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Abstract

Real-time garbage collection has been shown to be feabiliéor
programs with high allocation rates, the utilization aghlge is not
sufficient for some systems.

Since a high allocation rate is often correlated with a mégl-h
level, abstract programming style, the ability to provided real-
time performance for such programs will help continue tsedhe
level of abstraction at which real-time systems can be jamogned.

We have developed techniques that allow generationalcolle
tion to be used despite the problems caused by variance in pro
gram behavior over the short time scales in which a nursemnpea
collected.Syncopatiorallows such behavior to be detected by the
scheduler in time for allocation to by-pass the nursery dlmva
real-time bounds to be met.

We have provided an analysis of the costs of both generationa
and non-generational techniques, which allow the trafetofbe
evaluated quantitatively. We have also provided measunesref
application behavior which show that while syncopationéses-
sary, the need for it is rare enough that generational dalecan
provide major improvements in real-time utilization. Andétébnal
techniguearraylet pre-tenuring often significantly improves gen-
erational behavior.

Categories and Subject Descriptors C.3 [Special-Purpose and
Application-Based SysteinReal-time and embedded systems;
D.3.2 [Programming Languagés Java; D.3.3 Programming
Languagek Language Constructs and Features—Dynamic stor-
age management; D.3.Rifogramming LanguaggsProcessors—
Memory management (garbage collection); D.©Op¢rating Sys-
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1. Introduction

Garbage collected languages like Java are making sigrtifinan
roads into domains with hard real-time concerns, such asranst
tive command-and-control systems. However, the engingemd
product life-cycle advantages consequent from the sirnityliaf
programming with garbage collection remain unavailabteife in
the core functionality of such systems, where hard rea-toon-
straints must be met. As a result, real-time programmingires
the use of multiple languages, or at least (in the case of #&#-R
Time Specification for Java [9]) two programming models wwith
the same language. Therefore, there is a pressing prauotiedIfor
a system that can provide real-time guarantees for Javautitin-
posing major penalties in space or time.

In previous work [6, 5] we showed that it is possible to build a
provably real-time garbage collector for a language likaJa key
aspect of this work was the use tifhe-basedscheduling instead
of the work-based scheduling approach that had been in commo
use since Baker's original work on real-time collection. [Qur
collector is called thidMetronomebecause it alternates between the
mutator and the collector with extremely regular “ticks”.

The result was a collector that is able to guarantee a minimum
mutator utilization of 50% at a resolution of 10ms: out of gve
10ms, the mutator threads receive no less than 5ms — witho ex
ceptions. During periods when collection is off, the mutatee-
ceive almost all of the CPU (a small portion is charged to thkec-
tor for things like allocation operations). Collection ige about
45% of the time, resulting in good but not exceptional thigug-.

There was significant interest from potential users of tacht
nology. As we met with them we found that there were two ma-

temg: Organization and Design—Real-time systems and embed- jor barriers to the adoption of our system, one technical @mal

ded systems
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practical. The technical problem was that a utilizatiorelexf 50%
during collection was not acceptable to some users: theyestan
more CPU time available for real-time tasks even while ggeba
collection was active.

Note that this inot a throughput issue, but rather a utilization
issue: a constant 20% reduction in utilization was accéptathile
oscillation between 0% and 50% reduction is not.

Unfortunately, it is undesirable to simply spread out thé co
lection more evenly, since this would allow the mutator focdte
more memory while collection is in progress. The increasieda
tion in turn could cause the memory budget to be exceedetinga
to a failure to meet real-time bounds.

The second barrier to the adoption of the system was préctica
they required a complete Java development environmentfulith
library and debugging support. The Metronome was implegatent
in Jikes RVM [1], which lacks these attributes.

Therefore, we set out to build a collector with the same pre-
dictability as the Metronome, but with higher utilizationdain-



creased throughput — in a production quality JVM, IBM's J& vi
tual machine [16].

To achieve higher utilization, we use generational collec-
tion [23], which focuses collector effort on the portion betheap
most likely to yield free memory. This has added benefits iora ¢
current collector because it reduces the amount of floatmgage,
which is typically a drawback of such systems. However amtihg
the nursery is unpredictable both in terms of the time toeoolit
and the quantity of data that is tenured.

Real-time systems are fundamentally different in that is&iar
optimizations that are not monotonic can not be appliechd&tad
generational collection is not always better; it is merdtgo better.
Furthermore, standard generational collection has no fixeshds
on the time required to collect the nursery. As a result,etee
considerable additional complexities that are involvedpplying
generational techniques to a real-time collector.

The contributions of this work are:

e An algorithm for generational real-time garbage collettio
based on synchronous nursery collection, which can signifi-
cantly increase throughput and reduce memory consumption;

e An analytic solution for the achievable utilization of bajan-

erational and non-generational collection, allowing therect

collector to be selected for a given set of application aniiai
machine parameters.

Syncopatiopa technique for handling temporary spikes in allo-

cation rate that would otherwise make it impossible to esteu

the nursery within the real-time bounds;

¢ Arraylet pre-tenuring a technique that significantly increases

the effective nursery size without increasing the cost afcev

uation, thereby increasing utilization and reducing fiogti
garbage; and

Measurements of applications showing the potential éffect

ness of both syncopation and arraylet pre-tenuring.

The paper is organized as follows: Section 2 provides back-
ground on the Metronome real-time garbage collector. 8e@i
describes our basic approach to generational collectidrdanel-
ops analytic results for its efficacy. Section 4 introducgsepa-
tion and Section 5 describes arraylet pre-tenuring. We digguss
related work in Section 6 and draw our conclusions.

2. Metronome Overview

We begin by summarizing the results of our previous work [6, 5
and describing the algorithm and engineering of the calleint
sufficient detail to serve as a basis for understanding thex wo
described in this paper. Section 3 will describe our germral
extensions and modifications.

The Metronome is a hard real-time incremental uni-proaesso
collector. It uses a hybrid of non-copying mark-sweep @it
(in the common case) and copying collection (when fragmiemta
occurs).

The collector is a snapshot-at-the-beginning algorithah &tlo-
cates objects black (marked). While it has been argued ticht &
collector can increase floating garbage, the worst-caderpgance
is no different from other approaches and the terminatiowlitmn
is deterministic, which is a crucial property for real-ticwlection.

The Metronome implementation described in previous work
was done in the Jikes RVM Java virtual machine from IBM Re-
search [1]. The new system described in this paper is beifg bu
in J9, one of IBM'’s production virtual machines. For typiegipli-
cations, the J9 implementation is real-time at 10 millisetowith
70% minimum mutator utilization (MMU). In other words, thele
lectorwithout exceptiomused less than 3 milliseconds in any given
10 millisecond window.

The key elements of the design and implementation of the
Metronome collector are:

Time-based Scheduling. The Metronome collector achieves good
minimum mutator utilization, or MMU, at high frequencies
(1024 Hz) because it uses time-based rather than work-based
scheduling. Time-based scheduling simply interleavestie
lector and the mutator on a fixed schedule.

Guaranteed Real-time Bounds. Despite our use of time- rather
than work-based scheduling, we are able to tightly bound mem
ory utilization while still guaranteeing good MMU.

Incremental Mark-Sweep. Collection is a standard snapshot-at-
the-beginning incremental mark-sweep algorithm [24] ieapl
mented with a weak tricolor invariant [18]. We extend traver
sal during marking so that it redirects any pointers pontih
from-space so they point at to-space. Therefore, at the fad o
marking phase, the relocated objects of the previous cumlec
can be freed.

Segregated FreeLists. Allocation is performed using segregated
free lists. Memory is divided into fixed-sized pages, andcheac
page is divided into blocks of a particular size. Objects are
allocated from the smallest size class that can containdjeeb

M ostly Non-copying. Since fragmentation is rare, objects are usu-
ally not moved. If a page becomes fragmented due to garbage
collection, its objects are moved to another (mostly fullpe
containing objects of the same size [8].

Read Barrier. Relocation of objects is achieved by using a for-
warding pointer located in the header of each object [10]. A
read barrier maintains a to-space invariant (mutatorsys\wae
objects in the to-space).

Arraylets. Large arrays are broken into fixed-size pieces (which
we call arraylets) to bound the work of scanning or copying
an array and to bound external fragmentation caused by large
objects.

Metronome only runs on uniprocessors. This choice was made
because virtually all embedded systems are uniprocesadrtha
resulting simplification allows much more efficient implemte-
tion. In particular, we explicitly control the interleagrof the mu-
tator and the collector.

We use the terncollectionto refer to a complete mark-sweep-
defragment cycle and the terpollector quantumto refer to a
scheduling quantum in which the collector runs.

The Metronome uses time-based scheduling. Most previous
work on real-time garbage collection, starting with Bakealgo-
rithm [7], has used work-based scheduling. Work-basedriatgos
may achieve short individual pause times, but are unablettieee
consistent utilization.

The problem with Baker’s definition is that it defines reahdi
behavior in terms of the collector, rather than the appbcatReal-
time tasks require a guarantee that they can execute to etiorpl
in a given (short) interval. Baker's work-based methodyplogerely
provides bounds on individual collector operations, butrigble
to bound the CPU consumption of the collector within a given
interval. Therefore, completion guarantees cannot bengiwehe
tasks.

This becomes clear when viewed from the perspective of real-
time systems methodology. Work-based collectors reptesse+
riodic event-triggered tasks of varying cost. The combined-
determinism of the events and of their costs results in atwase
execution time (WCET) that can (and often does) consumerthe e
tire real-time period, leaving the application with an MMEi

Previous collectors avoided time-based scheduling oueaf f
that during periods of heavy allocation, the collector vabiall
behind and be forced to stop the mutator in order to complete.
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Figure 1. Interaction of components in a Metronomic virtual ma-
chine. Parameters of the application and collector arasit; pa-
rameters to the scheduler are user-selected, and are iyatetsr-
minant.

The Metronome achieves guaranteed performance proviged th
application is correctly characterized by the user. Inipaldr, the
user must be able to specify the maximum amount of simultane-
ously live datam as well as the peak allocation rate over the time
interval of a garbage collectian AG). The collector is parameter-
ized by its tracing rateg.

Given these characteristics of the mutator and the colieitte
user then has the ability to tune the performance of the syste
using three inter-related parameters: total memory coptoms,
minimum guaranteed CPU utilizatien and the resolution at which
the utilization is calculated\t.

The relationship between these parameters is shown gedighic
in Figure 1. The mutator is characterized by its allocatate over
the interval of a garbage collectiar{ AG) and by its maximum
memory requiremente. The collector is characterized by its col-
lection rateR. The tunable parameters afe, which controls the
frequency of collector scheduling, and either the CPU aatlon
level of the application: thus determining memory size or a
memory sizes which determines the utilization level

3. Generational Collection

Heap

an

Nursery

Heap

Figure2. For a program with allocation rate interposing a nurs-
ery reduces the effective allocation ratextp wherer is the nurs-
ery survival rate.

applications we expect that the benefits of reducing the wadk
on the main collector will normally outweigh these costs ligrge
margin.

3.1 SynchronousNursery Collection

Typical stop-the-world generational collectors consistwo dis-
joint collectors: one for the nursery and the other for thauted
(heap) space. Both collectors are usually run with mutatiosped.

In a scheme where heap collection is incremental, care mast b
taken to synchronize with nursery reclamation. Moreowves, ih-
cremental collector requires the use of a snapshot writdebar
Therefore, the write barrier must provide both generati@mal
snapshot functionality.

Nursery collection is typically triggered when the nursésy
full. In an incremental system mutators can interleave wiit&
collector. Therefore a mutator can evacuate the nursdrgreithen
the collector is not running or when the collector is markirg
sweeping. In addition, the incremental collector itsela@vates
the nursery at the beginning of its root scanning phase.eTaey
three optimizations arising from this step. First, the shap write
barrier does not need to record the overwriting of nurseryeap
pointers. Secondly, during its heap marking phase, themental
collector does not need to trace nursery objects. Thirdg/,can
make sure that we eliminate all of the floating garbage in the

In some cases the Metronome may not be able to meet an appli-nursery. If we choose not to evacuate in the beginning of our

cation’s real-time utilization requirements. In that cabere are a
number of things the programmers can do: they can increase sp
consumptiors by buying more memory; they can decrease the uti-
lization requirement. by buying a faster processor; they can reduce
the allocation rate by rewriting the code to perform less dynamic
allocation; or they can reduce the live memory sizdy rewriting

the code to reduce the size of long-lived data structures.

However, to the greatest possible extent we wish to avoid pla
ing such a burden on the user. Within the system, there aszadev
ways to improve matters: speed up the collection fatey tuning
the collector; decrease by using various compaction techniques;
or decrease the fragmentation facgoby improving the heap ar-
chitecture and free space management.

Unfortunately none of these techniques is likely to prowioe
order-of-magnitude improvements that we require. Theimgig
Metronome collector had already been fairly well tunedginen-
tation was bounded fairly tightly (12% in theory and 3% in@ra
tice); and we have already applied object model compredsidn
niques to the J9 virtual machine [4] in which we are implermant
the collector described in this paper.

However, there is a way in which we can reduce the allocation
rate a. If we employ generational techniques, we can view the
nursery as a filter which reduces the allocation rate int@threary
heap toan < a, as shown in Figure 2. In general we expect
n < 1, which will greatly reduce the load on the main collector.
Of course, collecting the nursery will also have a cost, butiost

collection cycle, then the above optimizations cannot haieg.
The incremental collector also performs nursery evacoadicthe
start of its sweeping phase.

Aside from when nursery evacuation occurs, another effect o
combining generational and incremental collectors is thtevoar-
rier operation. Although both write barriers protect agathe loss
of a reachable object, the snapshot and the generationaérbar
share the following fundamental differences:

e Generational barriers am@waysactive, snapshot barriers are
partially active: only when the collector is heap marking.

e Generational barrier entail object/region rescanningfuinter
fixup, snapshot barriers do not.

e Generational barrier remembers the destination objeubing
snapshot barriers remember the overwritten pointer.

e Generational barrier performs range comparisons to daterm
whether the new pointer is a heap to nursery one, the snapshot
barrier does not perform range checks.

Most pointer stores are nursery to nursery pointers. Siocg n
ery collection is synchronous, we do not require a snapshio¢ w
barrier on those pointers. Additionally, since we evactagenurs-
ery at the start of root set scanning, we also do not need teebar
nursery to heap pointers. Therefore, the common write dracan
now filter on the destination object. That is, if the desimratob-
jectis in the nursery, we do not need either of the two basrieor



snapshot, we also do not need to barrier heap to nurseryepsjnt
which are needed by generational barrier. Conversely,rthpshot
barrier needs to record heap to heap pointers while the geoeal
barrier does not.

Therefore, with this new insight, we can utilize the rangeakts
that the generational write barrier performs on the destinab-
ject in order to to filter out significant number of snapshatieas.
We note how write barrier operation is connected with thertgn
of the nursery evacuation.

In a real-time environment, if we are performing synchraou

nursery collection then we must be able to compute the worst-

case execution time (WCET) for nursery collection. This ngea
carefully bounding all possible sources of work. In paftcuthe
remembered set is also allocated from within the nurserjec
are allocated left to right, and remembered set entries fight
to left. When the two regions meet, the nursery is full andtrbes
collected.

3.2 Utility of Generational Collection

To begin with we require a method for determining whether-gen
erational collection will provide a benefit. Surprisinglye found
no analytical model for this in the literature. Analyticalodels
which rely on naive assumptions about application charisties
naturally have limited use, but on the other hand the demahds
real-time systems require more stringent analysis of pedoce
effects. Since the aim of generational collection is to ioweruti-
lization in the real-time interval, it is of little use if gerational col-
lection “usually” or even “almost always” improves perfante.
Therefore, we have developed an analytical model which we
present here. The garbage collector itself is charactttigethe
following parameters:

e N is the nursery size (bytes);

* Ry is the tracing rate in the heap (bytes/second);

* Rgs is the sweeping rate in the heap (bytes/second);

e Ry is the collection rate in the nursery (bytes/second);

The application is characterized by the following paramsete

e g is the allocation rate (bytes/second) assuming infinitaft f
garbage collection;

e m is the maximum live memory of the mutator (bytes);

e 7 is the survival ratio in the nursery. (Dependent/ér)

3.3 Timeand Space Bounds

We characterize the real-time behavior of the system with th
following parameters:

o At is the task period (seconds);
e y is the minimum mutator utilization in eacht;

From the above parameters, we can then derive the overal spa
consumption of the system:

e s is the space requirement (bytes) of the application in our
collector.

The allocation rate and the survival ratig in fact vary consid-
erably as the application runs. For the time being we willsider
the case when they are smooth. In Section 4 we will descriefth
fect of variations in those parameters, and how the impl¢atien
copes with the variations.

For a given intervalAt, the collector may consume up (b —

u) - At seconds for collection. We define tigarbage collection
factor v as the ratio of mutator execution to useful collector work.

u - At u
TT WAt 1-u @

o I 1 /f»(,
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Figure 3. Time dilation due to generational collection causes ad-
ditional allocation during a major heap collection, bueatiates all
allocation by the survival rate.

Multiplying by ~ converts collector time into mutator time; divid-
ing does the reverse. Since the relationship betweierthe range
[0, 1) and~ in the rang€0, co) is one-to-one, we also have

Y

u=-— 2
1+~ @

To bound the space required by the collector in order to ramint
real-time bounds, we need to know how much extra space may be
allocated during a collection cycle. In the absence of gairal
collection, the extra spaee, for the Metronome is

m S
eM = ay (RT + Rs) 3)
which is the allocation rate multiplied by the time requirtx
perform a collection.

When generational collection is introduced, the allogatfoat-
tenuated by the survival rate However, performing generational
collection is not free, so it takes longer to collect the miagap.
This in turn means that the mutator performs more allocalion
ing collection. This effect is shown in Figure 3, expressgdhe
following equations, in which we define the generatiodittion
factor 6 and the corresponding extra spage under generational
collection:

an

4 peretl 4)
- ey (Mmoo, S

¢ = 7 (RT+RS) ®)

Freeing an object in our collector may take as many as three
collections: (1) the first is to collect the object; (2) thesed is
because the object may have become garbage immediatety afte
a collection began, and will therefore not be discovered time
following collection cycle — floating garbage; and (3) thedhs
because we may need to relocate the object in order to malaf use
its space. The first two properties are universal; the tlsispecific
to our approach.

As a result, the space requirement of our collector pairel avi
given application is

s=(m+3e)-(1+p) (6)

wheree is exr Or e, and p is the fragmentation factor, which
is a settable parameter (we typically yse= 1/8). Because the
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Figure 4. Relative Space Usage vs. Utilization. Low allocation
rate:a = 20 MBJ/s.

fragmentation factor is uniformly present and because tirs-n
ery size N is negligible compared ton, we can simply adopt
the fragmentation-free heap-size multiplier formulatiomeasure
space expressed by

S
m - (L+p) ")
Substituting equations 3 and 5 into equation 7 gives us the
relative space bounds for the original Metronome colleatat the
generational version.

o =

RrRs + 3avRs
RrRs — 3(1’)/RT
dRrRs 4+ 3aynRs )
dRTRs — 3aynRr

These equations show what the space consumption will be for
some utilizationu since~y is a function ofu given by equation 1.

These equations can be inverted to give the achievableatidn
in terms of a maximum heap size.

8)

oM

oG

. o —1
up = 3a(L+L>+g — (10)
By T Rs M
3an (&= + £ ) (14 2L)
ug = 1- (s + )0+ % 1)

oa —1

It is because of the factor of three multiplier that genersl
collection is so valuable — much more so than in a stop-the-
world generational collector. As long as the survival raie even
moderately low, the space required to meet real-time bouimds
reduced almost by a factor 8f1.

It should be noted that the expected space requirement feon t
order ofm + e, because although the second and third additional
collections described above could apply to all objects,racfice
they only apply to a very small percentage.

3.4 When to Use Generational M etronome?

When the survival rate is extremely low, the generational col-
lector will be very effective because the work necessary &nm
tain available space is also very low. On the other hand, when
survival rate nears 1, the nursery provides no benefit whifeos-
ing an extra copy on every allocated object. Intuitivelyerthis a
crossover point when the use of nursery neither helps nas tug
Metronome. At this point, the space consumption and utibra

Figure 5. Relative Space Usage vs. Utilization. High allocation
rate:a = 100 MB/s.

would be jointly equal. Inspection of equations 8 and 9 ris/teat
this condition is met whem = . A more rigorous derivation,
which we omit for conciseness, reveals that there are na stie-
tions. This crossover condition can be re-formulated toespthe
cross-over utilizationuc given a fixed survival rate, or conversely
to give the cross-over survival rate:.

Ry -(1-mn)
= =W 12
e an+ Ry - (1 —n) (t2
— RN
T Byta = (13)

Figures 4 and 5 show the relative heap size required as a func-
tion of a target utilization for a lowd = 20 MB/s) and high
(a = 100 Mb/s) allocation rate (see equations 8 and 9). The curves
compare the non-generational Metronome against the gerah
version at several different survival rates. The remairpagame-
ters are fixed: the heap tracing ra&- = 150 MB/s, the heap
sweeping ratdRs = 600 MB/s, and and the nursery collection rate
Ry = 75 MBI/s.

Every curve has the same shape. At low utilizations, theespac
consumption is low (although for real systems, utilizatlenels
under 50% are unlikely to be acceptable). As the utilizatoim-
creased, the space consumption at first increases slowlshes
an inflection point, and then rises very rapidly. In a geriena
system, because the nursery collection and the concuroliet<
tion compete for time, the knee in the curve is somewhat sharp
than that in the non-generational system. Practically theans
that when using a generational system, care must be takewoith a
running too close to a regime where the space consumptiohtmig
explode.

When the space consumption spikes, the system is unable to
keep up with the allocation rate. In the non-generationasioe,
the sweep rate is throttling the mutator’s progress becenes®-
ory is unavailable for allocation until the desired memoag been
swept. In the generational version, the nursery tracing (eauiti-
gating the the survival rate) will throttle the program hesm the
nursery is evacuated synchronously. In either case, whesyt-
tem falls behind, the memory usage becomes unbounded.

An intuitive and graphically obvious trend in the curves for
the generational system is that lower survival rates alldvigher
achievable utilization level. On the other hand, when theisal
rate is high, the nursery is so ineffective that it will losethe
non-generational version. For example, Figure 4 showsvthan
the survival rate is 50% and the allocation rate is low, theega-
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Figure 7. Need for Syncopation (EEMBC crypto benchmark).
Figure 6. Maximum Mutator Allocation Rate (MMAR) for the With a very short real-time intervahT = 100us, the applica-
EEMBC embedded benchmarks running on a 2.4 GHz Pentium tion allocates as much as 250 MB/s in some intervalshat =

processor. Allocation rates converge at intervals abo¥entHisec- 1000045, the peak allocation rate drops to 25 MB/s.

onds.

tional system becomes unusable arouné 0.70 while the non- onds. This shows that if the nursery is able to absorb skont-t

generational system (Figure 5) is able to functiom at 0.77. allocation bursts on the order of a few milliseconds, a syoobus
generational collector should be able to provide goodzatiion

4. Syncopation (MMU).

However, there is no guarantee that short-term bursts wuhl s
side by any particular point in time, and we also wish to drive
the maximum pause times below 1 millisecond. However, as we
shorten the time interval, we will begin to encounter inésvin

The analysis of the previous section contains two important
unrealistic) simplifying assumptions, namely that theoedltion
rate a and the survival rate) are uniform in each time interval

At. Since nursery collection is synchronous and the nurseeyisi \ich there is more allocation than can be collected symusly.
tuned toAt, if the allocation rate spikes temporarily, the nursery This is shown for therypto benchmark in Figure 7: for three

will fill more than once per intervalAt and the collector will different time intervalsA7 — 100, 1000, and10000s, we plot
fall behlnd the mutator and P.effor"? multiple s_ynchrppousseny the allocation rate in the intervalr versus the number of bytes
collections per interval, at which point the desired uéitipnv can allocated at that rate. As the time scale increases o6us to

no Iokr:ger be guaran_tee(z).l ime-based scheduling b 10ms, the tail starts to disappear and the curve shifts to the left
_The Metronome is able to use time-based scheduling because,iq,ing progressively slower collectors to keep up. At Fithe
it requires the application to specify a limit on the allaoatrate

. * . - curve has almost degenerated into the single point cometipg
at the period of the collectorlf the real-time intervalAt is 1 9 gep

il d and th I 104G is 1 4 th h to its overall average allocation rate.
”;l' Isecond and t ebco ector péerlo IS 1 secon ’Itlg(r)]ﬁt € There will be some allocation rate above which the nursery
l‘"‘ ocatlan rr:\jte can ”e ar\]/_eraglgle over a tt)lme (;mt?rv\?VCET Sf'n; collector will not be able to keep up. The area under the ctove
onger. Fundamentally, this allows us to bound the WCET et th 4 rignt of that point is the amount of memory that is handiied
collector over its own period, and then divide up that timerdy syncopation
anstcheduleblt as a(tjlmg-trlggerﬁd task. llection of th In music, syncopation is the placement of emphasis on alysual
_ However, by introducing synchronous collection of the Bys siressed beat. In our collectsyncopatioris the movement of
it would appear that we are doomed to reduce the period over

. . . collection work from a stressed interval to an unstressesval.
which we can average the allocation rate and survival rate fr When the collector determines that the produetsfs too high,
the collector period down to the real-time interval: whhe tmajor

. , . ) it pre-tenures objects until the allocation rate subsidgsm
heap collector is a long-period task, nursery collection Isigh- P )

frequency task. Since it is performed synchronously, it mibst

likely be the limiting factor on our ability to drive down pse 4.1 Syncopation via Allocation Control

times. We present two alternative approaches to syncopation.elitst
The quality of service provided by a real-time garbage ctile we dynamically resize the nursery (virtually, not phydigato
is measured by itsninimum mutator utilizatioror MMU [11], ensure that we can still perform a worst-case evacuatiomef t
which is the minimum amount of time provided to the mutatoain  nursery without violating the mutator utilization requirent. For
particular interval. example, ifAt = 10ms andu = 0.7 and if the first nursery
In order to evaluate the effect of allocation behavior ot-tisae collection in the interval consumes 2 ms, then we can stilscone
collection, we define an analogous quantityaximum mutator al- 1 ms for collection. If we resize the nursery so that its atilten
location rateor MMAR. For a given time intervalA7, the MMAR has WCET=1 ms, then the system can proceed safely.
of a program is the highest allocation rate of aky-size interval When the nursery becomes too small to be useful (because
of the program’s execution. MMAR must be measured as though n — 1), we change allocation policy and simply allocate all ob-
garbage collection takes zero time, since otherwise a ypauple- jects directly in the heap; we call thfoodgating During such a
mented collector would be subjected to a lower allocatide.ra period, the effective allocation rate into the heap willkepfrom
The MMAR curves of the six EEMBC benchmark programs [15] the nursery-attenuated raie to the full ratea. The system con-
are shown in Figure 6, fof00us < A7 < 10ms. Surprisingly, tinues to dynamically monitor the MMU, and when it has risen

the allocation rate stabilizes very rapidly, between 1 amillBsec- sufficiently it switches back to a nursery allocation palicy



The advantages of this approach are that it is effective elhd r
atively simple to implement. The disadvantages are thagjtires
provisioning for the worst case in advance, which meansitibah
not make full use of available processing resources, artdttban
only adapt to variations in, but not inn. Furthermore, it requires
a conditional on the critical path of the inlined allocat&eguence,
which slows down all allocations.

To understand why floodgating precludes the full use of an
available collector quantum, consider the case withoutfiating
in which we consume a full collector quantu— ) At to collect
the nursery. It is very desirable to be able to do so since #&nse
that we can use the largest possible nursery, which will maty
attenuate;.

However, when we finish collection we have used our full quan-
tum, so we must guarantee that the mutator will run for atleds
before any collection takes place. However, there is no domthe
instantaneous allocation rate of the mutator. It could fid burs-
ery within uA¢/2 time units, at which point we would be forced
to synchronously evacuate the nursery and would fail to roeet
MMU commitment.

The only alternative is to immediately begin tenuring newly
allocated objects and not allow any nursery allocation «fdxt
time (or at leasttAt — €, wheree is a time interval so short that
it is impossible for the mutator to fill the nursery). At thadipt,
we perform another collection quantum, and are back to wiere
started: being unable to allocate into the nursery.

411 Scheduling: Multiple Beats per Measure

The syncopation techniques in and of themselves are fairigls.
The difficulty lies in scheduling them in such a way that MMU
requirements are met and memory and processing resougcestar
squandered.

Because of the pessimistic property of allocation-basedsy
pation, some over-provisioning is necessary. This is donénb
creasing the frequency of collection operations within Continu-
ing our musical analogy, a time intenaAl is called aneasureand
the sub-divisions of a measure are calbegts of which there must
be an integral number. Utilization must be expressed as deum
of beats per measure. Taken together, these quantitiesisentipe
time signatureof the system.

Since the allocation rate could spike at any time, it is faesi
that two nursery collections could be forced to happen amos
back-to-back. Therefore we retain one beat in reserve.@aton
occurs when a second, consecutive collector beat consuraes t
reserve. At that point, allocation changes to immediatehyte all
objects until a one-beat reserve has been reclaimed.

In this approach we can also dynamically adapt to changégin t
survival ration, because after a nursery collection which does not

4.2 Syncopation via Collection Control

The limitations of allocation control give rise to an altative
method of syncopation based on controlling the collectiather
than the allocation.

In this regime, the collector begins collecting the nursarthe
beginning of the collector quantum. If it completes coliectin
time, it resets the nursery and resumes the mutator. Hopiéttes
collector quantum expires before nursery collection is glete, it
syncopates: it unconditionally tenures the remaining aceated
objects by logically moving the nursery into the mature gpac
This is done by appending it to a list afff-beat pages. Then
a new nursery is obtained from a pre-allocated reserve amd th
remembered set buffer is reset. Since all these operatierdoae
logically, by redirecting pointers, syncopation is extedynfast.

This method of syncopation is made possible by the presence
of a read barrier in the collector. As the nursery is beindectéd
and objects are moved into the heap, the forwarding poihizr t
is left behind has the exact same format as the forwardingtoi
used to facilitate incremental object movement in the maaph
Therefore, when a partially collected nursery is tenuregphto
nursery references that were stored in the remembered tseobu
yet fixed will simply follow the forwarding pointer via the ad
barrier.

The major advantage of collection-based syncopation isitha
allows the collector to consume a full mutator quantum, wuith
requiring a change in the allocation policy. If the allooatirate
subsides in the subsequent quantum, the collector will idiately
regain the full benefits of generational collection.

The primary disadvantage is fragmentation: even if only one
object in the nursery is live, none of the memory will be réunked
until a full collection has taken place. Even worse, sinearttirsery
was allocated sequentially rather than using segregatedifts, it
must be completely evacuated before it can be reclaimerkase
ing the defragmentation load and making the memory unédlaila
for one and a half major collection cycles (one to move the liv
objects, the other to forward any pointers to them).

In the limit, collection-based syncopation degeneratés a
semi-space collector, in which all nurseries are syncapaied
become the from-space. However, it would be almost imptessib
to cause this to happen, even with an adversary program.

While syncopation makes it possible to use a full collector
guantum for collection, and to allow the nursery to grow to a
point beyond its WCET collection limit, it is undesirabledo so.
Thus it may still be desirable to have multiple collector tseger
measure, as in allocation-based syncopation, althoughxpece
that significantly fewer beats will be required.

4.3 Cost of Syncopation

Syncopation is a technique that allows us to time-averad®#d-s
term cost variance by moving the work to a later point in time.
Since we have a bound on the long-term allocation rate, wekno

consume a full beat, we can resize the nursery so that the WCETthat any rate spike will be accompanied by a corresponditey ra

for its collection is bounded by our remaining fractionabbeOf
course, this is not worthwhile below a certain fraction ofeat)
since the nursery becomes so small that 1, and we are simply
implementing a more expensive method of immediate tenuring
The fundamental limit of such an approach is that it requinas
a nursery can be collected within a single beat, which isidens
ably smaller than the total collector quantgin— ) At. Thus this
approach is limited in its ability to drive down the fundartedrime
period of the collector. In practice, we find that for our parar
hardware and benchmarks, it works well down to a measurdHeng
of aboutAt¢ = 10ms, with 10 or 20 beats per measure, requiring a
WCET for nursery collection 0500 — 1000ys.

drop within the collector period.

However, at a certain point the variance in the behavior ef th
mutator is so high that the cost of syncopation will outweitgh
benefits. In particular, consider the case when all memonyeto
allocated in an entire major collection cyahs is allocated within
a single intervalAt. In that case, the beat generation will contain
virtually all of the allocated objects, and we will have rizeel none
of the benefits of generational collectiexen if the program obeys
the generational hypothesis

Variation in the allocation rate and survival rate must besitd-
ered together because they drive the load on the nursemctmil
in concert.
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Figure8. Arraylets.

The work performed by nursery collection is linear in theesiz
of the surviving data, so as long as the nursery collectite Ra;
is higher than the survival raten, no syncopation is required.
However, above that point the survival rate will only be attated
by 7 the first time the nursery fills up; after that memory will be
allocated into the heap at the unattenuateddate

For a particular time interval\¢, with allocation ratea; and
survival raten;, the effective allocation rate into the heapis

a;in; Whenami < Rn,

Ry (%71) (14)
Y

a; — otherwise.

While the extra space cost due to syncopations could be-calcu
lated precisely if alla; andr; were known, such a specification
would be very cumbersome and lack abstraction for the user.

We are currently investigating ways for the user to bound the
potential extra load on the collector by concisely desngbihe
behavior of the application (in terms of the variation shaw#rig-
ure 7). In general, the trade-off imposed by generationdéco
tion is higher utilization in exchange for more specific imf@mtion
about program behavior.

5. Increasing Mortality

In the previous section we saw that the performance of the sys
tem is critically determined by the nursery survival ratdn this
section we describe a technique for decreasing the sumétaby
increasing the effective size of the nursery.

In the Metronome, an array consists of two partsaaayoid,
which contains the object header and pointerartaylets which
are contiguous aligned chunks of size If the last arraylet is
smaller than the arraylet chunk size minus the arrayoidéreside,
then it is allocated contiguously with the arrayoid its@lfis leads
to three basic array organizations, as shown in Figure 8.

The arraylet size&: is determined by the page siteand the
desired fragmentation ratjg such thatz = pII. Maximum imme-
diately allocatable array length is thus limitedIia: /4 (assuming
4 bytes/word). In our implementation we use page 5ize 16KB
and fragmentation ratip = 1/8, for an arraylet size of = 2KB
and a maximum immediately allocatable array length of of 8MB
Larger arrays which may require arbitrarily large contigsionem-
ory must be requested via a potentially blocking interfacieich
may have to wait up to 2 collection cycles for sufficient cgntus
memory to be evacuated and its incoming pointers forwarded.

The mixed arraylet form of Figure 8(b) is required to maintai
the fragmentation bound, since an array of size- 1 allocated
in the pure form (a) would otherwise consume two arrayletsafo

60

50 DOLarge Objects

M Small Objects

Allocation (MB/s)

Figure 9. Average allocation rate, generational survival rater,
and generational survival rate with arraylets for the EEMi@ch-
marks with a 32KB nursery on a 2.4 GHz Pentium.

fragmentation of 50%. By using the mixed form we can bound the
fragmentation by.

Note that in order to be power-of-two aligned, the arraylets
contain no internal metadata,; this is kept in the per-pagadaga,
which must be consulted at page boundaries when parsingége h

5.1 Arraylet Pretenuring

In a generational system, arraylets have an additionahemas ad-
vantage: for most programs they allow the effective siz&éefiurs-
ery to be greatly increased, without increasing either litgsjral
size or the cost of nursery collection.

The mechanism is very simple: arrayoids are allocated in the
nursery, while their arraylets are allocated in the heapaAs-
sult, the cost of evacuating the array is just the cost of ngpvi
the arrayoid into the heap: the arraylets are not moved, had t
arraylet pointers in the arrayoid are unchanged, meaniagrtb
additional pointer forwarding is incurred and the arrayc#h be
block-copied.

Arraylets provide an extra level of indirection. Since wesatly
need such a mechanism to avoid external fragmentationg tisen
indirection for the additional purpose of virtual nurserpansion
incurs no additional cost while providing enormous bendfits
applications that allocate a significant portion of theins as
medium-sized or large arrays.

The “virtual evacuation” of arraylets is not free, and must b
charged to the nursery collection. Thus when an arrayletds p
tenured, the allocation limit for the nursery is reducethaigh by
much less than it would have been had the entire array hadlctu
been allocated in the nursery.

For arrays of primitive types, the extra cost is almost zeirtge
in the worst case the object dies and its arraylets must beedha
back into a free list.

However, for arrays of pointers, in the worst case all of the
elements in the array point to objects in the nursery (whdsesss
will change during evacuation), so each element of the amily
have to be forwarded. Thus pointer arraylet allocation Wdave
to be charged at a much higher rate. For simplicity we do net pr
tenure pointer arraylets.

5.2 Effectivenessof Arraylet Pre-tenuring

Figure 9 shows the effectiveness, in terms of absolute ot
rate, of arraylet pre-tenuring in our implementation. Abg®rates
are shown because they determine the overall utilizatiaind#n be
achieved.



Of the six benchmarks, three have low survival rates witlaout
raylet pre-tenuring (Chess, Parallel, and Regex). Chedfegex
do not allocate arrays at all, so there can be no further lighafi
they already have very low allocation rates (both relagiaeid abo-
lutely).

kXML has a moderate survival rate without arraylet pre-
tenuring (about 40%), while Crypto and PNG have survivaésat
so high that generational collection will not be useful.

When arraylet pre-tenuring is applied, it significantly ueds
the survival rate of two of the three benchmarks that allvsig-
nificant amounts of array data. The effect is particularlgndatic
for Crypto, but also significant for Parallel. For PNG, thduetion
is significant but the resulting surival rate may still be togh for
generational collection to be profitable.

Overall, arraylet pre-tenuring has a significant effeceiducing
the allocation rate and increasing the usability of gemamnat col-
lection. While it is not a panacea, for some programs it withjide
major improvements. Most importantly, it significantly tees the
number of outliers.

6. Related Work

Generational collection for general-purpose hardware degl-
oped by Ungar [23] for Smalltalk-80, a highly dynamic object
oriented language. Since even closures for conditionate fveap-
allocated, the lifetime of most objects was extremely slaord
generational collection proved highly effective. Subsauly it be-
came apparent that generational techniques were effefttive
broader class of languages, especially as sufficient memesry
sources for larger nurseries became available.

Generational collection has proved so effective that maayem
sophisticated techniques have been unable to match iterperf
mance.

Moon [20] concurrently developed essentially the same-tech
nique for Lisp (called ephemeral garbage collection) usimecial-
purpose hardware support on the Symbolics 3600. This systesm
not only generational but concurrent, also having hardwapport
for Bakers algorithm. It thus anticipates our work in sonspezts.
However, like Baker’s algorithm, it was incremental but itrody
real-time.

A number of other systems have combined generational and

concurrent collection. Doligez et al. [13] developed a ectbr
for ML which exploited the large proportion of immutable ebfs
by allocating them in independently collected nurseriestsidry
collection was synchronous and thread-local. Domani ef14l
subsequently expanded on this basic design for a concunemt
compacting collector in which nursery collection was aleaaur-
rent. However, both collectors do not perform generatiaodiec-
tion during tenured space collection, which is a fundamema
quirement in our system for maintaining real-time behavidreir
system also used card marking, which is not suitable forletirea
collector due to the need to scan all cards and then scanjatitsb
corresponding to dirty cards.

In the mid-1970's the first algorithms were developed forpar
lel and concurrent collection, which was viewed as a paradic
example of the difficulties of expressing concurrent aldponis and
proving them correct [12, 22, 19]. These collectors werénalle-
mental updatecollectors: changes to the object graph during col-
lection were detected and the collection re-traced thehgfiagm
the modified nodes.

Yuasa [24] introduced the snapshot-style collector. Uniik-
cremental update collectors, Yuasa’s collector operateal\artual
snapshot of the object graph at the time collection stalfedsa’s
algorithm results in more floating garbage and requires aeraps
pensive write barrier, but is better suited to real-timelemtion

since operations by the mutator can not “undo” the work done b
the collector.

Baker [7] was the first to attack the problem of real-time gaeb
collection. As we discussed in Section 2, his technique domeh-
tally suffers from using work-based, event-triggered sciiag,
and from evaluating real-time properties from the point iefwof
the collector rather than the application. The result isilamentally
soft real-time (best effort) rather than hard real-timeafgunteed)
response.

There have been many incremental and soft real-time colect
since then, exploring various aspects of the design spach, as
the use of virtual memory support [2] and coarse-graineticap
tion with a synchronous nursery [21]. However, there is nargn-
tee on the maximum pause time.

Cheng and Blelloch [11] described a time-triggered raakti
multiprocessor replicating collector with excellent itition, for
which they introduced the minimum mutator utilization (MU
metric, an application-oriented measure of the behavia obn-
current collector. However, the MMU was measured rathen tha
guaranteed, and space overheads were large.

Bacon et al. [3] built a soft real-time reference countingd- co
lector for weakly ordered multiprocessors. This collectdso
achieved very good MMU, but was subject to unpredictable be-
havior in the presence of cycles. Space overhead was lomdbut
guaranteed since incremental compaction was not performed

The Metronome collector of Bacon et al. [6] was the first guar-
anteed hard real-time collector. This collector providedrgnteed
MMU based on the the characterization of the applicatiorims
of maximum live memory and allocation rate. Space overheasl w
usually comparable to that required by synchronous (“shep-
world”) collectors, due to incremental defragmentatiod goanti-
tative bounding of all sources of memory loss [5].

While most previous work on real-time collection has foalse
on work-based scheduling, there are some notable excepiion
particular, Henriksson [17] implemented a Brooks-styldlem
tor [10] in which application processes are divided into fvior-
ity levels: for high-priority tasks (which are assumed tkeeiodic
with bounded compute time and allocation requirementsjnang
is pre-allocated and the system is tailored to allow mutaf@ra-
tions to proceed quickly.

7. Conclusions

The utilization level achievable by real-time garbage extibn is
most fundamentally limited by the allocation rate of thegyeom.
Generational collection often reduces the effective allion rate
into the mature heap by a large margin.

We have shown how generational techniques can be applied to a
real-time collector by extending the Metronome with symciaus
nursery collection andyncopationa technique which allows the
collector to avoid exceeding its real-time bounds durimggerary
bursts in allocation or survival rates. When combined witlitiple
beat-per-measure scheduling, syncopation allows for hidiza-
tion based on average rather than peak allocation rates.

In order to determine when generational collection is athan
geous, we have introduced a cost model that allows the bahavi
of the generational and non-generational collectors to beated
analytically.

We have provided measurements which show the need for syn-
copation in practice, but also show that allocation ratebikte
very quickly (between 1 and 3 milliseconds) and that the arhou
of syncopated data is small.

Finally, we introducedarraylet pre-tenuringas a technique for
increasing the effective nursery size without increashegdollec-
tion cost, and provided measurements that show that it ysefézc-



tive for reducing the effective survival rate of programatthllocate
significant array data.

As highly complex real-time systems become more prevalent,

the capability to perform high-performance real-time gay col-
lection will become increasingly critical. Extending geséonal
collection to the real-time domain will form an importantrpaf
this effort, and we are continuing to work intensively ontbtte
theory and the implementation of such systems.
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