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Abstract
Real-time garbage collection has been shown to be feasible,but for
programs with high allocation rates, the utilization achievable is not
sufficient for some systems.

Since a high allocation rate is often correlated with a more high-
level, abstract programming style, the ability to provide good real-
time performance for such programs will help continue to raise the
level of abstraction at which real-time systems can be programmed.

We have developed techniques that allow generational collec-
tion to be used despite the problems caused by variance in pro-
gram behavior over the short time scales in which a nursery can be
collected.Syncopationallows such behavior to be detected by the
scheduler in time for allocation to by-pass the nursery and allow
real-time bounds to be met.

We have provided an analysis of the costs of both generational
and non-generational techniques, which allow the trade-offs to be
evaluated quantitatively. We have also provided measurements of
application behavior which show that while syncopation is neces-
sary, the need for it is rare enough that generational collection can
provide major improvements in real-time utilization. An additional
technique,arraylet pre-tenuring, often significantly improves gen-
erational behavior.

Categories and Subject Descriptors C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems;
D.3.2 [Programming Languages]: Java; D.3.3 [Programming
Languages]: Language Constructs and Features—Dynamic stor-
age management; D.3.4 [Programming Languages]: Processors—
Memory management (garbage collection); D.4.7 [Operating Sys-
tems]: Organization and Design—Real-time systems and embed-
ded systems

General Terms Experimentation, Languages, Measurement, Per-
formance

Keywords Scheduling, Allocation, Real-time, Garbage Collec-
tion
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1. Introduction
Garbage collected languages like Java are making significant in-
roads into domains with hard real-time concerns, such as automo-
tive command-and-control systems. However, the engineering and
product life-cycle advantages consequent from the simplicity of
programming with garbage collection remain unavailable for use in
the core functionality of such systems, where hard real-time con-
straints must be met. As a result, real-time programming requires
the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [9]) two programming models within
the same language. Therefore, there is a pressing practicalneed for
a system that can provide real-time guarantees for Java without im-
posing major penalties in space or time.

In previous work [6, 5] we showed that it is possible to build a
provably real-time garbage collector for a language like Java. A key
aspect of this work was the use oftime-basedscheduling instead
of the work-based scheduling approach that had been in common
use since Baker’s original work on real-time collection [7]. Our
collector is called theMetronomebecause it alternates between the
mutator and the collector with extremely regular “ticks”.

The result was a collector that is able to guarantee a minimum
mutator utilization of 50% at a resolution of 10ms: out of every
10ms, the mutator threads receive no less than 5ms — with no ex-
ceptions. During periods when collection is off, the mutators re-
ceive almost all of the CPU (a small portion is charged to the collec-
tor for things like allocation operations). Collection is active about
45% of the time, resulting in good but not exceptional throughput.

There was significant interest from potential users of this tech-
nology. As we met with them we found that there were two ma-
jor barriers to the adoption of our system, one technical andone
practical. The technical problem was that a utilization level of 50%
during collection was not acceptable to some users: they wanted
more CPU time available for real-time tasks even while garbage
collection was active.

Note that this isnot a throughput issue, but rather a utilization
issue: a constant 20% reduction in utilization was acceptable, while
oscillation between 0% and 50% reduction is not.

Unfortunately, it is undesirable to simply spread out the col-
lection more evenly, since this would allow the mutator to allocate
more memory while collection is in progress. The increased alloca-
tion in turn could cause the memory budget to be exceeded, leading
to a failure to meet real-time bounds.

The second barrier to the adoption of the system was practical:
they required a complete Java development environment withfull
library and debugging support. The Metronome was implemented
in Jikes RVM [1], which lacks these attributes.

Therefore, we set out to build a collector with the same pre-
dictability as the Metronome, but with higher utilization and in-



creased throughput — in a production quality JVM, IBM’s J9 vir-
tual machine [16].

To achieve higher utilization, we use generational collec-
tion [23], which focuses collector effort on the portion of the heap
most likely to yield free memory. This has added benefits in a con-
current collector because it reduces the amount of floating garbage,
which is typically a drawback of such systems. However, collecting
the nursery is unpredictable both in terms of the time to collect it
and the quantity of data that is tenured.

Real-time systems are fundamentally different in that heuristic
optimizations that are not monotonic can not be applied. Standard
generational collection is not always better; it is merely often better.
Furthermore, standard generational collection has no fixedbounds
on the time required to collect the nursery. As a result, there are
considerable additional complexities that are involved inapplying
generational techniques to a real-time collector.

The contributions of this work are:

• An algorithm for generational real-time garbage collection
based on synchronous nursery collection, which can signifi-
cantly increase throughput and reduce memory consumption;

• An analytic solution for the achievable utilization of bothgen-
erational and non-generational collection, allowing the correct
collector to be selected for a given set of application and virtual
machine parameters.

• Syncopation, a technique for handling temporary spikes in allo-
cation rate that would otherwise make it impossible to evacuate
the nursery within the real-time bounds;

• Arraylet pre-tenuring, a technique that significantly increases
the effective nursery size without increasing the cost of evac-
uation, thereby increasing utilization and reducing floating
garbage; and

• Measurements of applications showing the potential effective-
ness of both syncopation and arraylet pre-tenuring.

The paper is organized as follows: Section 2 provides back-
ground on the Metronome real-time garbage collector. Section 3
describes our basic approach to generational collection and devel-
ops analytic results for its efficacy. Section 4 introduces syncopa-
tion and Section 5 describes arraylet pre-tenuring. We thendiscuss
related work in Section 6 and draw our conclusions.

2. Metronome Overview
We begin by summarizing the results of our previous work [6, 5]
and describing the algorithm and engineering of the collector in
sufficient detail to serve as a basis for understanding the work
described in this paper. Section 3 will describe our generational
extensions and modifications.

The Metronome is a hard real-time incremental uni-processor
collector. It uses a hybrid of non-copying mark-sweep collection
(in the common case) and copying collection (when fragmentation
occurs).

The collector is a snapshot-at-the-beginning algorithm that allo-
cates objects black (marked). While it has been argued that such a
collector can increase floating garbage, the worst-case performance
is no different from other approaches and the termination condition
is deterministic, which is a crucial property for real-timecollection.

The Metronome implementation described in previous work
was done in the Jikes RVM Java virtual machine from IBM Re-
search [1]. The new system described in this paper is being built
in J9, one of IBM’s production virtual machines. For typicalappli-
cations, the J9 implementation is real-time at 10 milliseconds with
70% minimum mutator utilization (MMU). In other words, the col-
lectorwithout exceptionused less than 3 milliseconds in any given
10 millisecond window.

The key elements of the design and implementation of the
Metronome collector are:

Time-based Scheduling. The Metronome collector achieves good
minimum mutator utilization, or MMU, at high frequencies
(1024 Hz) because it uses time-based rather than work-based
scheduling. Time-based scheduling simply interleaves thecol-
lector and the mutator on a fixed schedule.

Guaranteed Real-time Bounds. Despite our use of time- rather
than work-based scheduling, we are able to tightly bound mem-
ory utilization while still guaranteeing good MMU.

Incremental Mark-Sweep. Collection is a standard snapshot-at-
the-beginning incremental mark-sweep algorithm [24] imple-
mented with a weak tricolor invariant [18]. We extend traver-
sal during marking so that it redirects any pointers pointing at
from-space so they point at to-space. Therefore, at the end of a
marking phase, the relocated objects of the previous collection
can be freed.

Segregated Free Lists. Allocation is performed using segregated
free lists. Memory is divided into fixed-sized pages, and each
page is divided into blocks of a particular size. Objects are
allocated from the smallest size class that can contain the object.

Mostly Non-copying. Since fragmentation is rare, objects are usu-
ally not moved. If a page becomes fragmented due to garbage
collection, its objects are moved to another (mostly full) page
containing objects of the same size [8].

Read Barrier. Relocation of objects is achieved by using a for-
warding pointer located in the header of each object [10]. A
read barrier maintains a to-space invariant (mutators always see
objects in the to-space).

Arraylets. Large arrays are broken into fixed-size pieces (which
we call arraylets) to bound the work of scanning or copying
an array and to bound external fragmentation caused by large
objects.

Metronome only runs on uniprocessors. This choice was made
because virtually all embedded systems are uniprocessors and the
resulting simplification allows much more efficient implementa-
tion. In particular, we explicitly control the interleaving of the mu-
tator and the collector.

We use the termcollectionto refer to a complete mark-sweep-
defragment cycle and the termcollector quantumto refer to a
scheduling quantum in which the collector runs.

The Metronome uses time-based scheduling. Most previous
work on real-time garbage collection, starting with Baker’s algo-
rithm [7], has used work-based scheduling. Work-based algorithms
may achieve short individual pause times, but are unable to achieve
consistent utilization.

The problem with Baker’s definition is that it defines real-time
behavior in terms of the collector, rather than the application. Real-
time tasks require a guarantee that they can execute to completion
in a given (short) interval. Baker’s work-based methodology merely
provides bounds on individual collector operations, but isunable
to bound the CPU consumption of the collector within a given
interval. Therefore, completion guarantees cannot be given to the
tasks.

This becomes clear when viewed from the perspective of real-
time systems methodology. Work-based collectors represent ape-
riodic event-triggered tasks of varying cost. The combinednon-
determinism of the events and of their costs results in a worst-case
execution time (WCET) that can (and often does) consume the en-
tire real-time period, leaving the application with an MMU of 0.

Previous collectors avoided time-based scheduling out of fear
that during periods of heavy allocation, the collector would fall
behind and be forced to stop the mutator in order to complete.
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Figure 1. Interaction of components in a Metronomic virtual ma-
chine. Parameters of the application and collector are intrinsic; pa-
rameters to the scheduler are user-selected, and are mutually deter-
minant.

The Metronome achieves guaranteed performance provided the
application is correctly characterized by the user. In particular, the
user must be able to specify the maximum amount of simultane-
ously live datam as well as the peak allocation rate over the time
interval of a garbage collectiona(∆G). The collector is parameter-
ized by its tracing rateR.

Given these characteristics of the mutator and the collector, the
user then has the ability to tune the performance of the system
using three inter-related parameters: total memory consumption s,
minimum guaranteed CPU utilizationu, and the resolution at which
the utilization is calculated∆t.

The relationship between these parameters is shown graphically
in Figure 1. The mutator is characterized by its allocation rate over
the interval of a garbage collectiona(∆G) and by its maximum
memory requirementm. The collector is characterized by its col-
lection rateR. The tunable parameters are∆t, which controls the
frequency of collector scheduling, and either the CPU utilization
level of the applicationu thus determining memory sizes, or a
memory sizes which determines the utilization levelu.

3. Generational Collection
In some cases the Metronome may not be able to meet an appli-
cation’s real-time utilization requirements. In that case, there are a
number of things the programmers can do: they can increase space
consumptions by buying more memory; they can decrease the uti-
lization requirementu by buying a faster processor; they can reduce
the allocation ratea by rewriting the code to perform less dynamic
allocation; or they can reduce the live memory sizem by rewriting
the code to reduce the size of long-lived data structures.

However, to the greatest possible extent we wish to avoid plac-
ing such a burden on the user. Within the system, there are several
ways to improve matters: speed up the collection rateR by tuning
the collector; decreasem by using various compaction techniques;
or decrease the fragmentation factorρ by improving the heap ar-
chitecture and free space management.

Unfortunately none of these techniques is likely to providethe
order-of-magnitude improvements that we require. The original
Metronome collector had already been fairly well tuned; fragmen-
tation was bounded fairly tightly (12% in theory and 3% in prac-
tice); and we have already applied object model compressiontech-
niques to the J9 virtual machine [4] in which we are implementing
the collector described in this paper.

However, there is a way in which we can reduce the allocation
rate a. If we employ generational techniques, we can view the
nursery as a filter which reduces the allocation rate into theprimary
heap toaη < a, as shown in Figure 2. In general we expect
η ≪ 1, which will greatly reduce the load on the main collector.
Of course, collecting the nursery will also have a cost, but for most

Nursery

Heap
a

Heap
a aη

Figure 2. For a program with allocation ratea, interposing a nurs-
ery reduces the effective allocation rate toaη, whereη is the nurs-
ery survival rate.

applications we expect that the benefits of reducing the workload
on the main collector will normally outweigh these costs by alarge
margin.

3.1 Synchronous Nursery Collection

Typical stop-the-world generational collectors consist of two dis-
joint collectors: one for the nursery and the other for the tenured
(heap) space. Both collectors are usually run with mutatorsstopped.
In a scheme where heap collection is incremental, care must be
taken to synchronize with nursery reclamation. Moreover, the in-
cremental collector requires the use of a snapshot write barrier.
Therefore, the write barrier must provide both generational and
snapshot functionality.

Nursery collection is typically triggered when the nurseryis
full. In an incremental system mutators can interleave withthe
collector. Therefore a mutator can evacuate the nursery either when
the collector is not running or when the collector is markingor
sweeping. In addition, the incremental collector itself evacuates
the nursery at the beginning of its root scanning phase. There are
three optimizations arising from this step. First, the snapshot write
barrier does not need to record the overwriting of nursery toheap
pointers. Secondly, during its heap marking phase, the incremental
collector does not need to trace nursery objects. Thirdly, we can
make sure that we eliminate all of the floating garbage in the
nursery. If we choose not to evacuate in the beginning of our
collection cycle, then the above optimizations cannot be applied.
The incremental collector also performs nursery evacuation at the
start of its sweeping phase.

Aside from when nursery evacuation occurs, another effect of
combining generational and incremental collectors is the write bar-
rier operation. Although both write barriers protect against the loss
of a reachable object, the snapshot and the generational barrier
share the following fundamental differences:

• Generational barriers arealwaysactive, snapshot barriers are
partially active: only when the collector is heap marking.

• Generational barrier entail object/region rescanning forpointer
fixup, snapshot barriers do not.

• Generational barrier remembers the destination object/region,
snapshot barriers remember the overwritten pointer.

• Generational barrier performs range comparisons to determine
whether the new pointer is a heap to nursery one, the snapshot
barrier does not perform range checks.

Most pointer stores are nursery to nursery pointers. Since nurs-
ery collection is synchronous, we do not require a snapshot write
barrier on those pointers. Additionally, since we evacuatethe nurs-
ery at the start of root set scanning, we also do not need to barrier
nursery to heap pointers. Therefore, the common write barrier can
now filter on the destination object. That is, if the destination ob-
ject is in the nursery, we do not need either of the two barriers. For



snapshot, we also do not need to barrier heap to nursery pointers,
which are needed by generational barrier. Conversely, the snapshot
barrier needs to record heap to heap pointers while the generational
barrier does not.

Therefore, with this new insight, we can utilize the range checks
that the generational write barrier performs on the destination ob-
ject in order to to filter out significant number of snapshot barriers.
We note how write barrier operation is connected with the timing
of the nursery evacuation.

In a real-time environment, if we are performing synchronous
nursery collection then we must be able to compute the worst-
case execution time (WCET) for nursery collection. This means
carefully bounding all possible sources of work. In particular, the
remembered set is also allocated from within the nursery. Objects
are allocated left to right, and remembered set entries fromright
to left. When the two regions meet, the nursery is full and must be
collected.

3.2 Utility of Generational Collection

To begin with we require a method for determining whether gen-
erational collection will provide a benefit. Surprisingly,we found
no analytical model for this in the literature. Analytical models
which rely on naive assumptions about application characteristics
naturally have limited use, but on the other hand the demandsof
real-time systems require more stringent analysis of performance
effects. Since the aim of generational collection is to improve uti-
lization in the real-time interval, it is of little use if generational col-
lection “usually” or even “almost always” improves performance.

Therefore, we have developed an analytical model which we
present here. The garbage collector itself is characterized by the
following parameters:

• N is the nursery size (bytes);
• RT is the tracing rate in the heap (bytes/second);
• RS is the sweeping rate in the heap (bytes/second);
• RN is the collection rate in the nursery (bytes/second);

The application is characterized by the following parameters:

• a is the allocation rate (bytes/second) assuming infinitely fast
garbage collection;

• m is the maximum live memory of the mutator (bytes);
• η is the survival ratio in the nursery. (Dependent onN .)

3.3 Time and Space Bounds

We characterize the real-time behavior of the system with the
following parameters:

• ∆t is the task period (seconds);
• u is the minimum mutator utilization in each∆t;

From the above parameters, we can then derive the overall space
consumption of the system:

• s is the space requirement (bytes) of the application in our
collector.

The allocation ratea and the survival ratioη in fact vary consid-
erably as the application runs. For the time being we will consider
the case when they are smooth. In Section 4 we will describe the ef-
fect of variations in those parameters, and how the implementation
copes with the variations.

For a given interval∆t, the collector may consume up to(1 −

u) · ∆t seconds for collection. We define thegarbage collection
factor γ as the ratio of mutator execution to useful collector work.

γ =
u · ∆t

(1 − u) · ∆t
=

u

1 − u
(1)
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Figure 3. Time dilation due to generational collection causes ad-
ditional allocation during a major heap collection, but attenuates all
allocation by the survival rateη.

Multiplying by γ converts collector time into mutator time; divid-
ing does the reverse. Since the relationship betweenu in the range
[0, 1) andγ in the range[0,∞) is one-to-one, we also have

u =
γ

1 + γ
(2)

To bound the space required by the collector in order to maintain
real-time bounds, we need to know how much extra space may be
allocated during a collection cycle. In the absence of generational
collection, the extra spaceeM for the Metronome is

eM = aγ ·

�
m

RT

+
s

RS

�
(3)

which is the allocation rate multiplied by the time requiredto
perform a collection.

When generational collection is introduced, the allocation is at-
tenuated by the survival rateη. However, performing generational
collection is not free, so it takes longer to collect the mainheap.
This in turn means that the mutator performs more allocationdur-
ing collection. This effect is shown in Figure 3, expressed by the
following equations, in which we define the generationaldilation
factor δ and the corresponding extra spaceeG under generational
collection:

δ = 1 −
aη

RN

· γ (4)

eG =
aηγ

δ
·

�
m

RT

+
s

RS

�
(5)

Freeing an object in our collector may take as many as three
collections: (1) the first is to collect the object; (2) the second is
because the object may have become garbage immediately after
a collection began, and will therefore not be discovered until the
following collection cycle — floating garbage; and (3) the third is
because we may need to relocate the object in order to make useof
its space. The first two properties are universal; the third is specific
to our approach.

As a result, the space requirement of our collector paired with a
given application is

s = (m + 3e) · (1 + ρ) (6)

wheree is eM or eG, and ρ is the fragmentation factor, which
is a settable parameter (we typically useρ = 1/8). Because the
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fragmentation factor is uniformly present and because the nurs-
ery sizeN is negligible compared tom, we can simply adopt
the fragmentation-free heap-size multiplier formulationto measure
space expressed by

σ =
s

m · (1 + ρ)
(7)

Substituting equations 3 and 5 into equation 7 gives us the
relative space bounds for the original Metronome collectorand the
generational version.

σM =
RT RS + 3aγRS

RT RS − 3aγRT

(8)

σG =
δRT RS + 3aγηRS

δRT RS − 3aγηRT

(9)

These equations show what the space consumption will be for
some utilizationu sinceγ is a function ofu given by equation 1.
These equations can be inverted to give the achievable utilization
in terms of a maximum heap size.

uM =
σM − 1

3a
�

1

RT
+ 1

RS

�
+ σM − 1

(10)

uG = 1 −

3aη
�

1

RS
+ 1

RT

�
(1 + aη

RN
)

σG − 1
(11)

It is because of the factor of three multiplier that generational
collection is so valuable — much more so than in a stop-the-
world generational collector. As long as the survival rateη is even
moderately low, the space required to meet real-time boundsis
reduced almost by a factor of3/η.

It should be noted that the expected space requirement is on the
order ofm + e, because although the second and third additional
collections described above could apply to all objects, in practice
they only apply to a very small percentage.

3.4 When to Use Generational Metronome?

When the survival rateη is extremely low, the generational col-
lector will be very effective because the work necessary to main-
tain available space is also very low. On the other hand, whenthe
survival rate nears 1, the nursery provides no benefit while impos-
ing an extra copy on every allocated object. Intuitively, there is a
crossover point when the use of nursery neither helps nor hurts the
Metronome. At this point, the space consumption and utilization
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would be jointly equal. Inspection of equations 8 and 9 reveals that
this condition is met whenη = δ. A more rigorous derivation,
which we omit for conciseness, reveals that there are no other solu-
tions. This crossover condition can be re-formulated to express the
cross-over utilizationuC given a fixed survival rate, or conversely
to give the cross-over survival rateηC .

uC =
RN · (1 − η)

aη + RN · (1 − η)
(12)

ηC =
RN

RN + a · u
1−u

(13)

Figures 4 and 5 show the relative heap size required as a func-
tion of a target utilization for a low (a = 20 MB/s) and high
(a = 100 Mb/s) allocation rate (see equations 8 and 9). The curves
compare the non-generational Metronome against the generational
version at several different survival rates. The remainingparame-
ters are fixed: the heap tracing rateRT = 150 MB/s, the heap
sweeping rateRS = 600 MB/s, and and the nursery collection rate
RN = 75 MB/s.

Every curve has the same shape. At low utilizations, the space
consumption is low (although for real systems, utilizationlevels
under 50% are unlikely to be acceptable). As the utilizationis in-
creased, the space consumption at first increases slowly, reaches
an inflection point, and then rises very rapidly. In a generational
system, because the nursery collection and the concurrent collec-
tion compete for time, the knee in the curve is somewhat sharper
than that in the non-generational system. Practically, this means
that when using a generational system, care must be taken to avoid
running too close to a regime where the space consumption might
explode.

When the space consumption spikes, the system is unable to
keep up with the allocation rate. In the non-generational version,
the sweep rate is throttling the mutator’s progress becausemem-
ory is unavailable for allocation until the desired memory has been
swept. In the generational version, the nursery tracing rate (miti-
gating the the survival rate) will throttle the program because the
nursery is evacuated synchronously. In either case, when the sys-
tem falls behind, the memory usage becomes unbounded.

An intuitive and graphically obvious trend in the curves for
the generational system is that lower survival rates allow ahigher
achievable utilization level. On the other hand, when the survival
rate is high, the nursery is so ineffective that it will lose to the
non-generational version. For example, Figure 4 shows thatwhen
the survival rate is 50% and the allocation rate is low, the genera-
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tional system becomes unusable aroundu = 0.70 while the non-
generational system (Figure 5) is able to function atu = 0.77.

4. Syncopation
The analysis of the previous section contains two important(and
unrealistic) simplifying assumptions, namely that the allocation
rate a and the survival rateη are uniform in each time interval
∆t. Since nursery collection is synchronous and the nursery size is
tuned to∆t, if the allocation rate spikes temporarily, the nursery
will fill more than once per interval∆t and the collector will
fall behind the mutator and perform multiple synchronous nursery
collections per interval, at which point the desired utilizationu can
no longer be guaranteed.

The Metronome is able to use time-based scheduling because
it requires the application to specify a limit on the allocation rate
at the period of the collector. If the real-time interval∆t is 1
millisecond and the collector period∆G is 1 second, then the
allocation rate can be averaged over a time interval 1000 times
longer. Fundamentally, this allows us to bound the WCET of the
collector over its own period, and then divide up that time evenly
and schedule it as a time-triggered task.

However, by introducing synchronous collection of the nursery,
it would appear that we are doomed to reduce the period over
which we can average the allocation rate and survival rate from
the collector period down to the real-time interval: while the major
heap collector is a long-period task, nursery collection isa high-
frequency task. Since it is performed synchronously, it will most
likely be the limiting factor on our ability to drive down pause
times.

The quality of service provided by a real-time garbage collector
is measured by itsminimum mutator utilizationor MMU [11],
which is the minimum amount of time provided to the mutator ina
particular interval.

In order to evaluate the effect of allocation behavior on real-time
collection, we define an analogous quantity:maximum mutator al-
location rateor MMAR. For a given time interval∆τ , the MMAR
of a program is the highest allocation rate of any∆τ -size interval
of the program’s execution. MMAR must be measured as though
garbage collection takes zero time, since otherwise a poorly imple-
mented collector would be subjected to a lower allocation rate.

The MMAR curves of the six EEMBC benchmark programs [15]
are shown in Figure 6, for100µs ≤ ∆τ ≤ 10ms. Surprisingly,
the allocation rate stabilizes very rapidly, between 1 and 3millisec-
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Figure 7. Need for Syncopation (EEMBC crypto benchmark).
With a very short real-time interval∆τ = 100µs, the applica-
tion allocates as much as 250 MB/s in some intervals; at∆τ =
10000µs, the peak allocation rate drops to 25 MB/s.

onds. This shows that if the nursery is able to absorb short-term
allocation bursts on the order of a few milliseconds, a synchronous
generational collector should be able to provide good utilization
(MMU).

However, there is no guarantee that short-term bursts will sub-
side by any particular point in time, and we also wish to drive
the maximum pause times below 1 millisecond. However, as we
shorten the time interval, we will begin to encounter intervals in
which there is more allocation than can be collected synchronously.

This is shown for thecrypto benchmark in Figure 7: for three
different time intervals∆τ = 100, 1000, and10000µs, we plot
the allocation rate in the interval∆τ versus the number of bytes
allocated at that rate. As the time scale increases from100µs to
10ms, the tail starts to disappear and the curve shifts to the left,
allowing progressively slower collectors to keep up. At 10ms, the
curve has almost degenerated into the single point corresponding
to its overall average allocation rate.

There will be some allocation rate above which the nursery
collector will not be able to keep up. The area under the curveto
the right of that point is the amount of memory that is handledvia
syncopation.

In music, syncopation is the placement of emphasis on a usually
unstressed beat. In our collector,syncopationis the movement of
collection work from a stressed interval to an unstressed interval.

When the collector determines that the product ofaη is too high,
it pre-tenures objects until the allocation rate subsides again.

4.1 Syncopation via Allocation Control

We present two alternative approaches to syncopation. In the first
we dynamically resize the nursery (virtually, not physically) to
ensure that we can still perform a worst-case evacuation of the
nursery without violating the mutator utilization requirement. For
example, if∆t = 10ms and u = 0.7 and if the first nursery
collection in the interval consumes 2 ms, then we can still consume
1 ms for collection. If we resize the nursery so that its collection
has WCET=1 ms, then the system can proceed safely.

When the nursery becomes too small to be useful (because
η → 1), we change allocation policy and simply allocate all ob-
jects directly in the heap; we call thisfloodgating. During such a
period, the effective allocation rate into the heap will spike from
the nursery-attenuated rateaη to the full ratea. The system con-
tinues to dynamically monitor the MMU, and when it has risen
sufficiently it switches back to a nursery allocation policy.



The advantages of this approach are that it is effective and rel-
atively simple to implement. The disadvantages are that it requires
provisioning for the worst case in advance, which means thatit can
not make full use of available processing resources, and that it can
only adapt to variations ina, but not inη. Furthermore, it requires
a conditional on the critical path of the inlined allocationsequence,
which slows down all allocations.

To understand why floodgating precludes the full use of an
available collector quantum, consider the case without floodgating
in which we consume a full collector quantum(1−u)∆t to collect
the nursery. It is very desirable to be able to do so since it means
that we can use the largest possible nursery, which will maximally
attenuateη.

However, when we finish collection we have used our full quan-
tum, so we must guarantee that the mutator will run for at least u∆t
before any collection takes place. However, there is no bound on the
instantaneous allocation rate of the mutator. It could fill the nurs-
ery within u∆t/2 time units, at which point we would be forced
to synchronously evacuate the nursery and would fail to meetour
MMU commitment.

The only alternative is to immediately begin tenuring newly
allocated objects and not allow any nursery allocation foru∆t
time (or at leastu∆t − ǫ, whereǫ is a time interval so short that
it is impossible for the mutator to fill the nursery). At that point,
we perform another collection quantum, and are back to wherewe
started: being unable to allocate into the nursery.

4.1.1 Scheduling: Multiple Beats per Measure

The syncopation techniques in and of themselves are fairly simple.
The difficulty lies in scheduling them in such a way that MMU
requirements are met and memory and processing resources are not
squandered.

Because of the pessimistic property of allocation-based synco-
pation, some over-provisioning is necessary. This is done by in-
creasing the frequency of collection operations within∆t. Continu-
ing our musical analogy, a time interval∆t is called ameasure, and
the sub-divisions of a measure are calledbeats, of which there must
be an integral number. Utilization must be expressed as a number
of beats per measure. Taken together, these quantities comprise the
time signatureof the system.

Since the allocation rate could spike at any time, it is possible
that two nursery collections could be forced to happen almost
back-to-back. Therefore we retain one beat in reserve. Syncopation
occurs when a second, consecutive collector beat consumes that
reserve. At that point, allocation changes to immediately tenure all
objects until a one-beat reserve has been reclaimed.

In this approach we can also dynamically adapt to changes in the
survival ratioη, because after a nursery collection which does not
consume a full beat, we can resize the nursery so that the WCET
for its collection is bounded by our remaining fractional beat. Of
course, this is not worthwhile below a certain fraction of a beat,
since the nursery becomes so small thatη → 1, and we are simply
implementing a more expensive method of immediate tenuring.

The fundamental limit of such an approach is that it requiresthat
a nursery can be collected within a single beat, which is consider-
ably smaller than the total collector quantum(1 − u)∆t. Thus this
approach is limited in its ability to drive down the fundamental time
period of the collector. In practice, we find that for our particular
hardware and benchmarks, it works well down to a measure length
of about∆t = 10ms, with 10 or 20 beats per measure, requiring a
WCET for nursery collection of500 − 1000µs.

4.2 Syncopation via Collection Control

The limitations of allocation control give rise to an alternative
method of syncopation based on controlling the collection,rather
than the allocation.

In this regime, the collector begins collecting the nurseryat the
beginning of the collector quantum. If it completes collection in
time, it resets the nursery and resumes the mutator. However, if the
collector quantum expires before nursery collection is complete, it
syncopates: it unconditionally tenures the remaining unevacuated
objects by logically moving the nursery into the mature space.
This is done by appending it to a list ofoff-beat pages. Then
a new nursery is obtained from a pre-allocated reserve and the
remembered set buffer is reset. Since all these operations are done
logically, by redirecting pointers, syncopation is extremely fast.

This method of syncopation is made possible by the presence
of a read barrier in the collector. As the nursery is being collected
and objects are moved into the heap, the forwarding pointer that
is left behind has the exact same format as the forwarding pointer
used to facilitate incremental object movement in the main heap.
Therefore, when a partially collected nursery is tenured, heap to
nursery references that were stored in the remembered set but not
yet fixed will simply follow the forwarding pointer via the read
barrier.

The major advantage of collection-based syncopation is that it
allows the collector to consume a full mutator quantum, without
requiring a change in the allocation policy. If the allocation rate
subsides in the subsequent quantum, the collector will immediately
regain the full benefits of generational collection.

The primary disadvantage is fragmentation: even if only one
object in the nursery is live, none of the memory will be reclaimed
until a full collection has taken place. Even worse, since the nursery
was allocated sequentially rather than using segregated free lists, it
must be completely evacuated before it can be reclaimed, increas-
ing the defragmentation load and making the memory unavailable
for one and a half major collection cycles (one to move the live
objects, the other to forward any pointers to them).

In the limit, collection-based syncopation degenerates into a
semi-space collector, in which all nurseries are syncopated and
become the from-space. However, it would be almost impossible
to cause this to happen, even with an adversary program.

While syncopation makes it possible to use a full collector
quantum for collection, and to allow the nursery to grow to a
point beyond its WCET collection limit, it is undesirable todo so.
Thus it may still be desirable to have multiple collector beats per
measure, as in allocation-based syncopation, although we expect
that significantly fewer beats will be required.

4.3 Cost of Syncopation

Syncopation is a technique that allows us to time-average a short-
term cost variance by moving the work to a later point in time.
Since we have a bound on the long-term allocation rate, we know
that any rate spike will be accompanied by a corresponding rate
drop within the collector period.

However, at a certain point the variance in the behavior of the
mutator is so high that the cost of syncopation will outweighits
benefits. In particular, consider the case when all memory tobe
allocated in an entire major collection cycle∆G is allocated within
a single interval∆t. In that case, the beat generation will contain
virtually all of the allocated objects, and we will have received none
of the benefits of generational collectioneven if the program obeys
the generational hypothesis.

Variation in the allocation rate and survival rate must be consid-
ered together because they drive the load on the nursery collector
in concert.
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Figure 8. Arraylets.

The work performed by nursery collection is linear in the size
of the surviving data, so as long as the nursery collection rate RN

is higher than the survival rateaη, no syncopation is required.
However, above that point the survival rate will only be attenuated
by η the first time the nursery fills up; after that memory will be
allocated into the heap at the unattenuated ratea.

For a particular time interval∆ti with allocation rateai and
survival rateηi, the effective allocation rate into the heapa′

i is

a′

i =

8<:aiηi whenaiηi ≤ RN ,

ai −
RN

�
1

ηi
−1

�
γ

otherwise.
(14)

While the extra space cost due to syncopations could be calcu-
lated precisely if allai andηi were known, such a specification
would be very cumbersome and lack abstraction for the user.

We are currently investigating ways for the user to bound the
potential extra load on the collector by concisely describing the
behavior of the application (in terms of the variation shownin Fig-
ure 7). In general, the trade-off imposed by generational collec-
tion is higher utilization in exchange for more specific information
about program behavior.

5. Increasing Mortality
In the previous section we saw that the performance of the sys-
tem is critically determined by the nursery survival rateη. In this
section we describe a technique for decreasing the survivalrate by
increasing the effective size of the nursery.

In the Metronome, an array consists of two parts: anarrayoid,
which contains the object header and pointers toarraylets, which
are contiguous aligned chunks of sizeΣ. If the last arraylet is
smaller than the arraylet chunk size minus the arrayoid header size,
then it is allocated contiguously with the arrayoid itself.This leads
to three basic array organizations, as shown in Figure 8.

The arraylet sizeΣ is determined by the page sizeΠ and the
desired fragmentation ratioρ, such thatΣ = ρΠ. Maximum imme-
diately allocatable array length is thus limited toΠΣ/4 (assuming
4 bytes/word). In our implementation we use page sizeΠ = 16KB
and fragmentation ratioρ = 1/8, for an arraylet size ofΣ = 2KB
and a maximum immediately allocatable array length of of 8MB.
Larger arrays which may require arbitrarily large contiguous mem-
ory must be requested via a potentially blocking interface,which
may have to wait up to 2 collection cycles for sufficient contiguous
memory to be evacuated and its incoming pointers forwarded.

The mixed arraylet form of Figure 8(b) is required to maintain
the fragmentation bound, since an array of sizeΣ + 1 allocated
in the pure form (a) would otherwise consume two arraylets for a
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Figure 9. Average allocation ratea, generational survival rateaη,
and generational survival rate with arraylets for the EEMBCbench-
marks with a 32KB nursery on a 2.4 GHz Pentium.

fragmentation of 50%. By using the mixed form we can bound the
fragmentation byρ.

Note that in order to be power-of-two aligned, the arraylets
contain no internal metadata; this is kept in the per-page metadata,
which must be consulted at page boundaries when parsing the heap.

5.1 Arraylet Pretenuring

In a generational system, arraylets have an additional enormous ad-
vantage: for most programs they allow the effective size of the nurs-
ery to be greatly increased, without increasing either its physical
size or the cost of nursery collection.

The mechanism is very simple: arrayoids are allocated in the
nursery, while their arraylets are allocated in the heap. Asa re-
sult, the cost of evacuating the array is just the cost of moving
the arrayoid into the heap: the arraylets are not moved, and the
arraylet pointers in the arrayoid are unchanged, meaning that no
additional pointer forwarding is incurred and the arrayoidcan be
block-copied.

Arraylets provide an extra level of indirection. Since we already
need such a mechanism to avoid external fragmentation, using the
indirection for the additional purpose of virtual nursery expansion
incurs no additional cost while providing enormous benefitsfor
applications that allocate a significant portion of their space as
medium-sized or large arrays.

The “virtual evacuation” of arraylets is not free, and must be
charged to the nursery collection. Thus when an arraylet is pre-
tenured, the allocation limit for the nursery is reduced, although by
much less than it would have been had the entire array had actually
been allocated in the nursery.

For arrays of primitive types, the extra cost is almost zero,since
in the worst case the object dies and its arraylets must be chained
back into a free list.

However, for arrays of pointers, in the worst case all of the
elements in the array point to objects in the nursery (whose address
will change during evacuation), so each element of the arraywill
have to be forwarded. Thus pointer arraylet allocation would have
to be charged at a much higher rate. For simplicity we do not pre-
tenure pointer arraylets.

5.2 Effectiveness of Arraylet Pre-tenuring

Figure 9 shows the effectiveness, in terms of absolute allocation
rate, of arraylet pre-tenuring in our implementation. Absolute rates
are shown because they determine the overall utilization that can be
achieved.



Of the six benchmarks, three have low survival rates withoutar-
raylet pre-tenuring (Chess, Parallel, and Regex). Chess and Regex
do not allocate arrays at all, so there can be no further benefit, but
they already have very low allocation rates (both relatively and abo-
lutely).

kXML has a moderate survival rate without arraylet pre-
tenuring (about 40%), while Crypto and PNG have survival rates
so high that generational collection will not be useful.

When arraylet pre-tenuring is applied, it significantly reduces
the survival rate of two of the three benchmarks that allocate sig-
nificant amounts of array data. The effect is particularly dramatic
for Crypto, but also significant for Parallel. For PNG, the reduction
is significant but the resulting surival rate may still be toohigh for
generational collection to be profitable.

Overall, arraylet pre-tenuring has a significant effect in reducing
the allocation rate and increasing the usability of generational col-
lection. While it is not a panacea, for some programs it will provide
major improvements. Most importantly, it significantly reduces the
number of outliers.

6. Related Work
Generational collection for general-purpose hardware wasdevel-
oped by Ungar [23] for Smalltalk-80, a highly dynamic object-
oriented language. Since even closures for conditionals were heap-
allocated, the lifetime of most objects was extremely shortand
generational collection proved highly effective. Subsequently it be-
came apparent that generational techniques were effectivefor a
broader class of languages, especially as sufficient memoryre-
sources for larger nurseries became available.

Generational collection has proved so effective that many more
sophisticated techniques have been unable to match its perfor-
mance.

Moon [20] concurrently developed essentially the same tech-
nique for Lisp (called ephemeral garbage collection) usingspecial-
purpose hardware support on the Symbolics 3600. This systemwas
not only generational but concurrent, also having hardwaresupport
for Bakers algorithm. It thus anticipates our work in some respects.
However, like Baker’s algorithm, it was incremental but nottruly
real-time.

A number of other systems have combined generational and
concurrent collection. Doligez et al. [13] developed a collector
for ML which exploited the large proportion of immutable objects
by allocating them in independently collected nurseries. Nursery
collection was synchronous and thread-local. Domani et al.[14]
subsequently expanded on this basic design for a concurrent, non-
compacting collector in which nursery collection was also concur-
rent. However, both collectors do not perform generationalcollec-
tion during tenured space collection, which is a fundamental re-
quirement in our system for maintaining real-time behavior. Their
system also used card marking, which is not suitable for a real-time
collector due to the need to scan all cards and then scan all objects
corresponding to dirty cards.

In the mid-1970’s the first algorithms were developed for paral-
lel and concurrent collection, which was viewed as a paradigmatic
example of the difficulties of expressing concurrent algorithms and
proving them correct [12, 22, 19]. These collectors were allincre-
mental updatecollectors: changes to the object graph during col-
lection were detected and the collection re-traced the graph from
the modified nodes.

Yuasa [24] introduced the snapshot-style collector. Unlike in-
cremental update collectors, Yuasa’s collector operated on a virtual
snapshot of the object graph at the time collection started.Yuasa’s
algorithm results in more floating garbage and requires a more ex-
pensive write barrier, but is better suited to real-time collection

since operations by the mutator can not “undo” the work done by
the collector.

Baker [7] was the first to attack the problem of real-time garbage
collection. As we discussed in Section 2, his technique fundamen-
tally suffers from using work-based, event-triggered scheduling,
and from evaluating real-time properties from the point of view of
the collector rather than the application. The result is fundamentally
soft real-time (best effort) rather than hard real-time (guaranteed)
response.

There have been many incremental and soft real-time collectors
since then, exploring various aspects of the design space, such as
the use of virtual memory support [2] and coarse-grained replica-
tion with a synchronous nursery [21]. However, there is no guaran-
tee on the maximum pause time.

Cheng and Blelloch [11] described a time-triggered real-time
multiprocessor replicating collector with excellent utilization, for
which they introduced the minimum mutator utilization (MMU)
metric, an application-oriented measure of the behavior ofa con-
current collector. However, the MMU was measured rather than
guaranteed, and space overheads were large.

Bacon et al. [3] built a soft real-time reference counting col-
lector for weakly ordered multiprocessors. This collectoralso
achieved very good MMU, but was subject to unpredictable be-
havior in the presence of cycles. Space overhead was low, butnot
guaranteed since incremental compaction was not performed.

The Metronome collector of Bacon et al. [6] was the first guar-
anteed hard real-time collector. This collector provided guaranteed
MMU based on the the characterization of the application in terms
of maximum live memory and allocation rate. Space overhead was
usually comparable to that required by synchronous (“stop-the-
world”) collectors, due to incremental defragmentation and quanti-
tative bounding of all sources of memory loss [5].

While most previous work on real-time collection has focused
on work-based scheduling, there are some notable exceptions. In
particular, Henriksson [17] implemented a Brooks-style collec-
tor [10] in which application processes are divided into twoprior-
ity levels: for high-priority tasks (which are assumed to beperiodic
with bounded compute time and allocation requirements), memory
is pre-allocated and the system is tailored to allow mutatoropera-
tions to proceed quickly.

7. Conclusions
The utilization level achievable by real-time garbage collection is
most fundamentally limited by the allocation rate of the program.
Generational collection often reduces the effective allocation rate
into the mature heap by a large margin.

We have shown how generational techniques can be applied to a
real-time collector by extending the Metronome with synchronous
nursery collection andsyncopation, a technique which allows the
collector to avoid exceeding its real-time bounds during temporary
bursts in allocation or survival rates. When combined with multiple
beat-per-measure scheduling, syncopation allows for highutiliza-
tion based on average rather than peak allocation rates.

In order to determine when generational collection is advanta-
geous, we have introduced a cost model that allows the behavior
of the generational and non-generational collectors to be modeled
analytically.

We have provided measurements which show the need for syn-
copation in practice, but also show that allocation rates stabilize
very quickly (between 1 and 3 milliseconds) and that the amount
of syncopated data is small.

Finally, we introducedarraylet pre-tenuringas a technique for
increasing the effective nursery size without increasing the collec-
tion cost, and provided measurements that show that it is very effec-



tive for reducing the effective survival rate of programs that allocate
significant array data.

As highly complex real-time systems become more prevalent,
the capability to perform high-performance real-time garbage col-
lection will become increasingly critical. Extending generational
collection to the real-time domain will form an important part of
this effort, and we are continuing to work intensively on both the
theory and the implementation of such systems.
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