4 Zapper: Smart Contracts

with Data and Identity Privacy

Samuel Steffen Benjamin Bichsel Martin Vechev

ETH Zurich, Switzerland

ETH:zirich =SRILAB



I Introduction: Privacy for Smart Contracts

Permissionless
Blockchain

& 9

Goal: hide data and user identities

Existing work )
weak privacy guarantees

strong trust assumptions

manual instantiation of crypto



Zerocash [Sasson et al., 2014] / Zcash

strong privacy guarantees

not programmable

make programmable * Zapper

but avoid limitations of previous work (e.g., ZEXE [Bowe et al., 2020])




Zapper
assembly

<

call: Coin.transfer()
receiver: obj
args: 4,2

sender: Alice

Distributed Ledger

Assembly Store

©

2°

Objects



Distributed Ledger

l

Assembly Store

I 4 Zapper Zapper

assembly

A N
%, =

call: Coin.transfer()
receiver: obj
args: 4,2 \&

sender: Alice
\& Objects



I Example: Coin Puzzle

class Coin(Contract):
val: Uint

def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

t

Alice Bob



I Example: Coin Puzzle

class Coin(Contract):
val: Uint

def transfer(self, to: Address):
require(self.owner == self.me)
self.owner = to

®
AN

Alice Bob



I Example: Coin Puzzle class Wrapper(Contract):

coin: Coin

class Coin(Contract):
val: Uint def constructor(self, coin: Coin,

owner: Address):
self.owner = owner

def transfer(self, to: Address): self.coin = coin
require(self.owner == self.me) coin.transfer(self.address)

self.owner = to

def puzzle(self, sol: Uint) -> Bool:

def open(self, sol: Uint):
T require(self.puzzle(sol))
® O self.coin.transfer(self.me,
a4 A sender_is_self=True)

Alice Bob



I Example: Coin Puzzle class Wrapper(Contract):

coin: Coin

class Coin(Contract):
val: Uint def constructor(self, coin: Coin,

owner: Address):
self.owner = owner

def transfer(self, to: Address): self.coin = coin
require(self.owner == self.me) coin.transfer(self.address)

self.owner = to

def puzzle(self, sol: Uint) -> Bool:

def open(self, sol: Uint):

T f require(self.puzzle(sol))
® O self.coin.transfer(self.me,
a4 A sender_is_self=True)

Alice Bob



I Example: Coin Puzzle class Wrapper(Contract):

coin: Coin

class Coin(Contract):
val: Uint def constructor(self, coin: Coin,

owner: Address):
self.owner = owner

def transfer(self, to: Address): self.coin = coin
require(self.owner == self.me) coin.transfer(self.address)

self.owner = to

[
—

pointers and function calls f objects can be owners

def open(self, sol: Uint):

f require(self.puzzle(sol))
® O self.coin.transfer(self.me,
a4 A sender_is_self=True)

Alice Bob

10



I Example: Coin Puzzle class Wrapper(Contract):

coin: Coin

class Coin(Contract):
val: Uint def constructor(self, coin: Coin,

owner: Address):
self.owner = owner

def transfer(self, to: Address): self.coin = coin
require(self.owner == self.me) coin.transfer(self.address)

self.owner = to

[
—

def puzzle(self, sol: Uint) -> Bool:

def open(self, sol: Uint):

f require(self.puzzle(sol))
® O self.coin.transfer(self.me,
a4 A sender_is_self=True)

Alice Bob



I Example: Coin Puzzle class Wrapper(Contract):

coin: Coin

class Coin(Contract):
val: Uint def constructor(self, coin: Coin,

owner: Address):
self.owner = owner

def transfer(self, to: Address): self.coin = coin
require(self.owner == self.me) coin.transfer(self.address)

self.owner = to

. ]
\\\ li' def open(self, sol: Uint):
f require(self.puzzle(sol))
® O self.coin.transfer(self.me,
a4 O sender_is_self=True)
Alice Bob

def puzzle(self, sol: Uint) -> Bool:



I Assembly Code and Access Control
Distributed Ledger

no control-flow (but CMOV)

no loops

CID tmpo self
EQ tmpl tmp@ ’Foo’
REQ tmpl

) )
LOAD tmp@ self ’owner LOAD tmp2 self ’owner’

EQ tmpl tmp@ me

def foo(self, to: Address): REQ tmpl :g t$P33th2 me
require(self.owner == self.me) LOAD tmp2 self ’other’ LOED 22 4 self ’other’
self.other.bar() CALL ’Bar.bar’ tmp2 P

self.owner = to STORE argf self ’owner’ *

STORE argd self ’owner’

° type check

u access control

static checks,

insert necessary runtime checks

interaction between classes

-)J inline calls only via function calls

13



I Storing and Updating Objects

Merkle tree

© . 0.0 ©

ﬂ'COin.’.’
#2022
owner: Alice
val: 1

a Alice

“Coin”
#2022
owner: Bob

val: 1
a Bob

generalize Zerocash / Zcash to objects

avoid pitfalls (very technical)

Coin#2022.transfer(Bob)

a
F. zk-SNARK

| correctly...
- accessed the required object states
- invalidated these states
- updated the states according to the
called function
- encrypted the new states

14



I Zero-knowledge Processor

assembly program

public inputs

arguments

input object states

output object states
B

<* precomputation and
prefetching objects

same zk-SNARK circuit for all programs *

15



simulation-based

I Security Properties

indistinguishability proof

Q) Data and Identity Privacy

Object accesses, data, sender, and arguments hidden

« Correctness
Cannot violate class logic

B Integrity

Cannot tamper with or replay transactions

< Availability

Cannot block valid transactions identified and fixed

2 attacks on ZEXE

16



I Evaluation
Available on O: eth-sri/zapper

" onidealized ledger
\, . . : .
Expressiveness Coin ~ Decentralized N Prlvgte N Double b_Ilnd
Exchange Auction Peer-review
On commodity desktop <0.01 s compilation

\

Efficiency =~ 22 s tx generation 99.9 % proof generation

.

< 0.03 s tx verification w/0 consensus

17



I Summary

class Coin(Contract):

O eth-sri/zapper ass Coin

* Zapper def transfer(self, to: Address):
require(self.owner == self.me)

self.owner = to

° @ N
N
®call: Coin.transfer()

receiver:  obj

args: 4,2
sender:  Alice



