are
suitable, we define two key objectives: data utility, which
measures how useful the minimized data is for the down-
stream ML task (by training a classifier), and empirical
privacy risk, which measures the potential to compromise
individual privacy by observing minimized data (e.g., after
a data breach). To quantify the latter, we formalize a com-
prehensive set of diverse and policy-aligned (see Section 5)
adversaries with different attack objectives and capabilities,
e.g., regarding their side information.
The vDM Algorithms. We introduce a range of strong
baseline vDM algorithms, as well as Privacy-aware Tree
(PAT), a vDM algorithm inspired by prior work on tree-based
fair encoders [13]. We perform an extensive experimental
evaluation of PAT and our baselines in various settings,
demonstrating that PAT generally achieves the most favorable
utility-privacy tradeoffs compared to all baselines. Our
experimental findings highlight the importance of a principled
evaluation of empirical privacy risks by illustrating how a
naive evaluation would fail to capture key aspects of vDM.

1.4. Key Contributions

Our main contributions are:

• A formalization of the vertical data minimization
(vDM) setting, and the underlying problem of gener-
alizing the data such that it remains useful for the
downstream task (utility) and exhibits low empirical
privacy risk (Section 4).

• A formulation and instantiation of a comprehensive
set of adversaries with different attack capabilities
as a tool for evaluating the empirical privacy risk of
vDM generalizations (Section 5).

• A diverse set of baseline vDM algorithms that can
serve as a benchmark for future work (Section 6).

• A novel vDM algorithm, Privacy-aware Tree (PAT),
achieving state-of-the-art results across multiple
datasets (Section 7).

• An extensive experimental evaluation of all intro-
duced vDM algorithms and adversaries on several
real-world datasets highlighting the practical applica-
bility of vDM (Section 8).

• A library with all our adversaries, baselines, and PAT ,
advancing the standardization of vDM available at
https://github.com/eth-sri/datamin.

2. Background

In this section, we will introduce the background neces-
sary for the subsequent parts of the paper.
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Figure 2: Overview of the vDM deployment setting on an ACSIncome toy dataset (see Section 8). Clients directly provide
generalized data, i.e., adversary and collector (which could be the same) only observe generalized records. The vDM
adversary tries to reconstruct the original values of the generalized attributes (here all Qi). The collector runs a downstream
ML model on the generalized data for inference.

2.1. Machine Learning

In recent years ML algorithms, specifically deep neural
networks, have been applied in classification tasks in a wide
variety of settings [14], [15]. Let D be a data distribution
over X × Y and (x, y) ∼ D be a data point consisting of
a record x and its discrete label y ∈ Y = {1, . . . , c}. The
goal of an ML algorithm is to learn a mapping function
fθ : X → Y (e.g., a neural network) parameterized by θ
(e.g., neural network weights), which maps records x ∈ X
to fθ(x) ∈ Y aiming to minimize some objective function L.
We will refer to f = fθ as a model. For classification, we set
L = E(x,y)∼D[f(x) 6= y], the expected rate of misclassifica-
tion, which in training is approximated using finite samples
Strain ∼ D (training set). We assume that f is trained on
Strain and evaluated on a distinct test set Stest ∼ D.

2.2. Attribute Generalization and NCP

In ML the term generalization commonly refers to
model generalization, i.e., the model’s performance on
unseen data. For the scope of this work, we define attribute
generalization (hereafter referred to as generalization) as
a function g : X → Z on our data X ⊆ Rd. This is
referred to as a global generalization as it fixes a single
g for all data points. Local generalizations, on the other
hand, allow different generalization functions for separate
data points, enabling two data points with identical values
to map to different generalized points. As in [16] we say
that g is single-dimensional when it can be decomposed
into a set of gi such that g(x) = (g1(x1), . . . , gd(xd)) and
multidimensional otherwise. Finally, generalizations can be
either strict, ensuring that the image of each gi forms
a proper partition of the respective attribute domain, or
relaxed, allowing elements of gi’s image to have non-empty
intersections (e.g., age both to ranges 20-30 and 25-32).
NCP. We recall the definition of the normalized certainty
penalty (NCP), a metric commonly used in data anonymiza-
tion settings to quantify the information loss of a generaliza-
tion [17], [18]. For brevity, we focus only on categorical at-
tributes. Assume a generalization g defined on d-dimensional

data, and an attribute i with domain Di. For a generalized
record g(x) = z we set NCPi(z) = 0 if zi = xi, and
NCPi(z) = |zi|/|Di| otherwise, where we define |zi| as
|g−1i (zi)| (the size of the pre-image of zi). The per-attribute
NCPi(z) is combined using pre-selected attribute weights
wi to obtain the NCP (z) =

∑d−1
i=0 wi · NCPi(z). Given

a dataset with n points this is combined to a (normalized)
Global Certainty Penalty GCP = 1

n

∑n
i=1NCP (z(i)) [19].

The only prior work [19] attempting to formalize vDM
relied on NCP-based metrics to quantify the privacy risk of
a generalization. We argue, however, that NCP is a generic
information loss metric incapable of accurately reflecting the
adversarial vulnerability of the data when vDM is applied in
real-life scenarios. Assume, e.g., an attribute a with possible
values {a1, a2, a3, a4} used for medical diagnosis, where
a ∈ {a1, a2} implies that the patient requires medication,
while a ∈ {a3, a4} implies otherwise. For an adversary with
knowledge of the generalization, generalizing a such that
{a1, a2} → g1 and {a3, a4} → g2 (Gen. 1) reveals whether
a patient needs medication. Generalizing {a1, a4} → g1
and {a2, a3} → g2 (Gen. 2) does not leak this information.
Despite this, both generalizations have a GCP score of
0.5, making it impossible to distinguish between them.
Motivated by this, we advocate for a more realistic measure
of privacy risk that directly quantifies an adversary’s success
at compromising client privacy in the vDM setting. Based on
existing legislature [20], we will formalize a comprehensive
set of relevant adversaries in Section 5.

2.3. Personal & Sensitive Data

Legal Definitions. In the EU, the introduction of the GDPR
has led to the establishment of a clear definition of personal
data. According to Article 4 of the GDPR [3], personal data
is defined as “any information relating to an identified or
identifiable natural person (’data subject’).” This definition is
more rigorous than the Personal Identifiable Information (PII)
definitions commonly employed under U.S. jurisdiction. The
U.S. Department of Labor defines PII as “any representation
of information that permits the identity of an individual
to. . . be reasonably inferred” [21]. Both in GDPR and PII,
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there is a concept of (especially) sensitive data. The GDPR
details this in Article 9 as a set of sensitive (special category)
personal data (e.g., relating to race, sexual orientation,
religion) for which special care needs to be taken.
Technical Definitions. As we elaborate on in Section 3, the
well-established research areas of privacy-preserving data
publishing (PPDP) [22] and, within it, data anonymization
(DA), operate with a narrower definition of sensitive data. The
standard PPDP setting assumes that a data collector wants
to release a (fixed) table T of data entries with attributes
(T1, . . . , Td) (Ti denoting the i-th attribute), out of which
only one (instead of all personal attributes) is sensitive.

In particular, each attribute Ti is at most one of the
following: Unique Identifier Ui which directly identifies a
single entry, Quasi-Identifier Q = (Q1, . . . , Qdq ), which
allows unique identification of at least one record in T
by examining the attributes in Q, or Sensitive S whose
value we want to protect from being connected with any
particular individual in T . Some PPDP works [23], [24]
attempt to relax the assumption of a single S. However,
this usually happens at the cost of data utility [24] and
often requires the data to be sliced into multiple tables,
each containing only parts of the sensitive attributes. This
gap between stricter regulatory requirements (requiring the
protection of all personal attributes) and existing work is
one of the motivations for our vDM setting in Section 4.

As in PPDP/DA we will focus on tabular data. This both
follows a long line of work in related areas [13], [25] and
also fits regulatory requirements, which are primarily focused
on sensitive attributes in tabular format [3], [26].

3. Motivating a New vDM Setting

In this section, we motivate the need for a new vDM
setting in two steps: In Section 3.1, we derive concrete
requirements for the vDM setting directly from regulations
such as GDPR [3] and the U.S. AI Bill of Rights Blueprint
[5]. Using this, we show in Section 3.2 how current privacy-
enhancing technologies (PETs) fail to address specific parts
of these requirements (summarized in Table 1), motivating
our vDM formalization in Section 4.

3.1. A Regulation-Guided vDM Setting

As our vDM setting focuses on data minimization in ML,
the specific purpose of client data, as required by GDPR
Article 5C, is to provide an accurate ML model for a specific
task (e.g., for medical diagnosis) while protecting client
privacy. To properly evaluate this via adversarial risk (as
done in Section 5), we first have to clarify assumptions made
on the adversary and clients.
Protecting Data Collection. The U.S. AI Bill of Rights
dictates that “. . . only data strictly necessary for the specific
context is collected”, putting the emphasis of the vDM setting
on data collection not only for model training but also for
model inference when (new) client data processing shall
be “limited to what is necessary” (GDPR Article 5C). As

depicted in Figure 2 on a toy example, this implies that
the vDM adversary (formalized in Section 5) is positioned
between the client and the data collector or even is an honest-
but-curious collector. The goal of the vDM adversary hereby
is to reconstruct all personal attribute values from an observed
generalized record. This differs from the adversaries assumed
in some other PETs (Section 3.2).
Client Assumptions. Inherent to this focus on data collection
is the need to clarify client capabilities. To capture a wide
range of use cases, we want to minimize the number of
assumptions made about the client. In particular, the vDM
setting does not assume any cryptographic capabilities or
possibilities to interact with the collector—minimization
should happen only on the data with a focus on the amount
of data collected from clients. This approach is orthogonal to
many PETs that aim to protect full-resolution data collection
(Section 3.2). To avoid assumptions on client capabilities in
vDM, we will require our generalization g to be (1) directly
usable on the client side and (2) easily applicable to new data
points for inference. Namely, clients should be able to enter
values (e.g., age) independently of other values (i.e., g is
single-dimensional), and data entry should remain consistent
across clients (i.e., g is global). Further, we must ensure that
each original attribute value has exactly one corresponding
generalized value (i.e., g is strict).

3.2. Other Privacy-Enhancing Technologies

We now discuss other commonly applied PETs in ML,
highlighting how they are unable to address the vDM setting
outlined in Section 3.1. Throughout this section, we split a
typical ML workflow into three stages: Initial data collection,
model training, and deployment, allowing for a more fine-
grained analysis as shown in Table 1. For data collection, we
first distinguish whether the PET makes strong assumptions
about client capabilities and whether clients assume the
collector to be trusted. We then categorize the privacy of
client records sent to the collector (Privacy (Wire)). The
collector uses this data during the training stage to train an
ML model. For this, we rank both technical feasibility (e.g.,
expensive computations, decreased performance) and the
privacy of the resulting model against membership inference
attacks (Privacy (Model)) [27], [28]. With a trained model,
we proceed to the deployment (inference) stage. Again we
first categorize assumptions on (new) clients and respective
trust in the collector. Additionally, we rate how technically
feasible the PET is for inference on new records as well as
the records’ privacy protection (Privacy (New Record)).
Federated Learning. Federated Learning aims to protect
client privacy by letting them train models locally, only
combining the resulting models/gradients on a server [29].
This, however, comes with the strong technical requirement
of clients being capable of training a model locally (denoted
by in Table 1) and also was shown to be vulnerable to
gradient inversion attacks [30] leaking full resolution data.
Differential Privacy. Differential privacy (DP) [31] has been
widely recognized as the privacy standard in various data
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TABLE 1: Comparison of PETs to the vDM setting. PETs are rated in each category on a scale { , , , , } with more
detail in Section 3.2. We rate assumptions made on client capabilities and trust in the collector during collection/deployment
from (strong) to (none). Further, we rate current technical feasibility and client privacy from (none) over (empirical)
to (guaranteed). For inference, only vDM yields a feasible solution in an untrusted collector setting.

Collection Training Deployment

Client
Assumptions

Trust in
Collector

Privacy
(Wire)

Technical
Feasibility

Privacy
(Model)

Client
Assumptions

Trust in
Collector

Technical
Feasibility

Privacy
(New Record)

Fed. Learning -

DP (Central)

DP (Local) - - -

E2E-Crypto

FHE

SMC - -

PPDP/DA - - - - - -

Synthetic Data

vDM

analytics applications due to its rigorous privacy assurances
independent of the adversary’s background knowledge. We
differentiate between local and central DP [32], both of
which try to make it hard to determine whether data of a
specific client is included in a training dataset (membership
inference) while still allowing meaningful conclusions to be
drawn from the aggregate data.

In ML settings, central DP is commonly achieved by
adding noise to gradients during training [33]. vDM differs
from central DP already in the setup, i.e., by focusing on
limiting the amount of personal data put into the system
instead of the amount remaining in the model. In particular
vDM is concerned with protecting privacy during deployment
where centralized DP does not offer any privacy for new
clients ( for Privacy (New Record) in Table 1).

Local DP, on the other hand, requires clients to perturb
their data locally before sending it to an (untrusted) collector.
While closer to the vDM setting, it is infeasible for vDM for
three reasons: (1) It requires active participation of clients
for perturbation, (2) practical applications of local DP in ML
are limited in scalability [32], and (3) it offers no privacy in
an inference setting where clients want to receive results on
their non-perturbed data (in Table 1 we therefore consider it
non-applicable for deployment).
Cryptographic Approaches. For cryptography-based ap-
proaches, we differentiate between (1) Simple encryption
between client and collector (E2E), (2) Fully-Homomorphic-
Encryption (FHE) based schemes [34] which allow ML on
top of the encrypted data, and Secure Multi-party Compu-
tation (SMC). The first two approaches require clients to
have a secure device capable of cryptographic capabilities
( for Client Assumptions in Table 1). Furthermore, while
E2E encryption protects data in transit, it offers no privacy
guarantee in case of a curious collector.

FHE, on the contrary, protects data during transit, training,
and deployment. However, due to its heavy use of crypto-
graphic primitives, it is limited in Technical Feasibility ( in

Table 1) [35] due to large overheads in memory and runtime
[36], [37] or requiring specific architectures [37].

SMC goes beyond this, avoiding a central collector
by requiring active participation of (most) clients in the
computation [38]. While enabling strict privacy guarantees,
this makes it infeasible for larger client sizes and many ML
use-cases [39]. A recent line of work has combined SMC
with versions of FHE for secure neural network inference
[40], [41]. While feasible for some scenarios, this approach
still suffers from clients having to actively participate in the
computation (e.g., to evaluate activation layers [40]).
PPDP/DA. As mentioned in Section 2.3, PPDP aims to
protect individuals in a table T from being connected to their
sensitive attribute value by releasing only an anonymized data
table T ′ (alongside S). Records in T ′ consist of generalized,
suppressed, and perturbed quasi-identifiers of T, with the
PPDP adversary aiming to map specific records in T ′ to their
respective sensitive attribute value. The degree of privacy
protection through T ′ is commonly formalized by ensuring
one of the following: each record in T ′ is indistinguishable
from at least k − 1 other records (k-anonymity [42]), the
values for S are well spread (l-diversity [43]), or that
the distribution of the sensitive attribute is close to the
distribution over the entire dataset (t-closeness [44]). Note
that these constraints, as they focus solely on re-identification
risk, can often be significantly misaligned with our privacy
notion of individual attribute protection.

Unlike vDM, PPDP does not consider inference, i.e.,
data is released once, and the used generalizations are not
required to be applicable to new data points as in vDM.
For this reason, most PPDP work focuses on non-strict,
multidimensional [16] generalizations, or relies on perturbing
and permuting data in T [45]. While this broadens the space
of solutions in the PPDP setting, it makes most algorithms
directly non-applicable to the Deployment setting in Table 1.
Synthetic Data Generation. Recently, Synthetic Data Gen-
eration (SDG) [46], [47] has gained popularity as another
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Figure 3: Overview of our vertical data minimization (vDM) workflow. In the minimization phase a minimizer proposes a
generalization g using a limited sample of full-granularity original data Sorig, where each record (here, each row) consists of
non-personal (here, first 3) and personal (here, last 2) attributes. The empirical privacy risk of g is then assessed using a
wide range of adversaries (here we show only two examples). In the model training phase, we collect a large sample Smin of
generalized data to train the classifier f , and use it for inference in the deployment phase. We use saturated colors, ,
to indicate full-granularity attributes, and desaturated colors, e.g., , to indicate generalized attributes.

approach to address similar privacy concerns as PPDP. Unlike
PPDP, where we generalize original data, SDG trains a model
on the original dataset and uses it to generate entirely new
data points. These synthetic data points resemble the original
data but do not directly correspond to any individuals. In a
deployment setting, SDG cannot protect the privacy of new
clients sending their real data ( in Table 1).

4. Formalizing vDM for ML

Having established the key vDM requirements and high-
lighted shortcomings of existing PETs, we now formalize
the vDM setting, describe the corresponding workflow, and
discuss instantiations of utility and empirical privacy risk
tailored to the context of ML.
Overview. Assume an organization aims to solve a prediction
task by learning and deploying a classifier f to predict labels
y ∈ Y from records x ∈ X ⊆ Rd with joint distribution
(x, y) ∼ Dorig. To train f well, the set of training pairs (x, y)
should be large and records x as detailed as possible. At the
same time, we want to protect the privacy of individuals.

To treat this tradeoff in a principled manner, we introduce
the vDM workflow depicted in Figure 3 and explained in
detail below. Importantly, after having chosen the general-
ization g in the minimization phase (transforming Dorig into
the generalized Dmin), no full-granularity data from Dorig is
collected during the model training or deployment phases.

To accurately represent the empirical privacy risk of a
generalization, we introduce a wide range of policy-aligned
adversaries in Section 5. In particular, we directly reference
the EU Working Party [20], which outlines the threats of
inference (i.e., reconstruction), linkability, and singling out
for anonymized data. We formalize these concepts and define
several adversaries that aim to reconstruct the personal
attributes of a client x based on the leaked generalized
record z, utilizing different degrees of side information, as
well as adversaries that aim to use the generalized dataset to

link two partial datasets xA and xB (linkability) or isolate
a single individual from the dataset (singling out).

Minimization via Generalization. Formally, we propose
to train f on low-granularity generalized records z ∈ Z
instead of full-granularity records x ∈ X . To this end,
we define a generalization function g : X → Z (global),
which reduces data granularity, produced by a minimizer
(an algorithm or a human). We set Z = Z1 × Z2 ×
. . . × Zd and Zi = {1, 2, . . . , ki} such that g(x) :=
(g0(x0), g1(x1), . . . , gd(xd)) generalizes each attribute in-
dependently (single-dimensional). Further, we require the
image of g to be a proper partition of each dimension
(attribute) of X (strict). We distinguish continuous attributes
(e.g., salary) and discrete ones (e.g., occupation). Con-
tinuous xi are scaled to [0, 1] and transformed using a
non-decreasing function gi : [0, 1] → Zi. Discrete xi with
values {1, 2, . . . , ci}, where ci ≥ ki, are transformed using
gi : {1, 2, . . . , ci} → Zi. We use Dmin to denote the induced
distribution of (z = g(x), y). Finally, we note that all our
generalizations are both independent of respective down-
stream classifiers (results in Appendix G indicate that they
transfer well between different downstream architectures)
and as depicted in Section 8.4 easy to apply for clients,
justifying the on Client Assumptions in Table 1.

Proposed Workflow. With this setup, the vDM workflow,
depicted in Figure 3, consists of three distinct phases aiming
to minimize the amount of full-resolution data that ever
enters the system (i.e., has to be collected from clients). In
the minimization phase, we collect a small (see Section 8.3),
well-protected set Sorig of full-granularity pairs (x, y) ∼ Dorig
( for Trust in Collector), which a minimizer uses to propose
a set of generalizations g(i) . We evaluate those in terms of
utility and empirical privacy risk and select the most suitable
one (g). Afterward, there is no more need to collect full-
resolution data from clients. In the model training phase, we
collect a large set Smin of generalized pairs (z, y) ∼ Dmin
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TABLE 2: Summary of all adversaries introduced in Section 5 to evaluate the empirical privacy risk. All adversaries, as
prior knowledge, have access to the generalization g and a small set of full-granularity records S′orig. As part of the breach,
they additionally have observed a set of generalized records S′min. We evaluate all adversaries in Section 8.

Attack vector Adversary Side information Goal

Reconstruction A1 Reconstruction / Reconstruct personal attributes xP

A2 High-certainty Reconstruction / Reconstruct xP with high confidence
A3 Non-personal Knowledge xN Reconstruct personal attributes xP

A4 Leave-one-out xN and xP\{p} Reconstruct attribute xp

A5 Partial Personal Knowledge xN and x{1,...,k−1} Reconstruct attribute xk

A6 Multi-breach Reconstruction Another set of g and S′min Reconstruct attributes xP

Linkability A7 Linkability xA and xB for k individuals Link each xA to a corresponding xB

Singling Out A8 Singling Out / Isolate a single individual

and train a classifier f on it ( for Privacy (Wire) as we
already collected Sorig). vDM imposes no restrictions on used
architectures/algorithms and we show in Section 8 that the
resulting loss in utility is small ( for Technical Feasibility).
Finally, in the deployment phase, we deploy f for inference
and answer queries from clients, who only need to input
their generalized records z ( for Trust in Collector, for
Privacy (New Record)) and receive predictions f(z).

As shown in Figure 3, during the training and deployment
phases, no full-granularity data enters the system, e.g., indi-
viduals are never asked about their exact age. This simplifies
the security analysis, as regardless of the breach target (e.g.,
collection, processing, or storage), the only data that can
be leaked in the latter two phases are generalized records.
This also entails that membership inference attacks can only
recover generalized records ( for Privacy (Model)). While
the minimization phase still requires some full-granularity
data, we argue that this phase can be protected against
breaches more easily as opposed to a live deployment—data
policies can be stricter, e.g., via external auditing, ensured
data deletion, or the use of commercial data clean rooms
[48], [49], which can be impractical for a live deployment.
Evaluating Generalizations. As previously discussed, g
should produce generalized data with both high utility and
low empirical privacy risk, two goals generally at odds. The
former means that generalized data should contain enough
information to solve the original task—formally, to keep the
utility risk UR(g) low, which is defined as the error rate of
the best possible classifier f predicting y from z = g(x):

UR(g) := min
f

E
(z,y)∼Dmin

1 {f(z) 6= y} . (1)

Evaluating the empirical privacy risk of g is more
involved. Namely, despite the advantages of the proposed
workflow noted above which reduces the attack surface in
case of a data breach, it remains unclear how much the gen-
eralized records leaked in the training or deployment phases
reveal about individuals, to which extent their privacy is
protected, and how this should be quantified. We thoroughly
study this question next.

5. Assessing the Empirical Privacy Risk

In this section, we formulate a comprehensive set of
adversaries with different attack capabilities, all aiming to

use the data from a breach to compromise client privacy
in various ways, often by training adversarial models. Our
adversaries can serve as a tool for evaluating vDM or provide
insights to organizations in the minimization phase. For this,
we define a subset of attributes P ⊆ {1, 2, . . . , d} as personal
(with the rest N = {1, 2, . . . , d} \ P being non-personal).
Threat Model. We start by defining the assumed prior knowl-
edge of our adversaries. First, we assume all adversaries know
the generalization g being attacked, as g needs to be open
to every party providing data in the training and deployment
phases. Second, all adversaries have a small set S′orig of full-
granularity records x (we ignore y here for simplicity)—this
can be obtained either by a breach in the minimization step
(S′orig ≡ Sorig, the setting considered in Section 8) or by
obtaining other samples from Dorig. Notably, this implies that
the adversary knows g(S′orig), i.e., the generalized records
corresponding to S′orig.

With this prior knowledge of g and S′orig, we define a
breach as an event where the adversary observes a set of
generalized records S′min, obtained by compromising the data
collection or storage pipelines in the training or deployment
phase, or even via model inversion [50] on f . All adversaries
we will now introduce share this base threat model, reflecting
different ways of utilizing S′min to compromise client privacy,
often with additional side information. Note that our base
threat model is quite generous to the adversary (e.g., in terms
of knowledge of Dorig), and thus even our weakest adversary
models a relatively strong attacker.
Overview of Adversaries. Our set of adversaries is diverse,
taking into account various levels of side information, but
more importantly, directly aligned with policy, with each
adversary corresponding to attacks described in [20] (recently
studied for synthetic data in [51]). While practitioners can
decide that some threats are more relevant, this broad
set of adversaries enables a thorough evaluation of the
empirical privacy risk. We now describe the adversaries
(labeled A1-A8 and summarized in Table 2). We develop
practical implementations of all adversaries and apply them
in Section 8 evaluating our minimizers from Sections 6-7.
(A1-A2) Reconstruction. The goal of the reconstruction
adversary is to use its prior knowledge of S′orig to learn a
function h, which can be used to recover personal attributes
h(z)P ≈ xP of breached records z ∈ S′min. Formally, the
Reconstruction (A1) adversary aims to find h minimizing
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the error rate of predicting xP from z. We can use this to
define a corresponding empirical privacy risk

PRA1(g) := min
h

E
(x,y)∼Dorig

 1

|P |
∑
p∈P

1 {h(g(x))p 6= xp}

 ,
which a practical implementation of A1 approximates by
sampling from S′orig. When combining different personal
attributes in S, we focus on mean aggregation as a reasonable
choice for the generic case. We explore this choice for
adversaries in Section 8.2 and minimizers in Appendix B.

However, leaking one personal attribute of a single
individual with high certainty often has more direct privacy
implications than an aggregate metric over many attributes
and individuals. Thus, we introduce the High-certainty
Reconstruction (A2) adversary, which has the same goal as
A1 and is trained the same way but calculates the confidence
for each predicted attribute (i.e., how certain it is that the
prediction is correct) and outputs only predictions with
the highest confidence. While we refer to Section 8 for
details, intuitively, A2 uses logit magnitudes as a proxy for
confidence, identifying data points that have particularly high
empirical privacy risk. We note that empirical privacy risk
under A2 can be formalized similarly to PRA1(g). While
we focus on A2 as a variant of A1, the idea of confidence
can, in principle, be applied to any adversary.
(A3-A6) Reconstruction with Side Information. A typical
scenario is that an adversary has side information about an
individual (potentially from another breach) and is aiming
to utilize this to boost the leakage of unknown personal
attributes [52]. To investigate this for vDM, we instantiate
several reconstruction adversaries strictly stronger than A1.

The Non-personal Knowledge (A3) adversary has knowl-
edge of all non-personal attributes and thus aims to use
(z,xN ) to reconstruct xP . The significantly stronger Leave-
one-out (A4) adversary models the worst case, knowing
(z,xN ,xP\{p}), i.e., all other attributes when predicting
xp. The Partial Personal Knowledge (A5) adversary models
the intermediate cases between A3 and A4, giving us
granular insight into how gracefully a generalization degrades
under side information. Assuming P = {1, . . . , p}, A5
predicts the personal attribute xk having knowledge of
(z,xN ,x1, . . . ,xk−1). The cases k = 1 and k = p recover
A3 and A4, respectively. In Section 8, we evaluate A5 by
averaging its error over all choices of k.

Finally, the Multi-Breach Reconstruction (A6) adversary
focuses on the case where side information comes from
the same source due to several breaches at different points
in time. Assume the case where an organization switches
from a generalization g(1) to a different generalization g(2),
and the adversary observes two breaches S′min and S′′min
corresponding to the same individuals. Intuitively, observing
two (or k) sufficiently different generalizations of the same
individual can boost reconstruction. The goal of A6 is to
evaluate the resilience of minimizers to repeated breaches.
(A7-A8) Linkability and Singling Out. Next, we consider
two non-reconstruction adversaries motivated by [20]. The

increasing availability of data makes these attacks common
in practice and often an essential first step towards mounting
more powerful attacks [51], [53], [54], [55].

The Linkability (A7) adversary observes as side informa-
tion, e.g., from another organization using similar attributes,
full-granularity partial records (i.e., records with a subset
of attributes) for a set of individuals, and aims to use the
set of generalized records S′min to connect partial records
belonging to the same individual. More formally, for disjoint
subsets A and B of attributes {1, . . . , d}, A7 has k partial
records of the form xA and xB , and aims to predict for each
xA which xB corresponds to the same individual.

Finally, the goal of the Singling Out (A8) adversary is to
isolate a single individual from the dataset, a concept similar
to having a small anonymity set which is a known issue in
privacy-related areas [56]. Formally, it observes the breached
generalized records S′min and outputs a predicate Π that,
when applied to the full-granularity records that produced
S′min, return exactly one individual.

6. Baseline Minimizers for vDM

Having introduced both the vDM setting and our adver-
saries, we now present several vDM algorithms that will
establish baselines for our PAT minimizer (Section 7).

Uniform Minimizer. As an initial simple baseline, we
consider a uniform minimizer. Let ki be a hyperparameter
that denotes how many elements (buckets) Zi should at most
have. Given a hyperparameter k, the uniform minimizer uses
ki = k for all attributes and generalizes discrete attributes xi
uniformly at random, and continuous attributes xi to dkxie.
Feature Selection Minimizer. As attribute suppression (i.e.,
removal of an attribute) is a special case of generalization,
we consider a feature selection minimizer which keeps k of d
attributes based on ANOVA F-values, as this method supports
both continuous and categorical attributes. In Appendix E
we further explore more methods and variants.

Apt Minimizer. We adapt the recently proposed Apt
method [19] (discussed in Section 10.3) to our setting. Apt
uses information loss metrics and a decision tree to model
the decisions of a classifier trained on original data. As the
method was infeasible to run for dataset sizes we consider
(> 24h where our minimizer PAT, requires ≈ 1s), we limit
the tree-depth in Apt to 10 and each run to 2h.

Iterative Minimizer. Given k, the Iterative minimizer starts
from a heuristic generalization g with ki = k, splitting
continuous attributes based on k-quantiles and discrete
ones based on their weight in a logistic regression model,
minimizing the average variance of weights in each group.
It then iteratively improves g by reducing ki using dynamic
programming while keeping the resulting classifier error
below some threshold. To determine the order in which
attributes are generalized, it sorts all attributes based on their
estimated impact on classification and adversarial error. We
refer to Appendix C for a more detailed description.
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Neural Minimizers. Finally, we propose two vDM mini-
mizers that model g using neural networks. We present a
brief overview of how such modeling is done for continuous
attributes and provide a corresponding description for discrete
attributes and more details in Appendix C.

Both minimizers model g as a set of d independent neural
networks g(i), with each network responsible for generalizing
a single attribute. Let i denote the index of a continuous
attribute of record x and let xi be normalized to [0, 1].
g(i) learns a monotonic and differentiable generalization by
first learning a monotonic transformation M : [0, 1]→ [0, 1].
Based on work on monotonic neural networks [57], [58], g
ensures M ’s monotonicity by constraining all linear layer
weights to W �W ≥ 0, using tanh activations and batch
normalization. The output interval is then split uniformly into
ki buckets (identified by center points cj), and for a record x,
the probability of generalizing attribute i to bucket j is taken
as the softmax over the bucket-distances (g(i)(xi)− cj)2.
AdvTrain Minimizer. The AdvTrain minimizer, inspired by
[59], utilizes adversarial learning [60] to jointly optimize
the generalization gψ : X → Z , classifier fθ : Z → Y and
adversary hφ : Z → Xs, all of which we model as neural
networks. AdvTrain then optimizes the following objective:

min
θ,ψ

max
φ

Ex,y [(1−λ)Lclf(fθ(gψ(x)), y)−λLadv(hφ(gψ(x)),x)] ,

where λ is a factor determining the tradeoff between the
classification and adversarial error. We instantiate Lclf as the
BCE loss between the predicted and true label, while Ladv
denotes the CE loss between the predicted and true personal
attribute (averaged over all such attributes). During training,
we optimize gψ and fθ to reduce Lclf and increase Ladv and
optimizing hφ to reduce Ladv. For each step of optimizing
gψ and fθ, we take Ninner steps optimizing hφ.
MutualInf Minimizer. The final baseline, MutualInf, uses the
same gψ , fθ, and training procedure as AdvTrain but replaces
the adversarial objective with one minimizing the mutual
information between x and its generalization z = gψ(x):

min
θ,ψ

Ex,y [(1− λ)Lclf(fθ(gψ(x)), y) + λLinf(gψ(x),x)] .

To derive Linf, we start from the definition of mutual
information I(z,x) = H(z)−H(z|x), and apply Jensen’s
inequality to independently derive upper bounds on H(z)
and H(z|x), which can be approximated via sampling.
In Appendix C we describe this process in more detail.

7. Privacy-aware Tree Minimizer

We now propose our minimizer, Privacy-aware Tree
(PAT), that builds a generalization g using a decision tree.
Classification Trees. We first recall key concepts related
to classification trees. Let Sroot = (x, y) ∈ Rd × {0, 1}
be a dataset for binary classification. A decision tree T
repeatedly splits a leaf node L with assigned dataset SL
into children nodes L≤ and L>, by picking an attribute
j ∈ [1, d] and choosing a threshold value v such that
SL≤ = {(x, y) ∈ SL | xj ≤ v} and SL> = SL \ SL≤ . The

goal is to select v such that it splits samples with different
y. A common criterion for selecting j and v is to minimize
the Gini impurity Giniy(S) = 2 · py(1− py) ∈ [0, 12 ] where
py =

∑
(x,y′)∈S 1y′=y/|S| denotes the relative frequency of

class y in S. We build T by repeating this procedure until
we reach a predefined maximum number of leaf nodes k∗.
At inference, we propagate a point x′ through T , reaching
a leaf node L′, and returning the majority class of SL′ .
Categorical Splits. As splits in a decision tree generally are
of the form xj ≤ v, this limits the tree’s ability to partition
one-hot-encoded categorical attributes effectively. Typical
implementations of decision trees can only single out one
category per split (xj ≤ 0.5). We avoid this issue in PAT by
using the fairness-aware categorical splits introduced in [13].
Namely, we represent categorical attributes not via one-hot
encoded vectors but instead each category for an attribute
xj with |C| classes with a unique index in {1, . . . , |C|}.
We explore multiple ways to sort the indices, and for each
sorting, consider all possible prefix-postfix splits.

PGini Criterion. The next modification compared to standard
classification trees is in the criterion, usually focused solely
on utility. We aim to include a privacy-aware component,
where ideally one can explicitly control the utility-privacy
tradeoff. To this end, we extend prior work in fair trees
[13], [61] to propose PGini, a privacy-aware criterion that
accounts for the distribution of multiple personal attributes.

Let P denote our set of personal attributes, and SD be
a concrete dataset. We modify the multi-class Gini impurity,
defined on an attribute a with V possible values as

Ginia(SD) =

V−1∑
v=0

pa,v · (1− pa,v) ∈ [0, 1− 1

V
]

where pa,v =
∑

(x,y)∈SD 1{xa = v}/|SD|, and define:

PGini(SD) =(1− α) · 2 ·Giniy(SD) +

α

1− 1

|P |
∑
p∈P

σp ·Ginip(SD)

 (2)

where σp = |p|
|p|−1 and 2 normalize the Gini values to [0, 1].

The utility term in Equation (2), Giniy(SD), is mini-
mized as in the usual usage of Gini impurity. Intuitively, this
promotes partitions of the input space where each region is
still predictive of the target label. In contrast, the privacy
term Ginip(SD) is maximized, promoting partitions where
each region is non-predictive of personal attributes. The
parameter α ∈ [0, 1] allows for a smooth tradeoff between
these two goals, where larger α implies more focus on
privacy. This separates our approach from prior tree-based
vDM approaches, such as [19], which learn a decision tree
without accounting for personal attributes and achieve the
targeted utility-privacy tradeoff via pruning. Further, PGini
can be easily adapted to weigh personal attributes individually
in case some are deemed more sensitive than others.
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Figure 4: Utility-privacy tradeoffs of candidate generalizations produced by minimizers on ACSEmployment, ACSIncome,
and Health (pruned). Classifier and adversarial errors are reported on a held-out test set, while the candidate generalizations
are selected on the validation set. Across all datasets, PAT generally achieves the most favorable utility-privacy tradeoff.

0.225 0.250 0.275 0.300
Classifier Error

0.0

0.1

0.2

Ad
ve

rs
ar

y 
Er

ro
r

ACSPublicCoverage, CA 2014

100% (A1)
50%
20%
10%
5%
2%
1%

Figure 5: A2 reconstruction error for several generalizations
with AdvTrain on the ACSPublicCoverage test set.

Obtaining a Generalization. While the leaves of T define a
partition of the input space X , the splits in each node V of T
depend on prior splits in V ’s ancestors A(V ). As the splits in
A(V ) might be on different attributes than the split in V , the
partition defined by T is not by itself a strict generalization as
defined in Section 4. Hence, to construct a generalization g,
PAT post-processes T , partitioning each attribute into ranges
by taking the union of all split thresholds for that attribute
encountered in T . Notably, while g partitions X into strictly
more granular subsets than T , it holds for all x ∈ X that
T (x) = T (g(x)), i.e., g fully preserves the utility of T .

8. Experimental Evaluation

In this section, we present an extensive experimental
evaluation of our vDM setting utilizing all adversaries
from Section 5 and minimizers introduced in Sections 6-7.

In Section 8.1 we present our main results, followed by
a study of individual attribute reconstruction in Section 8.2,
minimizer training sizes in Section 8.3 and a qualitative
study in Section 8.4. In our supplementary material, we
provide additional details on adversaries (Appendix A and
Appendix G) and experimental parameters (Appendix F).

8.1. Main Results

Generalizations g are learned on a fixed training set Sorig,
which we here assume to be observed by the adversary

(S′orig ≡ Sorig). We set Smin = g(Sorig), and split the data
into three disjoint parts: training, validation and test. We train
a classifier f using training and validation splits, reporting
the accuracy on the test split. Finally, we set S′min to the
generalized test split, assuming it is breached.

(A1) Reconstruction. The A1 adversary tries to reconstruct
the personal attributes of the generalized records from
S′min. We run each minimizer with different parameters to
produce a diverse set of generalizations and report the utility-
privacy tradeoff on two datasets from the ACS suite [62],
derived from US census, predicting individuals’ employment
and income, respectively. Additionally, we evaluate on a
preprocessed Health [63] dataset, predicting the Charlson
Comorbidity Index. We provide more details on our datasets
and their preprocessing in Appendix D.

Figure 4 shows the classifier error UR(g) and mean
adversary error PRA1(g) on test data for each type of min-
imizer. We plot all points, marking those that remain on the
Pareto front when using the test set. The markers represent
the two limits of generalization: (i) fully-generalized data
(all ki = 1), where both classifier and the adversary predict
solely based on the class frequency of each personal attribute,
and (ii) non-generalized data (all ki = ci), giving a lower
bound on classification error with trivial adversary error of 0.
We observe that PAT consistently achieves the most favorable
utility-privacy tradeoffs across all datasets. Additionally, our
new baselines provide a wide range of generalizations and
can serve as benchmarks for future work. In Appendix E
we show similar results on several additional datasets, and
in Appendix H further demonstrate the robustness of PAT
to temporal distribution shift.

Across all experiments, most minimizers show clear
inflection points in the utility-privacy tradeoff. Taking PAT
on ACSEmployment as an example, we find that there is
almost no decrease in adversarial error until the classifier
error reaches around 0.2. Any decrease in classifier error after
this comes with a significantly larger decrease in adversarial
error. In addition to having pre-defined utility targets (for
example, from requirements), these inflection points can
assist practitioners in identifying generalizations that yield
favorable utility-privacy tradeoffs.

10



0.16 0.18 0.20
Classifier Error

0.0

0.2

0.4

Ad
ve

rs
ar

y 
Er

ro
r

ACSIncome, CA 2014

Non-Personal Knowledge (A3)
Leave-one-out (A4)
Partial-Personal Knowledge (A5)

Figure 6: Pareto fronts of A3-A5 adversaries using PAT. In
the low error regime, adversaries perform equally, as recon-
struction is easier. In higher error regimes, A4 outperforms
A3 and A5.

(A2) High-Certainty Reconstruction. A2 operates in the
same setting as A1, i.e., tries to reconstruct samples from
S′min. Let h(z)a denote the logits that an A1 adversary
predicts for attribute a. Further, let h(z)a = max(h(z)a)
denote the maximum of the logits. We say that an A2
adversary is k%-confident in its prediction for a if h(z)a is
in the k-th highest percentile of h(Z, a) = {h(z)a | z ∈ Z},
measuring confidence relative to other predictions for a.

Figure 5 shows the results of A2 on the ACSPublic-
Coverage dataset predicting individuals’ insurance coverage.
We fix the minimizer to AdvTrain (with similar results for
other minimizers), and for each point in the Pareto front
of the A1 adversary (k = 100%), we report the mean
reconstruction error for several A2 adversaries with different
k. We observe a significant decrease in the error rate for
more confident adversaries, showing that A2 adversaries
can recover specific individuals more accurately and relying
solely on A1 underestimates the privacy risk.

(A3-A5) Reconstruction with Side Information. Using the
PAT minimizer, we evaluate A3-A5 via their Pareto fronts
in the utility-privacy tradeoff on the ACSIncome dataset
(Figure 6). As predicted in Section 5, the Partial Personal
Knowledge (A5) adversary lies between the Non-Personal
Knowledge (A3) and Leave-one-out (A4) adversary. Looking
closer at A4, we find that even though all but a single
attribute have been leaked in full granularity, having this
attribute generalized still hinders its reconstruction noticeably.
This indicates that vDM offers valuable privacy protection
even under heavy side information. Further, we find that
the difference between the adversaries decreases in lower
error regions. This is not unexpected, as the generalizations
achieving lower classifier error are increasingly fine-grained.

(A6) Multi-breach Reconstruction. Table 3 reports the
mean reconstruction error for several (C1-C4) multi-breach
scenarios, each consisting of two breaches under different
generalizations. To this end, we implement an A6 adversary
by training two A1 adversaries and averaging their predic-
tions. We find that the A6 adversary has a lower error than
any A1 adversary on their respective individual breaches.
This shows that minimizing the same data multiple times

TABLE 3: Mean reconstruction error of A6 adversary in
four MBR scenarios, using the Uniform minimizer and PAT.

C1 C2 C3 C4

g
PAT
α=0.1

PAT
α=0.7

PAT
α=0.3

PAT
α=0.7

Unif.
k=3

PAT
α=0.7

Unif.
k=4

PAT
α=0.7

PRA1 0.43 0.48 0.47 0.48 0.37 0.48 0.32 0.48
PRA6 0.42 0.45 0.33 0.27

TABLE 4: Percentage of entries correctly linked by A7 on
the OCCP and POBP attributes (for different generalizations
produced by PAT, Uniform, and AdvTrain minimizers). Rand.
denotes a baseline method that does not utilize S′min.

g

Rand. PAT
k∗=8
α=0.3

PAT
k∗=20
α=0.3

PAT
k∗=50
α=0.3

PAT
k∗=50
α=0.9

Unif.
k=3

Adv.
α=0

#Buckets – 21 43 348 200 30 33
% Linked 0.24 0.25 0.30 0.46 0.27 0.36 0.33

can increase the privacy risk warranting extra care.
(A7) Linkability. We evaluate our A7 adversary on the AC-
SIncome dataset, picking two attributes, OCCP (Occupation)
and POBP (Place-of-Birth), that we want to link. The
A7 adversary can now use the minimized data S′min to
approximate the distribution p(xOCCP | xPOBP = j) (see
Appendix A) and predict the value for xOCCP . Table 4 shows
how the probability of correctly linking entries significantly
increases with access to higher granularity records.
(A8) Singling Out. Unlike the synthetic data setting [51],
[64], in vDM, each x ∼ Dorig is directly mapped to exactly
one z = g(x). This makes it considerably easier for an
A8 adversary to find a predicate Π, which singles out an
individual from S′min. Intuitively, an adversary with access
to S′min (and multiplicities of entries) can target z which
only rarely occur. In particular, if there exists a z = g(x)
which is only observed once, the adversary can single out the
corresponding x out by defining Πx based on the attribute
ranges implied by z (more detail in Appendix A).

In Table 5, we report how many x get generalized to
the rarest z in ACSEmployment (reported as Utilization).
When multiple z are the rarest, we report their number in
parentheses. For example, for PAT with k∗ = 20 (max. # of
leaves) and α = 0.3, we find 44 different z, with each having
only one x getting generalized to it. As expected, more
granular generalizations significantly increase the adversary’s
chance of finding low utilization z to single out.
Summary. Our experiments have shown that the adversaries
defined in Section 5 capture a diverse set of attacks on
different aspects of vDM, establishing them as a compre-
hensive way to evaluate generalizations. We have further
demonstrated that PAT consistently outperforms new and
prior baseline minimizers across different settings.

8.2. Individual Attribute Reconstruction

The results for reconstruction (A1-A6) so far only report
the mean over all personal attributes. We now investigate
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TABLE 5: Utilization of the least common z in multiple
generalizations, for 223,531 ACSEmployment records.

g

PAT
k∗=2
α=0.3

PAT
k∗=4
α=0.3

PAT
k∗=10
α=0.3

PAT
k∗=20
α=0.3

PAT
k∗=20
α=0.0

PAT
k∗=20
α=0.8

#Buckets 17 19 25 33 39 33
Utilization (#) 52k (1) 1.9k (1) 1 (1) 1 (44) 1 (120) 1 (10)
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Figure 7: Individual attribute reconstruction of the A1
adversary on ACSIncome, for points from the A1 PAT Pareto
front. For many attributes the adversary can only improve
over the naive baseline in very low error regimes.

how well an adversary can reconstruct individual attributes.
Results. In particular, for A1, we report in Figure 7 the
individual attribute reconstruction error for all points on the
PAT Pareto front for ACSIncome (we show another example
in Appendix G). This more detailed view provides a better
insight into A1’s capabilities, allowing us to read out the
graphs corresponding to max (outer, left Pareto front) or
min (inner, right Pareto front) aggregators.

Overall, we observe how the adversary can only accu-
rately reconstruct many personal attributes in low classifi-
cation error regimes. For higher classification errors, the
reported mean adversarial accuracy is dominated by a few
attributes, which have many classes (OCCP has 477 classes).

For practitioners, this can be especially interesting when
their goal is to protect only specific attributes. For example,
a practitioner who focuses on the place of birth (POBP) can
choose the generalization with a classifier error of ≈ 0.18,
before the POBP adversarial error decreases rapidly.

8.3. Minimizer Training Sizes

As mentioned in Section 4, we further observe that a
small Sorig of full-granularity data is sufficient for training a
minimizer. Taking, e.g., PAT on ACSEmployment in Figure 8,
we find that using only 3% of the total data (5% of the
training data) yields almost identical minimizer results, with
performance only deteriorating for very small Sorig.

From a practitioner’s point of view, this gives the ad-
vantage of only requiring small (well-protected) amounts
of data to train g before being able to collect minimized
samples. In order to evaluate a larger set of generalizers, one
might, however, increase Sorig to sizes commonly used for
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other PETs. Our framework then provides sensible ranges
for all possible minimizer parameters, automatically tuning
all adversarial hyperparameters.

8.4. Qualitative Study

We end our experimental evaluation with a qualitative
study on one generalization. Namely, we run PAT on ACSEm-
ployment with k∗ = 20 and α = 0.7, the same parameters
as we used for our example in Figure 1.

ACSEmployment has 16 attributes with a total of 196
attribute values (assuming age has integer range [0− 99]),
which are minimized to just 34 buckets (across all attributes).
This increases the classifier error by only 0.01 while increas-
ing the adversarial error from 0 to 0.23. A naive adversary
which would only predict the majority value (over S ′orig) for
each attribute, constituting an upper bound, would have an
adversarial error of 0.275. Looking at individual attributes,
e.g., SEX, we find that we increase the adversarial error from
0 to a nearly random 0.48.
Per-attribute Generalizations. In Figure 9, we explore the
values of ki for each attribute. We find that (1) the attributes
that one would generally relate with the employment status
(e.g., Age, Educational Status) are less generalized than
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other attributes (e.g., Sex). 10 out of 16 attributes (including
highly sensitive ones as Ancestry and Race) can be fully
generalized and hence would not even need to be collected.
This suggests that client privacy could be greatly improved
by deploying vDM in real-world scenarios.

Looking closer at some attributes we find that PAT groups
all persons with age 20-63 into a single bucket, while
the generalization of the Educational Status attribute
can be roughly summarized as [No high school diploma,
Highschool diploma, Assoc. Degree, Masters, Ph.D.] instead
of 24 individual categories.

9. Future Work

We believe that due to an increase in regulation, data
minimization will be a highly relevant topic for future
research. We see four key areas for future work on vDM.
Combining vDM and Other ML Privacy Topics. This
includes combining vDM with topics such as differential
privacy [65] and secure computation [66], [67], [68]. As vDM
stands orthogonal to many of these techniques, we believe
their combination can be particularly interesting. Some of
our early investigations already indicate that minimized data
might be well-suited for common DP training procedures. An
additional area of interest is the interplay between vertical
and horizontal data minimization.
Other Domains. With most personal attributes (e.g., religion,
age, political affiliation) in tabular form, the application of
generalizations for privacy protection has so far been focused
on tabular data. Adapting such methods to, e.g., images or
text is a promising avenue for future work.
Privacy Guarantees. Further enhancing our privacy risk
assessment with formal guarantees on the utility-fairness
tradeoffs is another important direction that would benefit
the practitioners. This is a challenging problem, and it is
unclear what kind of approach would be able to provide such
guarantees. One potentially promising direction could be to
enforce a distribution-wide lower bound on the utilization of
each generalization bucket, and use this to bound the adver-
sarial risk following the approach of [13] that offer similar
guarantees in the setting of fair representation learning.
New vDM Algorithms. While PAT outperforms all baselines
across a variety of settings, it does not come with an
optimality guarantee. This leaves the field of vDM open
for future algorithms with better utility-privacy tradeoffs.

10. Related Work

10.1. Regulations and Policy

The requirement of data minimization, which limits the
collection and processing of personal data to the minimum
necessary for a specific purpose, was introduced in 2016 in
the E.U.s GDPR [3]. Similar principles have been adapted
and integrated into other regulations, such as CPRA [4]
and the recent Blueprint for a U.S. AI Bill of Rights [5],

emphasizing its relevance. While data protection authorities
in certain countries (e.g., the U.K.’s ICO [69] and the
Norwegian Data Protection Authority [9]) have proposed
some guidelines for complying with DM in ML contexts, and
there exists policy literature analyzing similar issues [70], to
date, no concrete evaluation tools have been proposed.

10.2. Generalizations in ML

Besides the already mentioned PPDP use-case, the idea
of generalizing attributes to coarser representations has
been applied in several ML settings under different names:
Discretization is used to combine similar attribute values in
the context of recommender systems [71], [72]. Binning is
used in, e.g., [73], [74] to derive concrete attribute values
out of histogram data. It is worth noting that suppression
and feature selection are special cases of generalization.

10.3. Operationalization of DM for ML

We now discuss prior attempts to operationalize DM
for ML. [75] discusses a need-to-know principle which is
similar to DM, but focuses primarily on fairness and does
not touch on the generalization of attributes beyond attribute
selection. [76] explicitly considers a formalization of DM
tailored to recommender systems with techniques that are
not applicable to our vDM for ML setting. [77] proposes
algorithms for black-box auditing of DM compliance based
on model instability. This setting differs from ours as it
focuses on auditing an already trained model. [10] focuses on
minimizing training data size (hDM), an important concern
even outside DM [11], [12] that stands orthogonal to vDM.

The most closely related work to ours is [19], which
applies concepts from data anonymization (discussed in
Section 3) to propose a vDM minimizer. However, as shown
in Section 2.2, the metrics from data anonymization [18]
do not translate well into the vDM setting. Additionally,
PAT outperforms the [19] approach both in terms of speed
(100x) and in the utility-privacy tradeoff. Crucially, no prior
work defines comprehensive evaluation procedures, baselines,
and ways to evaluate empirical privacy risks under different
adversaries, which we argue is a key issue for vDM.

10.4. Fair Representation Learning

Fair representation learning (FRL) [25], [59], [78],
[79] transforms data into a new representation useful for
downstream tasks while ensuring that one cannot recover
the sensitive attribute. The most common approaches are
typically based on adversarial training [59], VAE [80], mutual
information [79], [81] and normalizing flows [25]. While
FRL partly inspired our approach for PAT in Section 7,
FRL and DM consider different scenarios and have two key
technical differences: (i) In FRL, it is always necessary to
collect full-granularity data to produce the representation,
as the transformation is non-interpretable (i.e., cannot be
easily applied by a client), and (ii) similar to work in data
anonymization (see Section 2.3) FRL usually considers a
single sensitive attribute, while we relax this constraint.
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10.5. Causal Feature Selection

Another line of work studies causal feature selection [82],
[83], [84], [85]. Some works in particular investigate direc-
tions related to vDM such as connections to privacy [84] or
the design of FRL-inspired methods that offer interpretabil-
ity [85]. While suitable for certain scenarios, feature selection
methods only have a binary choice for each feature. This
severely limits their available transformations in compari-
son to tailor-made minimizers in the vDM setting, as we
demonstrate in Section 8 and Appendix E.

11. Conclusion

We have addressed the challenge of formalizing and
achieving vertical data minimization, a highly relevant pri-
vacy requirement, in the context of ML. We formalized the
vDM setting and workflow via generalizations, defined two
key requirements of utility and empirical privacy risk, and
proposed a set of diverse adversaries as tools for empirical
privacy risk evaluation. We introduced several baseline
vDM minimizers, as well as the Privacy-aware Tree (PAT)
minimizer, whose effectiveness we demonstrated on several
real-world datasets. Our hope is that our work and public
release of the vDM toolbox will enable organizations to
more effectively enforce and evaluate data minimization,
ultimately helping reduce the privacy risks for individuals.
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Appendix A.
More Details on Adversaries

Masking in A1-A6 (Reconstruction). For any reconstruc-
tion adversary, let h(z)p denote the logits produced when
reconstructing attribute p from z. As h is implemented as a
neural network, the co-domain (range) of h is the cardinality
(number of classes) of p. However, as we assume that the
adversary has access to the generalization function g, it can
use this information to mask out all logits in h(z)p that
correspond to classes in xp that g could not have mapped
to zp. This can significantly limit the co-domain for specific
reconstructions, resulting in a stronger adversary. We apply
the same masking procedure for all reconstruction adversaries.
In particular, A6 intersects the masks corresponding to the
different generalizations.
Details on A7 (Linkability). Here we provide further detail
on how we approximate p(xA | xB = b) when knowing
S′min. For this, let A,B ⊆ [1, ..., d] be any two (not neces-
sarily disjoint) subsets of our attributes. Let gA(x) = g(x)A
denote the generalized attributes of x that are also in A
and let gA(a) denote the evaluation of g on a vector a
which only contains attributes in A (this is well-defined
as g maps attributes independently of each other). We
can now get an approximation of p(xA | xB = b) by
simply observing the relative sampling frequencies of xA
conditioned on xB = b (over S′min). In particular, we find
that p(xA = a | xB = b) ≈ |{z∈S

′
min|zA∪B=gA∪B(a,b)}|
|{z∈S′min|zB=gB(b)}| .

We note that this is only well-defined if |{z ∈ S′min |
zB = gB(b)}| ≥ 1 which we assume to hold for our cases.
Details on A8 (Singling-out). To more formally describe
the A8 adversary, we must model S′min as a multiset. In
particular, let Xmin denote the set of full granularity records
used to create S′min (g(Xmin) = S′min). We now define
the cardinality for any z ∈ S′min as |z| = |{x ∈ Xmin |
g(x) = z}| and additionally zmin = arg minz∈S′min

|z|. In
case zmin = 1 we can single out the unique x ∈ Xmin for
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Figure 10: Reconstruction error of A1 adversary on a per-
sonal attribute (Married/SEX), when attacking generalizations
from a minimizer (AdvTrain or PAT) trained to protect all
discrete attributes (orange) or just the chosen attribute (black).

which g(x) = zmin via Πx, which describes the generalized
attributes of zmin. In case zmin > 1, an adversary still can
construct Πzmin to target zmin. Conditioned on Πzmin , records
x which map to zmin have a significantly smaller anonymity
set making it easier for an adversary to single an individual.

Appendix B.
Protecting Several Personal Attributes

One question that arises when designing minimizers is if
protecting a large set of personal attributes is a good proxy
for protecting a single personal attribute that may be of
particular interest. We investigate this with the following
experiment, whose results are shown in Figure 10. In each
plot, we train a minimizer (AdvTrain or PAT) twice. One
minimization is, as usual, trained to protect a larger set of
personal attributes (orange line), while the other is trained
to only protect a single attribute (MAR or SEX respectively).
Both minimizations are then attacked by the A1 adversary,
aiming to reconstruct only the single attribute. As we can see
in Figure 10, the respective adversarial error curves are very
close for both minimizations and target attributes. This gives
a strong indication that using mean aggregation (over all
personal attributes) when learning minimizers is a reasonable
proxy for protecting specific personal attributes.

Appendix C.
Details Omitted from Experimental Evaluation

Here we supply all details omitted from Section 8.
Detailed Descriptions of Minimizers. We further formalize
the baseline minimizers AdvTrain, MutualInf, and Iterative
(Section 6). For this we write the generalization gψ : X → Z ,
the classifier fθ : Z → Y and the adversary hφ : Z → XS .
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Generalization gψ as a Neural Network. As shown in
Section 6 the AdvTrain and MutualInf minimizers model the
generalization gψ as a set of d independent neural networks
g
(i)
ψ . We will now give more detail on how gψ is implemented

both for discrete and continuous attributes. For this, let
x ∈ X be an input gψ.

For discrete attributes i, let g(i)ψ : Rci → Rki be a network
that receives a 1-hot encoding of the attribute value xi ∈
{1, 2, ..., ci}. The output is the probability pj of generalizing
xi to value j ∈ {1, 2, ..., ki} computed by applying the
softmax with temperature τ to the unnormalized probabilities

produced by g(i)ψ : pj(xi) =
exp(g

(i)
ψ (xi)j/τ)∑ki

j′=1
exp(g

(i)
ψ (xi)j′/τ)

.

For continuous attributes i, we assume them to be
normalized to [0, 1]. The network g(i)ψ : [0, 1]→ [0, 1] uses
W � W ≥ 0 as linear layer weights, together with tanh
activations and batch normalization, to ensure a monotonic
mapping. Then, we divide [0, 1] into ki equally-sized intervals
and let cj = 2j−1

2ki
be the center of the j-th interval. We

set the probability of generalizing xi to attribute value j as:

pj(xi) =
exp(−(g(i)ψ (xi)j−cj)2/τ)∑ki

j′=1
exp(−(g(i)ψ (xi)j′−cj′ )2/τ)

.

During training, we progressively decrease the temper-
ature τ . Once the training is finished, we generalize each
attribute to the value with the highest probability pj(xi),
essentially corresponding to the limit when τ → 0. For
AdvTrain and MutualInf, we set ki = k for all attributes
while allowing the network to learn not to use some values.
Minimization with MutualInf. The goal of the Mutual-
Inf minimizer is to reduce the mutual information be-
tween the generalized z and the original attributes x,
written as I(z,x) = H(z) − H(z|x). Using the fact
that each generalized attribute zi is computed indepen-
dently using xi and applying Jensen’s inequality, we
can bound H(z) via logP (z) = logEx [P (z | x)] =

logEx
[∏d

i=1 P (zi | xi)
]
≥ Ex

[∑d
i=1 logP (zi | xi)

]
and

H(z) = −Ez [logP (z)] ≤ −Ez,x

[∑d
i=1 logP (zi | xi)

]
.

Similarly, for the conditional entropy, we can write:

H(z|x) = −ExEz|x

[
d∑
i=1

logP (zi | xi)

]
.

The upper bound for H(z) can be approximated by
independently sampling z and x, while the conditional
entropy can be approximated by first sampling x and then
z conditionally on x. Since we are using neural networks to
model the generalization function P (zi = j | xi) = pj(xi),
where pj(xi) depends on the parameters θ of the neural
networks. We can use this to jointly minimize the mutual
information and the classification loss during training:

min
θ,ψ

Ex,y [(1− λ)Lclf(fθ(gψ(x)), y) + λLinf(gψ(x),x)] ,

where λ is (as for AdvTrain) a tradeoff factor between
two optimization objectives, Lclf denotes the classifier loss,
and Linf denotes the mutual information objective.

Minimization with Iterative. We now give more detail on
the Iterative minimizer which uses a heuristic procedure
to generalize each attribute to a fixed number of buckets
(equivalence classes), trying to improve the generalization
while keeping the classification error below a threshold T .

Assume that the number of buckets k is known for each
attribute. For discrete attributes, we fit a logistic regression
〈w, x(oh)〉+b predicting the target label, where x(oh) denotes
the one-hot encoding of the training data x, and sort the
array of possible values for xi w.r.t. the matching element
of w, as a proxy for the impact of a value on classification
(i.e., score). Intuitively, we want to map attribute values with
similar scores to the same bucket.

We compute this mapping using dynamic programming
with the state (a, k′). We aim to decide how to assign the
first a possible values for attribute xi into k′ groups such
that the average of the variances of scores inside each group
is as small as possible. This is done by trying all possible
values b ≤ a as starting positions of the last group and then
taking b to minimize the average variance of the solution
that uses the group [b, a] together with the solution used at
(b − 1, k′ − 1). For continuous attributes, we directly split
the range [0, 1] based on k-quantiles of the training set.

We now explain how the Iterative minimizer determines
the number of buckets k for each attribute. We first sort
all attributes by an estimate of the attribute’s impact on the
difference between the classification error and the adversarial
error. Let ∆

(i)
clf and ∆

(i)
adv respectively denote the increase

in classification and adversarial error from a model which
predicts using original attributes to the model which predicts
without attribute i (i.e., it is fully generalized). We then
sort all attributes by ∆

(i)
clf − ∆

(i)
adv in increasing order and

generalize the attributes sequentially.
We first set the number of buckets for each attribute to k

(a hyperparameter). Then, we reduce the number of buckets
as long as the classification error is below the threshold T
and then proceed to the next attribute.

Appendix D.
Dataset Details

ACS. In this work, we use several datasets and prediction
tasks from the ACS suite, recently proposed by [62]. The
suite is derived from the American Community Survey (ACS)
data, released by the US Census Bureau. All tasks used in
Section 8 are described below. Each dataset offers slices by
US state and year, which we fix to California (CA) and 2014,
respectively. If not specified otherwise, we set all discrete
attributes (see Appendix B in [62] for a detailed list of all
attributes) as personal.

ACSEmployment: The task is to predict if an adult is
employed. There are 372,553 datapoints for CA in 2014
having 16 attributes (14 personal) each.

ACSIncome: The task is to predict if the yearly income
of a person is above $50,000. There are 183,941 datapoints
for CA in 2014 having 10 attributes (7 personal) each.

ACSPublicCoverage: The task is to predict if a low-
income individual not eligible for Medicare has public health
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Figure 11: Utility-privacy tradeoffs of candidate generalizations produced by minimizers on ACSPublicCoverage, Health,
Loan and UCI Crime. Classifier and adversarial errors are reported on a held-out test set and selected on the validation set.

insurance coverage. There are 152,676 datapoints for CA in
2014 having 19 attributes (16 personal) each.
Health. We further evaluate on the Heritage Health Dataset
first proposed in [63], trying to predict the Charlson Comor-
bidity Index of hospital patients. The health dataset contains
218,415 datapoints. We preprocess the health dataset as
described in [25], selecting two versions:

Health: Contains all 101 attributes out of which we select
the following as personal: PCG=CANCRM, PCG=COPD,
PCG=METAB3, PCG=PRGNCY, Specialty=Internal,
PG=EM, PG=SCS, PlaceSvc=Office.

Health, pruned: We subsample the set of at-
tributes to DrugCount_total, DrugCount_months, no_Claims,
no_Providers, PayDelay_total, PCG=COPD, PCG=METAB3,
Specialty=Internal, PG=EM, PG=SCS, PlaceSvc=Office,
AGE>60. Out of these we consider the last 6 as personal.
Loan. We additionally use the Loan dataset [86], an excerpt
from the Lending Club loan data from 2015, as previously
used by [19]. Here we use 42 attributes of persons, with the
goal of predicting loan status. We use all categorical attributes
(term, grade, sub_grade, emp_length, home_ownership, veri-
fication_status, pymnt_plan, purpose, initial_list_status, ap-
plication_type, hardship_flag, disbursement_method, issue_d,
addr_state) as the personal attributes.
UCI Crime. Finally, we use the Communities and Crime
dataset from the UCI repository [87], which combines US
socio-economic, law enforcement and crime data from several
sources. It contains 128 attributes for each community,
and the goal is to predict if the number of violent crimes
per capita is above or below the median. We follow the
preprocessing from [25], resulting in 99 attributes of which
we consider (pre-processed) race and state as personal.

Appendix E.
Additional Results

In Figure 11 we show additional results of our main
experiment, extending the ones given in Figure 4. We
explore several new datasets (described in Appendix D):
ACSPublicCoverage from the ACS suite, full Health with
101 attributes, Loan and UCI Crime. In all cases we note the
same results—PAT is the best minimizer overall, preserving
utility while reducing the privacy risk.

In Figure 12 we explore additional feature selection
methods based on mutual information and χ2 values, and
observe that they perform worse on ACSIncome compared
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Figure 12: Comparison of feature selection methods on
ACSIncome.
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Figure 13: Main runs with two different seeds on ACSEm-
ployment. We observe similar behavior across all seeds.

to the ANOVA method we used in our main experiment as a
feature selection baseline. We additionally experimented with
a variant of feature selection where we iteratively remove 1
feature at a time (until k remain), but observed that in all
cases this resulted in the same final feature set.

Appendix F.
Experimental Parameters

In all experiments, we use 60% of the data as the training
set (used to fit the minimizers), 10% as held-out validation
(used to select the Pareto front of generalizations and internal
validation), and 30% as the test set (used for final results).
We repeat runs with 5 seeds observing the same behavior
across all main experiments, as we show in Figure 13.

As PAT requires each class to be in the training set at
least once, we always (i.e., for all minimizers) first select a
set of samples that ensures this, filling the training set with
randomly drawn from the remaining dataset. The batch size
is set to 256. We model the classifier and the adversary as
neural networks with one hidden layer of width 50 and ReLU
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Figure 14: Utility-privacy tradeoff on ACSEmployment.
For points on the Pareto front in Section 8 we report the
adversarial error per attribute.

activations. For evaluation, classifier and adversary are trained
for 20 epochs with learning rate 0.01 multiplied by 0.1 after
10 epochs. The value of the L2 regularization parameter
is automatically tuned on the validation. Our framework
performs several runs with various parameters before using
the validation set to choose the Pareto front.

For the uniform baseline, the only varying parameter is
k. We perform runs for k ∈ {1, 2, 3, 4, 5}. For univariate
feature selection, we try all values k ∈ {2, 4, 8, 10, 20, all}.

We run Apt and the Iterative minimizer with 7-11 values
of the target classifier error T , chosen for each dataset to be
between the two limit points (no and full generalization).

For the Iterative minimizer, we set the initial number of
buckets k = 4, as we did not observe further improvement
with more buckets. For both Iterative and Apt we set a
time-limit of 2h per run, 5× the next slowest minimizer.

For the neural minimizers (AdvTrain and MutualInf ), we
perform runs with 9 values of λ ∈ [0, 1], fixing the number
of buckets to k = 5. We use the same classifier/adversary
architectures as used in the evaluation and perform 20 epochs
of training with starting learning rate of 0.01, multiplied by
0.1 every 5 epochs. We use no L2 regularization and schedule
the softmax temperature from 2.0 to 0.5 over the course of
training. For AdvTrain we set Ninner = 1.

For PAT, we ran experiments with the maximum number
of leaves k∗ ∈ {2, 4, 6, 8, 10, 20, 50, 100, 200}, requiring that
at least 100 samples end up in every leaf. For each run, we
selected the same 12 possible values for α in the range
[0, 1]. PAT required roughly 3 seconds per run, significantly
outperforming all other minimizers in terms of speed.

Appendix G.
Architectures & Individual Attributes

We also perform experiments on the architecture of our
A1 adversary and downstream classifier. In particular, for
the ACSIncome dataset, we investigate how the adversarial
architecture used in Section 8 (referred to as MLP-2) is
sufficient for the reconstruction of personal attributes. For
this, we additionally introduce MLP-3, a 3 layer neural
network with an intermediate layer width of 100 neurons, as

TABLE 6: Classifier and adversary error for different choices
of minimizers and adversarial network architectures. We
highlighted cases where the error is at least 2% smaller than
on the baseline MLP-2 network.

Arch.
Unif.
k=3

Unif.
k=5

Adv.
α=0

Adv.
α=0.5

PAT
k∗=4
α=0.7

PAT
k∗=10
α=0.7

PAT
k∗=50
α=0.7

Classifier
Error

MLP-2
MLP-3
MLP-5

0.36
0.36
0.36

0.22
0.21
0.21

0.17
0.17
0.18

0.22
0.22
0.22

0.2
0.2
0.2
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0.18
0.18

Adversary
Error

MLP-2
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0.52
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Figure 15: Robustness of PAT to distribution shift.

well as MLP-5, a 5 layer neural network with an intermediate
width of 256 neurons. Table 6 shows the adversarial recon-
struction accuracy using the aforementioned architectures for
the possible minimizer choices AdvTrain, Uniform, and PAT.
We find that for AdvTrain and Uniform, using a slightly
larger architecture can sometimes improve the reconstruction
accuracy, while for PAT, MLP-2 consistently performs the
best. This indicates that the results for PAT in Section 8 are
reasonably close to the best achievable adversarial error rate.

Extending the experiment from Section 8.2, we present
another individual attribute plot in Figure 14 for the ACSEm-
ployment dataset. As ACSEmployment has more personal
attributes (14) compared to ACSIncome, Figure 14 becomes
harder to interpret, however when focussing on individual
attributes, we can observe the same trends as in Section 8.2.
In particular, we again find for all attributes strong inflection
points, after which the adversarial error decreases drastically.

Appendix H.
Robustness to Distribution Shift

We test the robustness of PAT to temporal distribution
shifts in the data. We fix the generalizations obtained on
ACSEmployment data from 2014 (as used in our main
experiments) and evaluate them under data from 2015, 2016,
2017 and 2018. The results are shown in Figure 15—we
notice no significant degradation. We further remark that such
an evaluation can be used in practice to monitor model drift,
and when significant drift is detected a new small dataset of
updated data can be collected to retrain the minimizer.
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Appendix I.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

I.1. Summary

This paper proposes a data minimization workflow for
machine learning tasks, focusing on collecting only the
essential features and reducing the resolution of feature
samples (e.g., buckets) to minimize privacy loss during
potential data breaches. The authors assess its performance
in eight adversarial contexts across five datasets.

I.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field.

I.3. Reasons for Acceptance

1) This paper provides a valuable step forward in
an established field. Developing machine learning
models that adhere to data minimization principles
has historically been a challenge. This research un-
derscores the practical viability of data minimization
methods.

I.4. Noteworthy Concerns

1) The authors didn’t provide a theoretical analysis
detailing the precise level of privacy assurance the
proposed method can achieve within a given utility
error boundary.

Appendix J.
Response to the Meta-Review

The meta-review notes that the work does not provide
a theoretical analysis of the privacy-utility tradeoffs. As we
point out in our future work section, obtaining a non-trivial
and fully general theoretical result for vDM is a hard problem,
with no clear solution within the scope of this paper. We
agree that this can be a valuable extension of our work and
encourage future efforts in this direction. We hope that the
extensive vDM foundation set up by our work in terms of
setting formalization, empirical risk estimation, baselines
and PAT, can aid researchers in such follow-ups.
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