
Zapper: Smart Contracts
with Data and Identity Privacy

Samuel Steffen Benjamin Bichsel Martin Vechev

ETH Zurich, Switzerland

Icons by Fontawesome, CC BY 4.0

Introduction: Privacy for Smart Contracts

Permissionless
Blockchain

Existing work
weak privacy guarantees

strong trust assumptions

manual instantiation of crypto

2

Goal: hide data and user identities

Idea

Zapper

Zerocash [Sasson et al., 2014] / Zcash

make programmable

but avoid limitations of previous work (e.g., ZEXE [Bowe et al., 2020])

3

strong privacy guarantees

not programmable

Distributed LedgerZapper

Assembly Store

Zapper
assembly

4

call: Coin.transfer()
receiver: obj
args: 4, 2
sender: Alice

Objects

Zapper

Assembly Store

Objects

Distributed LedgerZapper
assembly

5

call: Coin.transfer()
receiver: obj
args: 4, 2
sender: Alice

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

Example: Coin Puzzle

6

Alice Bob

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

Example: Coin Puzzle

7

Alice Bob

class Wrapper(Contract):
 coin: Coin
 # owner: Address

 def constructor(self, coin: Coin,
 owner: Address):

self.owner = owner
self.coin = coin
coin.transfer(self.address)

 def puzzle(self, sol: Uint) -> Bool:
…

 def open(self, sol: Uint):
require(self.puzzle(sol))
self.coin.transfer(self.me,

 sender_is_self=True)

Example: Coin Puzzle

8

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

Alice Bob

class Wrapper(Contract):
 coin: Coin
 # owner: Address

 def constructor(self, coin: Coin,
 owner: Address):

self.owner = owner
self.coin = coin
coin.transfer(self.address)

 def puzzle(self, sol: Uint) -> Bool:
…

 def open(self, sol: Uint):
require(self.puzzle(sol))
self.coin.transfer(self.me,

 sender_is_self=True)

Example: Coin Puzzle

9

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

Alice Bob

class Wrapper(Contract):
 coin: Coin
 # owner: Address

 def constructor(self, coin: Coin,
 owner: Address):

self.owner = owner
self.coin = coin
coin.transfer(self.address)

 def puzzle(self, sol: Uint) -> Bool:
…

 def open(self, sol: Uint):
require(self.puzzle(sol))
self.coin.transfer(self.me,

 sender_is_self=True)

Example: Coin Puzzle

10

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

Alice Bob

pointers and function calls objects can be owners

class Wrapper(Contract):
 coin: Coin
 # owner: Address

 def constructor(self, coin: Coin,
 owner: Address):

self.owner = owner
self.coin = coin
coin.transfer(self.address)

 def puzzle(self, sol: Uint) -> Bool:
…

 def open(self, sol: Uint):
require(self.puzzle(sol))
self.coin.transfer(self.me,

 sender_is_self=True)

Example: Coin Puzzle

11

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

Alice Bob

class Wrapper(Contract):
 coin: Coin
 # owner: Address

 def constructor(self, coin: Coin,
 owner: Address):

self.owner = owner
self.coin = coin
coin.transfer(self.address)

 def puzzle(self, sol: Uint) -> Bool:
…

 def open(self, sol: Uint):
require(self.puzzle(sol))
self.coin.transfer(self.me,

 sender_is_self=True)

Example: Coin Puzzle

12

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

Alice Bob

LOAD tmp2 self ’owner’
EQ tmp3 tmp2 me
REQ tmp3
LOAD tmp4 self ’other’
CALL ’Bar.bar’ tmp2

STORE arg0 self ’owner’

Assembly Code and Access Control

type check

access control

inline calls

 def foo(self, to: Address):
require(self.owner == self.me)
self.other.bar()
self.owner = to

interaction between classes
only via function calls

static checks,
insert necessary runtime checks

no control-flow (but CMOV)
no loops

13

LOAD tmp0 self ’owner’
EQ tmp1 tmp0 me
REQ tmp1
LOAD tmp2 self ’other’
CALL ’Bar.bar’ tmp2
STORE arg0 self ’owner’

Distributed Ledger

CID tmp0 self
EQ tmp1 tmp0 ’Foo’
REQ tmp1

zk-SNARK

…

Storing and Updating Objects

“Coin”
#2022
owner: Alice
val: 1

Merkle tree

I correctly…
- accessed the required object states
- invalidated these states
- updated the states according to the

called function
- encrypted the new states

14

…

“Coin”
#2022
owner: Bob
val: 1

Coin#2022.transfer(Bob)

generalize Zerocash / Zcash to objects

avoid pitfalls (very technical)

??

Alice Bob

15

same zk-SNARK circuit for all programs *

public inputs secret inputs

assembly program
…

input object states

output object states
…

argumentsZero-knowledge Processor

verified

precomputation and
prefetching objects

Security Properties

Data and Identity Privacy
Object accesses, data, sender, and arguments hidden

simulation-based
indistinguishability proof

identified and fixed
2 attacks on ZEXE

16

Correctness
Cannot violate class logic

Integrity
Cannot tamper with or replay transactions

Availability
Cannot block valid transactions

Evaluation

< 0.01 s compilationOn commodity desktop

≈ 22 s tx generation

< 0.03 s tx verification w/o consensus

99.9 % proof generation

17

Coin Decentralized
Exchange

Private
Auction

Double-blind
Peer-review

…Expressiveness

Efficiency

Available on : eth-sri/zapper
on idealized ledger

Summary

18

call: Coin.transfer()
receiver: obj
args: 4, 2
sender: Alice

class Coin(Contract):
 val: Uint
 # owner: Address

 def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

??

Zapper

eth-sri/zapper

