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QVM: An Efficient Runtime for Detecting Defects
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Coping with software defects that occur in the post-deployment stage is a challenging problem: bugs may
occur only when the system uses a specific configuration and only under certain usage scenarios. Never-
theless, halting production systems until the bug is tracked and fixed is often impossible. Thus, developers
have to try to reproduce the bug in laboratory conditions. Often, the reproduction of the bug takes most of
the debugging effort.

In this paper we suggest an approach to address this problem by using a specialized runtime environ-
ment called Quality Virtual Machine (QVM). QVM efficiently detects defects by continuously monitoring
the execution of the application in a production setting. QVM enables the efficient checking of violations
of user-specified correctness properties, that is, typestate safety properties, Java assertions, and heap
properties pertaining to ownership. QVM is markedly different from existing techniques for continuous
monitoring by using a novel overhead manager which enforces a user-specified overhead budget for quality
checks. Existing tools for error detection in the field usually disrupt the operation of the deployed system.
QVM, on the other hand, provides a balanced trade-off between the cost of the monitoring process and
the maintenance of sufficient accuracy for detecting defects. Specifically, the overhead cost of using QVM
instead of a standard JVM, is low enough to be acceptable in production environments.

We implemented QVM on top of IBM’s J9 Java Virtual Machine and used it to detect and fix various
errors in real-world applications.
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1. INTRODUCTION

Despite increasing efforts and success in identifying and fixing software defects early
in the development lifecycle, some defects inevitably make their way into production.
The wide variety of deployment configurations and the diversity of usage scenarios is
almost a certain guarantee that any large system will exhibit defects after it has been
deployed.
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Detecting and diagnosing defects in a production environment remains a significant
challenge. Failures in such environments might occur with low frequency and be vir-
tually impossible to reproduce. For example, a defect might occur due to a specific
concurrent interleaving, a specific lengthy user interaction, or a slow resource leak
that gradually degrades system performance leading to an eventual crash.

Existing tools for diagnosing defects “in the wild” are limited and usually incur
an unacceptable overhead that significantly disrupts the operation of the deployed
system. On the other hand, reproducing the failure in a test environment (if at all
possible) may require considerable time and effort.

One way to detect rarely occurring defects is to continuously monitor a system for vi-
olations of specified correctness properties. For example, this can be achieved by using
global property monitors and local assertions. However, the typical cost of these tech-
niques prevents programmers from widely using them in production environments.

This work describes a runtime environment that is able to detect and help diagnose
defects in deployed systems. Towards this end, we present the Quality Virtual Machine
(QVM), a runtime environment that uses the technology and infrastructure available
in a virtual machine to improve software quality. QVM provides an interface that
allows software monitoring clients to be executed with a controlled overhead. Based
on this interface, we present three such clients that continuously monitor application
correctness by using a combination of simple global property monitors (typestate prop-
erties) and assertions. In addition, QVM automatically collects debug information that
enables effective defect diagnosis.

We implemented QVM on top of IBM’s J9 Java Virtual Machine. We used a number
of large-scale real-world applications with QVM and found defects in many of them.
We explain the design rationale behind QVM in Section 3.1.

1.1 Main Contributions

The contributions of this paper include the following.

— QVM is a runtime environment targeted towards defect detection and diagnosis in
production systems.

— A novel overhead manager enforces an overhead budget on client analyses, while
maintaining sufficient accuracy for detecting defects.

— We introduce property-guided sampling and in particular object-centric sampling to
collect sampled profiles while preserving correctness of the analysis.

— A lightweight interface helps separate analysis clients from the details of the un-
derlying VM, and transparently manages overhead of these clients.

— We use this infrastructure to implement three representative analysis clients:
(i) tracking simple temporal safety properties and providing debug information;
(ii) checking standard Java assertions; (iii) checking expressive heap queries per-
taining to object ownership.

— We implemented QVM on top of IBM’s production Java Virtual Machine (J9). We
used QVM as our standard day to day virtual machine, running a wide range of
applications without a noticeable slowdown. We show that QVM can be used to
effectively detect defects in such applications, and help diagnose them. In addition,
we evaluated the overhead on the standard SPECjvm98 and DaCapo benchmarks
[Blackburn et al. 2006].

1.2 Overview

In this section we provide a brief informal overview of QVM components and our ex-
perimental evaluation.
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Overhead Manager. QVM allows the user to specify an overhead that is considered ac-
ceptable for the current monitoring environment. The maximum acceptable overhead
may be 5%–10% in a live deployed system, yet 100% overhead (factor of 2 slowdown)
may be considered acceptable in a testing environment. Given an overhead budget,
the QVM strives to collect as much useful information as possible from the executing
program while staying within the specified budget.

QVM Interface (QVMI). A performance-aware profiling/monitoring interface that al-
lows client analyses to remain decoupled from the VM, while maintaining efficiency.
The design goal of this component is to enable development of powerful, yet efficient
dynamic analyses. Technically, the overhead manager and the QVMI work together to
provide clients with a transparent adaptive overhead management.

Analysis Clients. Using the QVM platform, we implement three analysis clients:

Typestate Properties. This analysis client enables the dynamic checking of typestate
properties. Dynamic checking of typestate properties, as well as generalized multiple-
object typestate, has been addressed before in Tracematches [Allan et al. 2005] and
MOP [Chen and Roşu 2007]. We use the typestate client to demonstrate three con-
tributions of our platform: (i) adaptive overhead management; (ii) collection of timing
information for typestate transitions; (iii) collection of additional detailed debug infor-
mation with low overhead.

Local Assertions. QVM allows efficient sampling of user assertions by intercept-
ing standard Java assertions and managing their execution through the overhead
manager.

Heap Probes and Operations. QVM enables the dynamic checking of various global
heap properties such as object-sharing, ownership, thread-ownership and reachability.
These properties are useful for both debugging and program understanding purposes.

Experimental Evaluation. To evaluate the usability of QVM in finding defects and di-
agnosing them, we focused on typestate properties that correspond to resource leaks.
For that purpose, we set QVM as the default JVM used in our environment and used
it to perform all of our daily tasks while recording its error reports. To further exercise
QVM, we used a wide range of applications on a regular basis. Some of the applica-
tions considered are an instant-messenger (goim), newsfeed readers (feednread, rssowl),
file management utilities (virgoftp, jcommander), large IBM internal applications, etc.
For all of these applications, the overhead incurred by running them on top of QVM
was unnoticeable to the user. Since the overhead of QVM is not noticeable by the user
while using interactive applications, we use the SPECjvm98 and DaCapo benchmarks
to evaluate the overhead manager’s effectiveness.

In some of our experiments (e.g., Azureus, virgoftp, goim), we investigated each report
manually, diagnosed the causes of the errors, and implemented fixes. For some ap-
plications, our defect reports were confirmed by the development team, and our fixes
were incorporated into the codebase.

Outline. The rest of this article is organized as follows. Section 2 motivates our
approach with a simple example. Section 3 provides a brief overview of the QVM
architecture and the QVM Interface (QVMI). Section 4 describes the details of the
overhead manager, which together with QVMI provides the foundations for client
analyses. Section 5 describes our client analyses, and Section 6 provides details of
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Fig. 1. A sample QVM error report for Azureus.

their implementation. Section 7 describes the results obtained running application on
top of QVM. Section 8 discusses related work.

2. MOTIVATING EXAMPLE

Azureus1 is an open-source implementation of the BitTorrent protocol. It supports
several modes of user interaction, all implemented using the Standard Widget Toolkit
(SWT)2 Azureus is the #1 downloaded Java program from SourceForge, and has more
than 360 million downloads to date. Azureus plays the role of both a client and a server
for P2P file sharing, and is therefore a relatively long-running application.

Finding Bugs. We run Azureus with QVM, monitoring various correctness properties,
including possible SWT resource leaks and IOStream leaks. Azureus runs on QVM
with no apparent slowdown. Over the course of few hours, we check the QVM logs and
observe that some errors were reported.

Figure 1 shows an example of an error reported by QVM while running
Azureus. This is the actual error report as produced by QVM where some package
names have been abbreviated. By itself, this error report provides useful informa-
tion about the property being violated. In this case, the reported Image object has not
been properly disposed before it became unreachable. Failure to properly dispose such
SWT resources leads to leakage of OS-level resources and may gradually hinder per-
formance and even lead to a system crash. The error report of Figure 1 provides the
basic information necessary to track down the error: the method in which the object
was allocated, the object’s last state, and the last method invoked on the object.

Generally, the only user specification required for QVM to report this kind of errors
is a typestate specification like the one shown later in Figure 7. QVM has built-in
specifications for detecting resource leaks of SWT resources, as well as other resources
managed by standard Java libraries.

Diagnosing the Cause. The QVM error report above notifies the user that there is an
error, but understanding the cause of the error and introducing a fix is still nontrivial.
The programmer needs to track the flow of the object through the program to identify
why dispose was not called. To assist the programmer in this task, QVM provides addi-
tional, more detailed, debug information in the form of a typestate history. A typestate
history for an object shows all the methods that have been invoked with that object as a
receiver, over the course of the object’s lifetime, from allocation to collection. For every
method invocation, the invocation history collects the contexts in which it was invoked.
(We provide a more elaborate description of the typestate history in Section 5.1.)

To maintain a low runtime overhead, a typestate history is only collected for some of
the tracked objects. Whenever an allocation site is identified as allocating a number of
objects that violate a property, QVM starts recording typestate histories for a sample
of objects allocated at that site. This object-centric sampling is one of the features that
makes it possible to collect detailed debug information with low overhead.

1Azureus: Java BitTorrent Client. http://azureus.sourceforge.net/.
2Eclipse. Standard widget toolkit (swt). http://www.eclipse.org/swt/.
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Fig. 2. Sample typestate history for a single instance of Image that was reported as non-disposed in
Figure 1. The figure only shows a single sample stack trace for every method invoked on the object.

Figure 2 shows an example of a typestate history for an object allocated at the same
site as the object reported in Figure 1. The typestate history abstracts the history of
methods invoked on the object. Technically, the typestate history is a directed graph
with labeled nodes and labeled edges. A node in the graph represents the state of
the object after a specific method has been invoked on it. There is a single node in
the graph for each method invoked on the object (summarizing all invocations of that
method). A node in the graph is labeled by the name of the invoked method, and by a
set of (bounded) contexts, representing the context in which the method was invoked.
An edge between nodes m1 and m2 in the graph represents the fact that the method
corresponding to m2 has been invoked immediately after the method corresponding
to m1 has been invoked. Note that this directed edge only denotes the order in time
between the two methods. It does not say that m2 is called from m1.

Next, we show how we used the debug information provided by QVM to find the
cause of an error. In the example of Figure 2, there are 5 methods that have been
invoked on the tracked object. First, the object is initialized by invoking <init> and
init. Then, a graphical context (GC) is created around the image (internal new GC) and
disposed (internal dispose GC). Finally, isDisposed is invoked on the image. The method
Image.dispose() that is required for properly disposing the image is never invoked.

In this simple example, there is only one context in which each method has been
invoked. The context is shown inside a rectangle next to its corresponding graph
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Fig. 3. Azureus code fragment leaking SWT Image objects.

node. Considering the contexts in which the methods in this example were invoked,
we can see that most of the operations on the tracked object are performed through
the handleResize method in which it was allocated. The only exception is the call to
isDisposed() which originates in a paint event of the list view.

We therefore focus our attention on the handleResize method in azureus.ui.swt.

views.list.ListView. The typestate history serves as a guide to the execution in which
the property was violated. Following the sequence of calls in the debug information we
further focus attention to the code excerpt shown in Figure 3.

The problem in this method represents a common source of leaks: a new image is
stored into the field imgView without properly disposing the previous image that was
stored in the field. In this example, handleResize mixes the case of imgView == null (no
previous image is known for taking previous bounds) with the case of forced resize
(bForce == true). As a result, there are cases in which a new Image is created without
properly disposing the previous Image stored in imgView.

The number of Image objects leaked as a result of this bug directly depends on user
interaction. Since this leak is associated with a resize event, it may not occur with
high frequency. However, the cumulative effect of a large number of small leaks may
be fatal. In Section 7.1, we discuss additional problems found on Azureus by QVM,
and show that some of these occur very frequently and result in significant resource
leaks.

Developing a Fix. Now that we have diagnosed the bug as being caused by not dispos-
ing the old Image object stored in imgView, the question is how do we introduce a fix.
What we would like to do is to invoke dispose on the object stored in imgView before
we stored the newly allocated image into the field. Unfortunately, we do not know the
source of the Image stored in imgView, and in particular, whether this image is shared
with other GUI components. In SWT, it is common for resources such as images, fonts,
and colors to be shared between multiple GUI components. The convention is that
whoever allocates the resource is responsible for its safe disposal. When we reach the
point of allocating a new Image and storing it into imgView, we do not know whether the
previous value of imgView was allocated in this method. Furthermore, we do not know
whether other GUI components are still using the image.

At this point, we leverage QVM’s heap assertions and check that the object pointed
to by imgView is not shared (i.e., does not have any references other than imgView point-
ing to it). We introduce disposal code preceded by an assertion that makes sure that
we are not disposing a shared resource. (The disposal of a shared resource might end
up crashing the application at a later point when the user takes an action that uses
the resource.) The modified handleResize method is shown in Figure 4.
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Fig. 4. A fix to the Image leak in handleResize of Figure 3.

The QVM heap assertion is not a required part of the fix. The intention is to use it
during the testing period of the fix and remove it before deployment. This will allow
the fixed code to execute on any JVM, and not only on QVM.

We now run the fixed version of this method with QVM for a few weeks, and observe
that the previously reported leak does not occur. Our assertion also makes sure that
the disposal of the Image does not affect any other GUI component.

We reported this leak and its fix, as well as other problems mentioned in Section 7,
to the Azureus development team. The problems were confirmed as real bugs, and our
suggested fixes were incorporated into the project’s codebase.

We provide an elaborate description of some of the bugs we found in our benchmarks
in an online supplement to this article, available at: http://www.research.ibm.com/
qvm/papers/qvm-notes.htm.

3. QVM PLATFORM

In this section we describe the QVM platform. First, we provide some background and
design rationale, then we briefly describe the overall QVM architecture and its main
components. Finally, in Section 3.3, we describe the QVM interface (QVMI).

3.1 Design Rationale: Modifying a VM

Today’s production-grade virtual machines employ sophisticated techniques and op-
timizations to achieve maximal application performance. In contrast, there is little
support for application correctness in a production environment besides checking low-
level properties such as absence of null dereferences and array index bounds. While
rich in functionality, current debug and monitoring interfaces (e.g., JVMTI) are also
not applicable as they incur a slowdown that is unacceptable in production mode.

The goal of this work is to extend a production-grade virtual machine to provide
software-quality services while maintaining competitive performance. We would like
a solution to provide: (i) high performance and low overhead; (ii) maximal separation
of analysis clients from the details of the underlying VM.

There is an apparent tension between requirement (i) and (ii). We resolve this ten-
sion by providing a generic interface (QVMI) that manages functionality common to
all analysis clients, but in addition, we allow clients to cut through abstraction layers
and use other VM services when appropriate.

QVMI is a development that could serve as the next generation JVMTI interface,
currently provided by modern day virtual machines. We believe that QVMI can become
the de-facto standard for communication between the JVM and the native client code.

However, our technique still requires VM modifications, and modifying a
production-grade virtual machine is a nontrivial task. A virtual machine is a large,
complex system. Moreover, implementing the quality services inside a specific VM
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makes them nonportable and ties users of the system to the specific VM version. In
contrast, using pure bytecode instrumentation at the language level or a standard
profiling interface such as JVMTI3 is portable across virtual machines.

Despite these disadvantages, there are a number of advantages in having at least
part of an analysis reside within a production VM, as we describe below.

VM-only information. Having access to the runtime allows the client analyses to utilize
information that is not readily available at the language level. For example, analyses
can use free bits in object headers, directly examine the heap, quickly access structures
like thread-local storage, re-use existing VM code (such as garbage collection heap
traversal logic) to perform a slightly different functionality. Analyses can utilize low-
level profile data and infrastructure, such as hardware performance monitors (HPM)
and fine-granularity timing (for example, see overhead monitor in Section 4).

Performance. Having access to the dynamic optimizer (JIT) ensures that the crit-
ical code paths are well optimized. The JIT can also use advanced optimization
techniques for fast and slow paths (thin guards [Arnold and Ryder 2002], code patch-
ing [Suganuma et al. 2001], full duplication [Arnold and Ryder 2001], etc.). The system
can also make use of profile data already collected by the VM to optimize and tune a
dynamic analysis.

Dynamic updating. By using advanced techniques such as code patching and on-stack
replacement (OSR) [Fink and Qian 2003], VMs can support efficient dynamic updating
of instrumentation during an application run.

Deployment. The deployment process becomes trivial because the required features
become as ubiquitous as the VM. There is no need to “install” an analysis (recompile
the program source to add instrumentation, etc.) which is particularly difficult for
large production applications that might make heavy use of custom class loaders. Our
analysis can be run by simply enabling a command line flag on the VM.

In the next section, we provide an overview of the QVM architecture and show how
we hide the complexity of the underlying VM from most analysis clients by using the
generic QVMI interface.

3.2 QVM Architecture

Figure 5 shows the overall architecture of QVM. At a high level, the QVM extends the
VM execution engine with three main components:

(1) QVM Interface (QVMI). A performance-aware profiling/monitoring interface that
allows client analyses to remain decoupled from the VM, while maintaining effi-
ciency. The design goal of this component is to enable quick and easy development
of powerful, yet efficient dynamic analyses. QVMI is described in Section 3.3.

(2) Overhead Manager (OHM). The overhead control system enables users to bound
the overhead incurred by QVM clients. The system does fine-grained monitoring
of the time spent in the clients and adapts the sampling to stay near or below
overhead bounds. OHM is described in Section 4.

(3) QVM Clients. A flexible set of clients that leverage the QVMI. In this paper we de-
scribe three example clients that enable checking of a variety of correctness prop-
erties with controlled overhead. Clients are discussed in Section 5.

3Sun Microsystems. Jvmtm tool interface, version 1.0.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html.
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Fig. 5. Overall architecture of QVM.

In this architecture, the overhead manager and the QVMI work together to provide
clients with a transparent adaptive overhead management. The clients use QVMI
without the need to be aware of overhead management mechanisms (but with the
ability to partially control it when desired).

The OHM uses the information collected by QVMI to adjust the sample rate such
that the overhead matches the desired overhead specified by the user.

3.3 QVMI: The QVM Interface

Various profiling interfaces such as JVMTI make it easy to write monitoring clients.
The client specifies the events of interest, and these events are provided by the inter-
face. Clients are kept separate from the internal VM implementation that collects the
events. Similarly, although our profiling clients are packaged as part of the VM, keep-
ing a clear abstraction interface between the core VM details and the profiling clients
is important for maintenance and ease of adding clients in the future.

The primary limitation with existing and general profiling interfaces is perfor-
mance. For example the granularity at which events are requested is too coarse. With
existing interfaces such as JVMTI, if a client wants to receive method callbacks for
some subset of the method invocations, it must register to receive callbacks for all
method invocations, and filter out the unnecessary callbacks on the client side of the
interface. This introduces significant overhead that is completely unnecessary if the
analysis needs only a subset of the methods.

Filtering on the VM side. To address this problem, the QVM interface is designed such
that an efficient implementation is possible. The key difference from existing profiling
interfaces is that it is structured with the goal of allowing as much filtering as possible
to occur on the VM side of the interface. For example, if an analysis client needs
method callbacks, it must specify what methods callbacks are necessary. This allows
the remainder of the program to run at full speed. Similarly, the client may request
method callbacks only for a subset of the objects in the program. The VM can use its
suite of dynamic optimization techniques to achieve an efficient implementation of the
sampled profile.

Table I shows a partial list of the operations supported by QVMI. Clients that reg-
ister with QVMI have to support a similar set of operations (as described below). In
addition to the operations listed in Table I, QVMI has similar callbacks for field read
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Table I. A Partial List of the Operations Supported by QVMI

Method Description
void registerClient(Client c) registers a client to receive callbacks

TrackLevel isTrackedAlloc(AllocSite as) should the specified allocation site be tracked
CallTrackLevel isTrackedCallSite(CallSite cs) should the specified call site be tracked

boolean shouldExecute(Site s) should this site fire an event (based on sampling info)
void allocEvent(AllocSite as) tracked allocation event
void invocationEvent(CallSite as) tracked invocation event
void objectDeath(Object o) object death event

and writes, exceptions being thrown, and other events supported by standard inter-
faces such as JVMTI.

In the table, we separate operations of different stages of the execution by double
horizontal lines. The manner in which these operations are used is illustrated below.

On VM initialization. Upon startup of the virtual machine, the clients have to register
themselves with QVMI to receive callbacks by calling registerClient.

On method compilation. During the compilation of a method, the VM queries the QVM
agents to determine whether the code being compiled needs any form of instrumen-
tation. This insures that maximal filtering occurs; instrumentation is not inserted on
any program statements if it is not required by at least one client.

This querying is done by invoking QVMI operations such as isTrackedAlloc and
isTrackedCallSite, which query all of the registered QVM clients to obtain a TrackLevel,
which determines what level of instrumentation is needed. For example, for our type-
state client, the compiler prompts QVMI to check whether allocation or method call
sites in the code should be tracked. Further details on how the typestate client is
implemented via QVMI is discussed in Section 6.2.

During execution. Depending on the tracking level, the VM fires events for tracked
sites by invoking operations such as allocEvent and invocationEvent. When an object is
collected by the garbage collector, QVMI is notified by calling objectDeath.

3.4 Property-Guided Sampling

One of the major features provided by QVMI is the ability to perform property-guided
sampling. Sampling is a key mechanism QVM uses to reduce analysis overhead, but
for many analyses using naive random sampling would render the analysis useless
because the analysis relies on certain relationships between events.

For example, if a dynamic analysis detects files that are opened but not closed,
and tracking of method invocations were sampled randomly, QVM would report false
positives any time file open was sampled, but its corresponding file close was not.
To address this problem, QVM performs property-guided sampling, ensuring that the
sampled profile maintains sufficient properties to make the dynamic analysis mean-
ingful. For typestate properties, it is sufficient to maintain the relationship between
events (method invocations) that occur for the same receiver object.

Object-centric sampling. QVM supports a novel feature called object-centric sampling.
This technique allows an analysis to sample at the object instance level; an object can
be marked as tracked and the analysis can receive all profile events for this object,
while receiving no events for untracked objects. The choice on whether to track an
object or not is made at allocation time (but can be more generally toggled on and off
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during an object’s lifetime). This allows overhead reduction via sampling, without de-
stroying the profile properties needed for the dynamic analysis to produce meaningful
results.

We refer to the points in the execution at which sampling decisions are made (i.e.,
whether an object is tracked, whether an assertion is executed) as origins.

Allocation sites are origins in our implementation of object-centric sampling. The
decision of whether an object is tracked is made at allocation time; if sampled, a bit is
set in the object header to mark the object as tracked. A short inlined code sequence
checks this tracked bit on calls to QVM methods to determine whether a callback is
needed.

3.5 Extensions

Our current interface is not intended to be complete, but is sufficient to cover a broad
range of clients, including those described in this paper. The clients we implemented
are built as part of the VM, but the interface could also be exposed to enable external
clients. A full spec that could be published as a performance-aware alternate to the
JVMTI is left for future work.

4. OVERHEAD MANAGER

Traditional dynamic analyses typically operate under the model that the user defines
an analysis, then evaluates it to determine whether the overhead is acceptable. The
instrumentation that is used to implement the analysis is fixed, and the overhead
incurred is a function of the program that is executed.

The QVM Overhead Manager, or OHM, reverses this mentality by allowing the
user to specify an overhead that is considered acceptable for the current monitoring
environment. The maximum acceptable overhead may be 5%–10% in a live deployed
system, yet 100% overhead (factor of 2 slowdown) may be considered acceptable in a
testing environment.

Thus, the acceptable overhead is one of the inputs to QVM. Given an overhead bud-
get, the QVM strives to collect as much useful information as possible from the exe-
cuting program while staying within the specified budget. If the maximum overhead
specified is too low, QVM may not report any useful information. This is obviously not
the desired outcome, but in many cases it is more desirable than losing control of the
overhead and having a performance crisis as a result.

There are three components to the overhead manager, each of which are discussed
in the sections that follow.

(1) Monitoring: measures the overhead imposed by the QVM clients;
(2) Sampling strategy: a strategy for sampling each origin (e.g., allocation site or an

assertion site) to ensure the system stays within the overhead budget;
(3) Controller: adjusts the sampling strategies for each origin based on the measured

overhead.

4.1 Monitoring

The overhead monitor uses fine granularity timers on entry and exit to all QVMI calls
to record the time spent in QVM clients and in the QVMI itself. The time is maintained
separately for each origin (see Section 3.4) so that the sample rate of each origin can
be adjusted independently.

Timer accuracy. The most important step in managing overhead is having the ability
to measure overhead accurately. The overhead controller cannot be expected to make
reasonable decisions if it is being given incorrect timing data as input.
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Measuring overhead for coarse grained events (such as garbage collection time) is
relatively easy; a number of system timing routines can be used to obtain reasonable
results. However, timing short, frequently executed regions is more difficult and re-
quires having a timer that is both accurate and efficient.

Using an inefficient timer mechanism has two serious problems: 1) it can cause sig-
nificant overhead if called frequently (which can be the case with some QVM clients),
and 2) the error can be significant when timing short regions and these timing errors
will accumulate.

To address these problems, our OHM implementation uses inline assembly to read
the cycle counter using the Intel’s RDTSC (Read Time Stamp Counter) instruction.
This mechanism results in very fast and accurate time stamping on entry and exit
of the QVMI. Our initial implementation used the system call gettimeofday() and it
created significant inaccuracies, as described in Section 7.

Measuring total application time. The timers measure time spent performing QVM
tasks. To compute overhead relative to the non-QVM application, the OHM must also
measure the total execution time. Using wall clock time, rather than process time,
would be grossly incorrect for two reasons. First, interactive applications would create
significant error because idle time would be counted as application time. Second, wall
clock would be wrong for multi-threaded applications running on multi-processor ma-
chines. QVM time is measured and accumulated from all running threads, thus the
total time must be the sum of the time spent executing on all processors.

For these reasons, we compute total time by using the getrusage() Linux system
call to obtain the total time used by the JVM process. This solves the problems asso-
ciated with using wall clock time discussed above and works well in practice for most
applications. However, it is still not a fully robust solution when QVM activity is not
evenly distributed across the application threads.

For example, consider an application with 2 threads running for 1 second each in
parallel on a 2-processor machine; getrusage() will report 2 seconds of total execution
time. Assume that QVM was given a 10% overhead budget, which translates to 0.2
seconds allocated to QVM. If all of the QVM callback activity takes place in one of the
two application threads, one thread will run for 1.2 seconds while the other runs for 1
second. Although the total CPU time is increased by 10% a user of the program would
observe the program terminating after 1.2 seconds, a 20% increase.

The most robust solution to this problem is to perform overhead tracking at the
thread level. If overhead budgets are tracked and enforced per thread, total overhead
as perceived by the user will always be within budget as well. A similar approach of
using per thread metrics has been employed by real time systems to track time spent
performing system services [Auerbach et al. 2008]. We leave an implementation of this
approach within QVM as part of future work.

Base overhead. Even when accurately measuring the time spent in the QVM clients,
there are still two potential sources of errors: 1) checking overhead, and 2) indirect
effects.

The main sources of checking overhead is the inlined filtering. For example:

— virtual method calls (or inlined method bodies) for methods relevant to QVM clients
filter samples by checking a bit in the object header.

— origin sites (i.e., allocation sites) check their sampling strategy (described in
Section 4.2) to decide whether the allocated object is tracked.

These checks are short inlined code sequences and contribute very little to over-
all overhead (see Section 7); however, for very aggressive instrumentation, such as
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instrumenting all calls in the program, the base overhead can potentially become
significant.

Although not easy to measure online while the application is executing, base over-
head can be estimated by observing the frequencies of the checks, and using a model
of performance to estimate the overhead. Using a model is less desirable than direct
measurement, but can still be used as a way of avoiding large performance surprises
for aggressive clients.

Our implementation does not yet perform this modeling to avoid large base over-
head, and it is left as part of future work.

The second source of base overhead is indirect effects on performance, such as cache
pollution, or optimization in the JIT that are hindered by the presence of instrumen-
tation. These sources of overhead are very difficult to measure without having two
separate versions of the code and using techniques such as performance auditor [Lau
et al. 2006] to identify the performance differences.

Although in general the base overhead might be high, in our experiments we ob-
served a low base overhead. In Section 7.2, we show that the base overhead in our
experiments was at most 2.5%. (See Figure 12).

4.2 Sampling Strategy

The QVMI maintains separate overhead statistics for each origin (see Section 3.4), al-
lowing the OHM to increase or decrease the sample rate independently for each origin.
Having origin-specific sample rates enables significant advantages for the client analy-
sis. Maintaining a single sample rate would be sufficient for managing total overhead,
but would be likely to miss origins in infrequently executed code. With origin-specific
sampling, the controller can reduce overhead by scaling back hot origin sites, but con-
tinues to exhaustively track objects from cold sites, thus allowing the client analysis
to see a broader view of the program execution. As shown in Section 7, this sampling
strategy results in increased error coverage for a given overhead budget. This ap-
proach is similar to Hauswirth and Chilimbi [2004],which uses inverse sampling to
avoid missing memory leaks in cold code.

Our implementation achieves sampling by maintaining a sampleCounter and a
sampleCounterReset for each origin. At runtime, the checking code at each origin site
decrements and checks sampleCounter; if it is less than zero, the origin is selected to be
tracked and the counter is reinitialized by the value in sampleCounterReset.

The sampleCounterReset for each origin is adjusted by the Overhead Controller to
change the sample frequency for that origin, thus reducing or increasing its overhead.

Emergency shutdown. Object-centric sampling is most effective for managing over-
head when there are a large number of objects contributing to total overhead. If the
majority of execution is dominated by method calls on a single, long-lived object, track-
ing this object will result in large overhead. To avoid severe performance degradation
when a hot, long-lived object is tracked, the QVM supports the notion of an emergency
shutdown. On each QVMI callback for allocations and invocations, the system checks
a flag to determine whether an emergency shutdown is needed. If so, it disables the
monitoring bit in the object header such that the object will no longer be sampled. The
client analysis may now need to discard this object, as the method callbacks are not
complete. However, this mechanism allows the system to ensure that overhead can be
controlled.

4.3 Overhead Controller

The job of the Overhead Controller is to periodically check the QVM overhead, and
adjust the sampling frequencies accordingly. The OHM is a basic feedback loop: if the
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Fig. 6. Pseudocode for the overhead manager.

overhead is above the budget, sample frequencies are reduced; if the overhead is below
budget, the frequencies are increased.

To avoid oscillation and large spikes in overhead, the controller monitors not only
total overhead, but recent overhead. Recent overhead is computed via exponential de-
cay; a second copy of application time and QVM time are maintained, and multiplied
by a decay factor each time the controller wakes up. This gives more weight to recent
timings, effectively measuring the overhead over a previous window of execution. The
primary focus of the controller is keeping the overhead below the overhead budget.
Maximizing the client executing time within that budget is also a goal, but it is sec-
ondary. Thus the controller reduces sample frequencies if either the total overhead or
recent overhead exceed their budgets.

If the overhead deviates too high above the budget, the controller enacts the emer-
gency shutdown to stop profiling in the current set of objects, and starts tracking new
objects once the overhead is within budget.

Origin-specific adjustment. The QVMI maintains separate overhead statistics for each
origin (see Section 4.2), allowing each origins’s sample rate to be increased or decreased
independently. Therefore, when adjusting sample rates the overhead manager must
make an independent decision for each origin, whether the sample rate should be in-
creased or decreased, to achieve the desired total overhead.

The overhead manager achieves this goal by maintaining a second overhead thresh-
old, called ORIGIN OVERHEAD TARGET, which is the target threshold that the overhead of
each individual origin is compared against. An origin’s sample rate is not reduced
unless it is overhead is above this target threshold, allowing infrequent sites to be
monitored exhaustively. More active origins will have their sample rates reduced until
their overhead is below this threshold, thus ensuring that a) the overhead budget is
distributed (roughly equally) over a all origins, b) the total overhead does not exceed
the global budget. The overhead manager logic (simplified for presentation) is shown
in pseudocode form in Figure 6.
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The parameter CRITICAL BUDGET OVERSHOOT controls when emergency-shutdown is
triggered. The value for this parameter can be set by the user, and the default value
for this parameter is 50% of the target overhead. This triggers an emergency shut-
down when the observed overhead exceeds that target overhead by 50%. (The effect
of emergency shutdown is shown clearly in Figure 13 where the observed overhead
reaches 15% and the target overhead is set to 10%.)

5. QVM CLIENTS

In this section, we describe three clients built on top of the QVM platform. We have
implemented a number of clients in order to cover a range of user properties: ranging
from local assertions to continuous monitoring using temporal safety properties.

5.1 Typestate

In this section, we show how QVM is used to dynamically check typestate properties.
Typestate [Strom and Yemini 1986] is a framework for specifying a class of tem-

poral safety properties. Typestates can encode correct usage rules for many common
libraries and application programming interfaces (APIs). For example, typestate can
express the property that a Java program should dispose a native resource before its
Java object becomes unreachable and is collected by the garbage collector.

Dynamic checking of typestate properties, as well as generalized multiple-object
typestate (also known as “first-order properties” [Ramalingam et al. 2002; Yahav and
Ramalingam 2004]), have been addressed before in Tracematches [Allan et al. 2005]
and MOP [Chen and Roşu 2007]. We use the typestate client to demonstrate three
contributions of our platform: (i) adaptive overhead management; (ii) timed typestate
transitions; (iii) collection of additional detailed debug information with low overhead.

Using the QVM platform to implement dynamic typestate checking also provides us
with an advantage in getting object-death callbacks directly from the garbage collector
and not relying on a finalizer method to be called. This guarantees that object-death
events are fired in a timely manner (which is not guaranteed to happen when using
finalizers) and allows us to measure resource-drag (as follows) more precisely.

Definition 5.1. A typestate property F is represented by a deterministic finite state
automaton (DFA) F = 〈�,Q, δ, init,Q \ {err}〉 where � is the alphabet of observable
operations, Q is the set of states, δ is the transition function mapping a state and an
operation to a successor state, init ∈ Q is a distinguished initial state, err ∈ Q is a
distinguished error state for which for every σ ∈ �, δ(err, σ ) = err, and all states in
Q \ {err} are accepting states.

QVM uses a simple input language to let the user specify a finite-state automaton
that represents the typestate property, and the types to which it applies. We refer to a
type that appears in at least one typestate property as a tracked type. Once the tracked
type is specified, our implementation instruments every object of this tracked type with
additional information that maps the object to its typestate. During execution, QVM
updates the typestate of each tracked object, and when an object reaches its error state,
QVM records an error report (as the one shown in Figure 1) in a designated log file.

Example 5.2. Figure 7 shows a typestate property (represented as a finite state
automaton) that identifies when an SWT resource has not been disposed prior to its
garbage collection, thus possibly leaking native resources such as GDI handles. The
tracked types are not shown in the figure, as this property applies to a large number of
types (e.g., org/eclipse/swt/widgets/Widget). Since all states other than the designated
error state are accepting, we simplify notation by not using a special notation for ac-
cepting states. We label edges of the finite-state automaton with regular expressions
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Fig. 7. A typestate property tracking proper disposal of SWT resources. Names of tracked types are not
shown.

that define when the transition is taken. For example, the transition from undis-
posed to disposed occurs when invoking a method whose name begins with dispose or
release. We use else to denote a transition that is fired when no other transition from
the state can be matched (note that the automaton is deterministic).

In Section 7.1 we report experimental results for such properties.

For every typestate property, QVM tracks the number of times it has been violated.
When the number of violations passes a specified threshold, QVM starts recording
additional debugging information in the form of a typestate history.

As mentioned in Section 2, a typestate history of an object o is an abstraction of
the sequence of method invocations performed during execution with o as a receiver.
We use the name typestate history because we summarize the sequence of method
invocations as an annotated DFA, similar to a typestate property.

We now formally define the notion of a typestate history. First, we define our notion
of a method invocation. A method invocation s is a pair 〈sig, t〉 recording the method
signature sig invoked and the time t in which it has been invoked. We use m(s) = sig
to denote the method signature of an invocation s, and time(s) = t denote the time
in which it took place. Given a sequence of method invocations S = s0, . . . , sk, the
bounded context of depth n for the i-th invocation si in S is the reverse subsequence
starting at si and going backwards for n steps or until reaching s0 (whichever comes
first). That is, context(S, i, n) is si, si−1, . . . , si−n when n ≤ i, or si, . . . , s0 when n > i.
The context of a method signature sig is the set of contexts of all of its invocations
context(sig, S, n) = {context(S, i, n) | m(si) = sig}. We denote the set of all possible contexts
in S by CTXS.

The following provides a (declarative) definition of a typestate history constructed
from a sequence of method invocations.

Definition 5.3. Let S = s0, . . . , sk be a sequence of method invocations over a tracked
object o. A typestate history for the object o and the sequence S is represented as an
annotated DFA HS = 〈�,Q, δ, I,Q, count, last, ctx〉 where:

— The alphabet � =
⋃

0≤i≤k m(si) ∪ {ODE} is the set of signatures of methods invoked in
the sequence and a special event ODE corresponding to object-death.

— The set Q =
⋃

0≤i≤k m(si) ∪ {I} ∪ {OD} is the set of states, where there is a single state
for each method signature appearing in S, and two designated states: an initial
state (I) and an object-death (OD) state.

— The transition function δ is defined by the sequence S: δ(I, m(s0)) = m(s0), for any
0 ≤ i < k, δ(m(si), m(si+1)) = m(si+1), and δ(m(sk), ODE) = OD.

— I ∈ Q is a distinguished initial state.
— All states in Q are accepting states.
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Fig. 8. An example typestate history for a leaking Image in Azureus. For brevity, we only show sample
contexts and omit the context for isDisposed.

— count : Q × � → N records the number of times the invocation corresponding to an
edge has been taken in S.

— last : Q × � → N records the last time the invocation corresponding to an edge has
been taken in S.

— ctx : Q → 2CTXS maps a state (corresponding to a method) to the set of contexts in
which the method is invoked in S.

Intuitively, a state in the typestate history represents the state of the object after
a specific method has been invoked on it. A state in the history is labeled with a
set of (bounded) contexts, representing the contexts in which the method has been
invoked. A transition between states m1 and m2 in the history represents the fact
that the method corresponding to m2 has been invoked immediately after the method
corresponding to m1 has been invoked.

A typestate history therefore provides information about the way a single object that
violates the property was used in the program. This helps the programmer to diagnose
the cause of the reported violation.

Example 5.4. Figure 8 shows an example typestate history produced by QVM. This
provides an account of the behavior of a single object that violates the property. In
the figure, we have abbreviated the type name BufferedGraphicTableItem1 to BGT1, and
the type name ImageRepository to IR. In figures of typestate histories we do not show
method signatures on the edges because the label of an edge is always identical to the
label of its target state.
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Fig. 9. An example typestate history showing resource lag and drag.

Unlike the simple typestate history of Figure 2, the typestate history of Figure 8
contains cycles and multiple invocations of methods. The label on a transition edge
represents the number of times this transition occurred in the execution and the last
time when it occurred. For example, the transition from the state in which createMask

is the last method invoked on the object to the state in which isDisposed is the last
method invoked on the object occurs 64 times in the execution summarized by the
history of Figure 8. The last time in which the transition occurred is 52, where time is
measured as the number of allocations performed by the program. In the figures, we
show the time counter divided by 1024.

Resource Drag and Lag. Since QVM tracks the last time each transition took place,
it can be used to identify when a resource is not released in a timely manner (known
as resource drag). In such cases it is sometimes possible to improve performance by
releasing the resource earlier. Similarly, since QVM also tracks calls to constructors
and object-death events, it can be used to identify when an object is allocated too early
(memory lag) or kept reachable for a longer time than necessary (memory drag). The
information collected by QVM can also be used to find objects that are not allocated in
a timely manner, that is, a long period of time passes between their allocation and their
first use. In such cases, it is sometimes possible to improve performance by allocating
the objects lazily.

Technically, we only track the last time in which a transition is taken, but since a
constructor is only called once, the outgoing transition from the last constructor state
only occurs once, and will therefore provide us with the time of the first use.

Example 5.5. Figure 9 shows a typestate history for a FileOutputStream in which the
allocation was performed at time 1, the first use (transition from the constructor state)
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Table II. QVM Heap Probes. Probe Returns true if the Condition Holds, false Otherwise

Probe Name Condition Checked
isHeap(Object o) object o is pointed to by a heap object
isShared(Object o) object o is pointed to by two or more heap objects
isObjectOwned(Object o1, Object o2) o1 dominates o2

isObjectOwned(Object o) the object pointed to by this dominates o

isThreadOwned(Thread ta, Object o) ta dominates o
isThreadOwned(Object o) current thread dominates o, false otherwise
isUniqueOwner(Object root) root dominates all objects that are transitively

reachable from root

isReachable(Object src, Object dst) object dst is reachable from object src

took place in time 13, the last use of the stream (last write) also took place at time
13, closing the stream was performed at time 23, and its actual death (collection) took
place at time 23 as well. This example exhibits some amount of resource lag (long time
passed between allocation and first use) and some amount of resource drag (stream
was not closed immediately after the writes). It does not exhibit memory drag, as the
object is collected soon after it is closed.

Idle Objects. A special case of an inefficient use of allocated resources is that of objects
for which no method invocation occurred other than their construction. We refer to
these as idle objects.

Example 5.6. Running QVM on Eclipse, we found a large number of idle ob-
jects allocated by the subclipse plugin. In a typical synchronization with SVN, over
145, 000 idle objects of type DataInputStream were created. Tracking the source of
these idle objects, we found that they are (eagerly) allocated in the constructor of
StatusFromBytesStream. We manually inspected the code and confirmed that this alloca-
tion can be modified to be done lazily when methods of StatusFromBytesStream require
the stream rather than when a StatusFromBytesStream object is created.

Extensions. Next, we describe several possible extensions to our system. Our cur-
rent implementation supports single-object typestate properties. A useful extension is
handling multiple object typestates. Multiobject typestate has been actively studied in
Tracematches [Allan et al. 2005] and MOP [Chen and Roşu 2007].

Another possible extension is using static analysis to eliminate some of the dynamic
checks performed by QVM. This will lead to reduced runtime overhead. For example,
in some cases, we can use static analysis [Bodden et al. 2007; Fink et al. 2006] to verify
that a typestate property is never violated, or that some transitions of a typestate
property never occur in the program.

5.2 Heap Probes

QVM enables the dynamic checking of various global heap properties such as object-
sharing, heap-ownership, thread-ownership and reachability. These properties are
useful for both debugging and program understanding purposes.

QVM provides a library that exports a set of methods, one for each heap property.
We refer to these library methods as heap probes. The programmer can invoke heap
probes from her program to inspect the shape of the heap at a program point. The
library uses various components of the underlying runtime to obtain an answer. Our
list of currently supported probes is shown in Table II.

In this paper, we describe heap probes at a high level, and focus on how they are
used. Some additional details are provided in Arnold et al. [2008] and Vechev et al.

ACM Transactions on Software Engineering and Methodology, Vol. 21, No. 1, Article 2, Publication date: December 2011.



2:20 M. Arnold et al.

Fig. 10. Using QVM to check that an SWT resource is not shared before attempting to dispose it.

[2010], but the implementation involves many subtle details that are beyond the scope
of this article and the scope of Arnold et al. [2008] and Vechev et al. [2010]. We expect
such details to appear in future work.

Similarly to nonheap probes, our heap probes can be sampled by the overhead man-
ager to allow adjustment of overhead, and can therefore evaluate to one of three pos-
sible values: true, false, and unknown. The return value of a heap probe can be used
in a standard Java assertion. When a heap probe is used inside an assertion we refer
to it as a heap assertion.

In the case where the assertion is skipped (due to sampling) the return value of
the assertion is unknown. In our implementation we map this value to true. That is,
the net effect in this case is as if the assertion has not been executed. (This default
behavior can be controlled by the user.)

Example 5.7. Disposal of SWT resources is based on two key principles: (i) a re-
source is disposed by calling a method on the object that allocated the resource. (ii) dis-
posing resources of the parent object leads to disposing resources of its children.

These principles work well in cases where large numbers of allocated resources form
an immutable containment tree. In such cases, disposing the resources of the parent
leads to disposing the resources of its children. However, the treatment of shared re-
sources such as Color, Fonts, and Images, is more complicated and error prone.

For shared resources, it may be rather challenging to find the correct program point
at which it is safe dispose of the resource. A programmer may have a conjecture about
the last program point in the application execution where a resource is used, but this
conjecture may turn out to be incorrect. The heap may contain other references to, and
future usage of, the resource.

Figure 10 shows how a QVM assertion can be used by the programmer to ensure
that the resource is not shared by any other object except the current object (the object
this). The code fragment shown here corresponds to a common idiom for disposing a
resource by a dispose listener. This particular code fragment is taken from a fix we
introduced for the Azureus benchmark as described in Section 7.1.

5.2.1 Ownership and Alias Control. Ownership simplifies reasoning about object-
oriented programs by controlling the permitted aliasing. Ownership has been used
in many settings. It has been used to ensure representation independence [Banerjee
and Naumann 2005], to guarantee thread safety [Boyapati et al. 2002], and to enable
modular reasoning [Rinetzky et al. 2007].

A wide variety of static approaches have been proposed for enforcing ownership
(see Clarke [2003] for a nice survey). These approaches typically impose strict restric-
tion on ownership transfer, requiring, e.g., that uniqueness [Aldrich et al. 2002; Baker
1995; Hogg 1991] holds on transfer, or impose a high annotation burden.

Our approach to ownership assertions complements static approaches for enforcing
ownership. In particular, our approach may enable a type system to balk at some cases
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Fig. 11. QVM thread ownership assertion checking that the socket used by a request thread is owned by
the thread.

when ownership cannot be established, leaving an ownership check to be performed at
runtime.

In addition, the QVM support for ownership properties can provide an alternative
efficient implementation to the runtime support required by some ownership type sys-
tems [Müller and Rudich 2007].

Stack Confinement. It is often desirable to check that an object does not escape from
a procedure to be stored in the heap. This is particularly important in a concurrent
setting where exposing a heap-reference to an object might lead to an undesirable
concurrent modification. Using the probe isHeap(o), QVM allows the user to check
that the only references to an object are stack references, and that the object is not
pointed to from the heap.

Thread Confinement. QVM allows the user to check that an object is owned by a given
thread. The probe isThreadOwned(t, o) checks whether object o can be pointed by any
object that is not transitively reachable from the thread t.

Example 5.8. Figure 11 shows a code fragment taken from SimpleWebServe4 with
an additional QVM assertion. In the SimpleWebServe, a new thread is created for
every request received by the web-server. The new RequestThread is passed a Socket

through which it communicates with the client. The QVM assertion guarantees that
the Socket passed to a RequestThread is owned by the thread.

6. IMPLEMENTATION

In this section we provide the implementation details of object-centric sampling, as
well as QVM clients of Section 5.

6.1 Object-Centric Sampling

There are two key components to the efficient implementation of object-centric
sampling.

4Jibble Web Server. http://www.jibble.org/jibblewebserver.php.
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The first one is the ability to obtain a single free bit in the object header. Compared
to the approach of reserving a word in the object, this approach has an advantage of
better space efficiency and increased locality.

Once identified as a tracked object, QVM clients need the ability to associate analy-
sis data with an object. We implemented this in QVM by creating an OBJECTINFO for
every tracked object. This ObjectInfo is then passed to the client on all object-related
callbacks so the client can lookup or store data associated with the object (such as DFA
state, etc).

The mapping from object to ObjectInfo is performed via a hashtable lookup. On
allocation of an object, the corresponding ObjectInfo is created and inserted into the
hashtable; on object death, they are removed. QVMI callbacks that require access to
the ObjectInfo obtain it by doing a hash lookup.

As mentioned, an alternate implementation would be to reserve a word in the object
header to point to the object’s ObjectInfo. While this provides faster lookup, it is not
necessarily the superior design because it reduces locality by increasing object size,
and this overhead is regardless of the sample rate. A hashtable lookup is significantly
slower, but the hashtable lookup is performed only for sampled objects; the inlined fast
path only checks the tracked bit in the object header.

So although the hashtable implementation is slower for tracked objects, it allows a
lower base overhead that is converged upon when when the sampling rate is reduced.

Because the goal of QVM is to target low-overhead scenarios, the hashtable design
was chosen.

6.2 Typestate Client

Upon VM startup, the typestate module loads all of the user supplied properties,
parses and stores that information in its own internal data structures. The typestate
module then registers itself with the runtime via the QVMI.registerClient call.

On method compilation, the QVMI interface is called by the JIT via the
isTrackedAlloc and isTrackedCallSite functions to determine whether instrumentation
is needed for allocations and calls. These functions return a value of type TrackLevel.
This type can take on one of three totally ordered values: NEVER (the minimal value),
SOMETIMES and ALWAYS (the maximal value). All of the registered QVM clients are
queried and the return result is computed by taking the maximal value from all of the
client responses to ensure that sufficient instrumentation is inserted.

QVM then adjusts the instrumentation based on the tracking level. If the tracking
level is ALWAYS or SOMETIMES, QVM instruments the code with a callback to report
the event that occurred. In the case of SOMETIMES, QVM inserts inlined logic to decide
(during execution) whether the callback gets invoked. If the tracking level is NEVER,
no code instrumentation is performed by QVM for the site. If the tracking level is
ALWAYS the callback is executed exhaustively and sampling is disabled.

For allocations sites marked with track level SOMETIMES, the inlined sampling logic
consults the sampling strategy for that origin (see Section 4.2). If selected for sampling,
the typestate allocation handler is called via the QVMI allocEvent call. The handler
creates its internal QVM tracking structure for the allocated object, and marks the
object as tracked by setting a bit in the object header. Note that there could be multiple
tracking structures per object (e.g., the object is part of multiple typestate properties).

For method invocations tagged with SOMETIMES, the inlined code sequence checks
whether the receiver is a tracked object by checking the tracked bit in the header. This
check is executed even for inlined methods to ensure that callbacks are not optimized
away by the JIT. If the object’s tracked bit is set, QVMI’s invocationEvent is invoked,
which then calls the typestate invocation handler. The handler is passed the receiver
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object, that object’s OBJECTINFO, and the method that was invoked. This handler
updates the tracking structure for each DFA the object participates in.

In our implementation for typestate, we have used the object-centric tracking
and sampling capabilities provided by QVMI (Section 3.4) and have inlined check of
whether the object is tracked. This keeps overhead low by ensuring that QVMI is in-
voked only for tracked (sampled) objects. There are many other such property-specific
optimizations that can be made. For example, if we know that the tracked object is in
an error state that will not be exited, QVM does not need to invoke any other callbacks
on this object.

On Object Death. We have instrumented the garbage collector to provide precise death
events. Whenever an object is detected to be unreachable during the sweep phase of
the collector, the collector calls the QVMI’s objectDeath function. That function leads
to calling the typestate module’s handler for death events, where all object tracking
information is freed (if the object is tracked), ensuring no memory leakage. If the
object is found to be in a nonaccepting state, an error is reported.

6.2.1 Collecting Typestate Histories. In typestate histories, we use a notion of “time”
to record when events occurred. We measure the time as the number of allocations
performed by the program. To provide a scalable and efficient implementation of a
global clock, each thread maintains a local allocation counter, and these are aggregated
to a single global (approximate) time every 10 millisec. The precision of the aggregate
global clock can be adjusted by the user by changing the frequency of aggregation
operations (at the cost of a performance hit when using higher frequency).

6.2.2 Discussion. Although the typestate module is written as part of the VM, it is
completely isolated from the VM via the QVMI interface; this interface can be used to
easily write clients to check properties other than typestate. By having access to an
unused bit in the object header bits, QVM is able to efficiently perform object-centric
sampling without needing to store additional words in the object. Moreover, the ability
to precisely intercept object death events frees us from having to rely on technique such
as finalizers and weak references.

7. EXPERIMENTAL EVALUATION

Our experimental evaluation focuses on typestate properties. In Section 7.1, we con-
duct a preliminary study of the effectiveness of QVM in tracking typestate properties
with low overhead. This part of the study focuses on the usability of interactive appli-
cations running with QVM. In Section 7.2, we evaluate the overhead manager by track-
ing a large number of typestate properties over standard non-interactive benchmarks.

7.1 Detecting Resource Leaks

In our experiments we focused on typestate properties that correspond to resource
leaks. We monitor leaks of SWT resources and of IO streams. In these experiments
the goal was to see if we can detect typestate violations that occur over an extended
period of time. It is likely that massive leaks would have been detected and fixed in
the testing phase, and therefore what we expect to find in these experiments is mostly
a small number of leaks that accumulate over time. For that purpose, we used a range
of applications on a regular basis to perform our daily tasks.

This part of the evaluation is intended as a preliminary proof of concept. We are
aware that it would be hard to reproduce these exact experiments as they depend on
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Table III.

Sources of typestate violations in our application For every application, we indicate the number of
sources that are executed in a high-frequency (corresponding to critical leaks).
Application Description SWT IOStreams High Fixed

Resources Frequency
azureus bittorrent client 11 0 4 5
etrader trading platform 17 0 2 0
feednread newsfeed reader 1 7 0 0
goim IM client 3 0 1 3
ibm app 1 large scale product 0 0 0 0
ibm app 2 medium scale tool 3 2 0 0
jcommander file manager 9 0 0 0
juploader flickr upload tool 0 1 0 0
nomadpim personal information manager 2 0 0 0
rssowl RSS news reader 8 3 0 0
tvbrowser TV program guide 0 5 0 0
tvla program analysis framework 0 4 0 0
virgoftp FTP client 6 0 0 6
Total 60 22 7 14

specific user interactions. However, it is precisely this inherent inability to find and
reproduce defects in a lab setting which calls for systems which are designed for low
overhead application monitoring. QVM is one such system prototype.

Some of the applications considered are an instant-messenger (goim), newsfeed read-
ers (feednread, rssowl), file management utilities (virgoftp, jcommander), large IBM inter-
nal applications, etc. For all of these applications our strategy was to simply run them
over QVM and record the reported errors. In some of our experiments we investigated
each report manually, diagnosed the causes of the errors, and implemented fixes. This
was an important exercise for evaluating and refining the debug information we collect
(e.g., the typestate history).

7.1.1 Applications and Results. Table III summarizes the number of sources of types-
tate violations found in our applications. Rather than counting the number of objects
that violate the property, we count the allocation sites in which such objects were al-
located. This is a more objective measure of the number of bugs in the program than
the number of objects exhibiting the violation, which usually depends on the duration
of program execution. To measure the significance of a violation, we record whether it
occurs frequently in the program execution.

Counting the number of violation sources has to be done carefully as the sources are
not necessarily independent. For example, a whole sub-tree of components may leak
due to a single missing dispose operation on the root of the tree.

In some of our experiments we investigated the errors and introduced appropriate
fixes. Column fixed in the table reports the number of fixes we have introduced and
tested.

Azureus. Azureus is the #1 downloaded Java program from SourceForge, and has
more than 160 million downloads to date. Using QVM we detected 11 sources of re-
source leaks in this application. We fixed 5 of these and reported them to the Azureus
development team. The reports were confirmed by the development team, and the
fixes were incorporated into the codebase.
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At least 4 of the reports correspond to leaks that were occurring rather frequently.
One particularly high-frequency case was a method Utils.getFontHeightFromPX(...)

that was allocating a Font object to compute font height and was not properly dis-
posing the Font object upon its return. This method is frequently called and resulted
with thousands of leaking fonts even for short executions. This method was very
likely created by copying another method in the class that has similar functionality
but returns the Font object. Among our other fixes, we fixed the frequently leak-
ing method getFontHeightFromPX(...) and our fix was incorporated into the Azureus
codebase.

Eclipse Trader. This application uses a frequently-updating UI to present streams of
stock information, and as a result may be particulary sensitive to resource leaks. Us-
ing QVM, we detected 17 sources of resource leaks. For eclipseTrader, there are sev-
eral allocation sites that are used in different contexts. For example, the method
Settings.getColor(Color) returns a new Color object, and is used in a large number
of contexts that fail to properly dispose the color. We count this method as a single
violation source that occurs with high frequency (there are tens of thousands leaking
objects that are allocated in this method in a typical execution of eclipsetrader).

Feed’N Read. In this application, SWT resources are mostly properly managed.
There are some resources that are not disposed before the program exits, but these
are resources that are supposed to be live throughout program execution. Although
QVM reports these as violations, we do not count them here because this seems to
be acceptable treatment of such resources (resources will be returned to the OS when
the application terminates). feednread has minor problems in closing IO streams when
managing archived feeds.

GOIM. We used GOIM5 running on QVM to communicate between team members
for a few days. We detected 3 sources of leaks and introduced fixes to all of them. We
tested our fixed version of GOIM and confirmed that all previously reported leaks have
been resolved. The fixes we introduced in GOIM were rather involved as we had to add
new disposal code in places where no such code existed.

IBM Applications. We used QVM to run a development version of a large scale IBM
product on a daily basis for a period of a few weeks. For this application, no problems
were reported by QVM. This is not surprising as the development team is putting a lot
of emphasis on preventing the kind of leaks we are tracking.

We used QVM to run a development version of another smaller IBM tool that makes
heavy use of SWT. For this application, we found 5 source of violations. The leaks are
associated with user actions like opening a new file.

JUploader. This application uses a small number of SWT resources. For this appli-
cation we found a single source of leaks causing a frequent leak of EventOutputStream

objects.

TVLA. Running TVLA [Lev-Ami and Sagiv 2000] we found two input streams that
are not closed by the parser processing input files, and two streams that are not closed
when producing analysis output. These are low frequency leaks that only create one
leaking object per execution of the analysis engine.

5GOIM: Gamers own instant messenger. available at http://goim.us/wiki/show/GOIM.
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Fig. 12. Overhead with budget.

VirgoFtp. VirgoFTP is a multiplatform, graphical FTP client using SWT. For this
application QVM reported 6 sources of leaks. We introduced fixes to all of these leaks,
and tested that the fixed version resolves them.

One source of a low-frequency leak in VirgoFTP is a pattern that repeats across
many SWT applications. Changing the color/font preferences in an application often
causes the leak of the previous colors/fonts used. This kind of leaks occur with such
a low frequency, that programmers are probably choosing to ignore the disposal of
resources in this case. Fixing this problem in VirgoFTP required significant refactoring
of the code.

7.2 Overhead Evaluation

Methodology. For overhead measurements we use the SPECjvm98 and DaCapo
benchmark suites.6 For DaCapo, one run of the large inputs was measured. For
SPECjvm98, which is shorter running, the benchmarks were configured to iterate
for roughly one minute to create a reasonable usage scenario, and total time was
measured. 20 runs of each benchmark were used to reduce noise.

We created a set of representative typestate properties that incur a significant over-
head. We instrumented classes such as Java Collections, Enumerations, Vectors, and
Streams.

Results. Figure 12 reports the overhead of the typestate monitoring client when ap-
plied to our benchmarks suite with a range of overhead budgets (5%, 10%, and 20%).
The rightmost bar for each benchmark shows the overhead when the typestate client

6Dacapo version was dacapo-2006-10.jar. Jython and xalan were excluded from the study because they
do not run properly on the developmental version of the VM used for this work (independent of the QVM
modifications).
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Fig. 13. Overhead over time with target overhead set at 10%.

is applied exhaustively, i.e., without sampling. The leftmost bar shows the base over-
head, which represents the base checking overhead that is incurred when no sampling
takes place (see Section 4.1).

The overhead incurred when checking these typestate properties exhaustively is
high (up to 10x slowdown, with 7 of the benchmarks over 2x slowdown). Heavyweight
properties that introduce frequent callbacks were selected intentionally to allow us to
evaluate the effectiveness of the sampling infrastructure.

The base overhead (leftmost bar) is low, at most 2.5%. Having the base overhead be
low is critical, as this is the overhead that is the lowest overhead that can be achieved
when sampling is disabled.

The middle three bars show overhead incurred when QVM was run with a specific
overhead budget. Although there is some fluctuation in the overhead achieved, it is
generally quite close to the requested budget. Achieving accuracy at this level is quite
challenging because the whole process takes place online and within a single execution
of the benchmark. These results demonstrate not only the overhead monitor’s ability
to measure the overhead introduced, but the overhead controller’s ability to keep the
overhead close to the desired budget.

Figure 13 shows an example of the overhead manager adapting the overhead of the
typestate client online for the javac benchmark and a 10% overhead budget. The x-axis
shows time in seconds, and the y-axis shows percent overhead, as measured online
by the QVM overhead monitor. The spike around 0.5 seconds occurs because there is
some lag before the overhead monitor can react and reduce the sample rates. However,
once the controller throttles the tagged objects at the hot allocation sites the overhead
converges on the desired budget of 10%.

The goal of QVM is not just to have low overhead, but to collect as much useful
information as possible within the overhead budget. The sampling strategy employed
by the overhead manager (see Section 4.2) strives to distribute the samples across
the allocation sites in the program, to help find bugs that may occur in cold code.
Figure 14 compares the coverage of allocation sites achieved with 5% budget when
using origin-specific sampling, as well as global sampling, where all sites are sampled
equally. Origin-specific sampling enables nearly 100% coverage for all benchmarks,
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Fig. 14. Allocation Site Coverage: Percentage of allocation sites (of tracked types) that allocate at least one
tracked object.

while global sampling misses a significant percentage of the allocation sites for at
least half of the benchmarks.

QVM uses sampling to reduce overhead so there is no expectation that all objects
will be tracked, however in many cases the sampling mechanism allows the dynamic
number of tracked objects to be significantly higher than one might anticipate. In turn,
this may lead to a higher-percentage of allocation sites being covered by our sampling.
Table IV reports the percent of objects allocated (of the tracked types) that are sampled
to be tracked by the typestate monitor.

Consider the program javac. Previously in Figure 12 we saw that our example set of
typestate properties introduces overhead of around 970% when checked exhaustively.
However, Table IV shows that with an overhead budget of 100% slowdown (more than
a factor of 9 less than the exhaustive slowdown) 49% of the objects allocated (of tracked
types) were still selected for tracking. This can be explained when a relatively small
number of objects contribute significantly to the overhead; once sampling at these
sites is throttled, the number of remaining allocations that can be tracked within the
overhead budget may be large.

Some benchmarks (db, compress, bloat) report 100% for all overhead budgets because
their exhaustive overhead for the typestate properties we selected is below 1% (see
Figure 12).

7.3 Discussion

Wrapper Streams. For a large number of applications QVM reports violations of
stream types that do not hold real resources but violate the contract of the InputStream

and OutputStream API specification. An example that is widely reported by QVM is
the LEDataInputStream from the package swt.internal.image. This stream is a wrapper
around an InputStream and is often not closed because closing the wrapper closes the
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Table IV.

Object Coverage: Percent of allocated objects (of tracked types)
that are selected by QVM for typestate monitoring.

Overhead Budget
Benchmark 1% 2% 5% 10% 20% 50% 100%

db 100 100 100 100 100 100 100
mpegaudio 98 100 100 100 100 100 100
jess 63 76 85 87 95 100 100
jack 22 37 45 52 71 100 100
javac 0.4 1 4 9 31 41 49
compress 100 100 100 100 100 100 100
mtrt 39 46 66 83 90 93 94
antlr 13 19 34 68 67 92 98
eclipse 4 7 12 28 44 66 67
luindex 5 51 79 97 99 99 100
hsqldb 7 13 16 30 43 31 75
chart 40 64 85 88 93 94 97
fop 47 70 42 66 100 100 100
bloat 100 100 100 100 100 100 100
pmd 81 99 99 99 99 100 100

underlying InputStream. In many cases, the underlying stream outlives the wrapper
stream and is therefore closed directly without ever invoking close() on the wrapper
stream.

In addition, streams such as ByteArrayInputStream and ByteArrayOutputStream are
simply wrappers around a byte array. Invoking close on such streams has no effect
(although it is required by the streams API in principle), and programmers therefore
avoid this redundant method call. We do not consider these to be real violations and
do not include them in our QVM reports.

Library Objects vs. Application Objects. Our initial specification for SWT resources was
not the one shown in Figure 7. Our initial specification required that dispose() be
invoked on every SWT Widget, as this is the public method that an application code
can invoke to dispose a resource. However, in SWT, widgets are arranged into an
ownership structure in which a widget may have a parent that is responsible for its
disposal. When the parent is disposed, it disposes all of its children, but instead of
invoking the (public) method dispose to do so, it directly calls the (protected) internal
method release. We therefore had to refine our specification to be aware of the internal
library implementation and the fact that an SWT widget could be also released by an
invocation of release that originates in library code.

Additional refinement of the specification is required to avoid objects that are al-
located in the library for internal library use, and their lifetime is not managed (and
should not be managed) by the application. For example, Font objects allocated by the
static method Font.gtk new() are managed by the library.

8. RELATED WORK

Practical Dynamic Analyses. Several tools such as Valgrind [Nethercote and Seward
2007] support dynamic analysis during development. These tools may allow a pro-
grammer to specify various clients (e.g. cachegrind). They are typically not used for
production purposes as they have significant space and time overheads.
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Aspects and Monitoring. Dynamic tools such as Tracematches [Allan et al. 2005], and
MOP [Chen and Roşu 2007] are able to detect violation of typestate properties, and
in particular detect resource leaks. For example, in Chen and Roşu [2007], JavaMOP
was used to successfully detect a number of resource leaks in Eclipse. These tools
extend aspect-oriented programming with the ability to specify declarative patterns
against the history of the program, rather than against single events as in traditional
aspects. Optimizing the performance of code generated from these declarative specifi-
cations is a challenging task and is currently an active area of research. Avgustinov
et al. [2007a], the authors concentrate on dynamic optimizations that consider only
the specified declarative pattern and not the program on which it is applied. Such op-
timizations include avoidance of memory leaks and better representation of the type-
state automata. Alternatively, in Bodden et al. [2007], the authors take the program
into account and perform static optimizations, for instance, removing unnecessary in-
strumentation points from the program. Unfortunately, despite these optimizations,
there are cases where the overhead is still unacceptable for some properties. In Bodden
et al. [2007], the authors propose two techniques: spatial and temporal partitioning.
In the first optimization, assuming multiple users of the application, the instrumenta-
tion points are partitioned into sets optimizing the per-user overhead. However, it is
still possible to partition the points in a way that some set has a hot point. The sec-
ond optimization spawns a monitoring thread which can switch the instrumentation
on and off at various times. The intervals defining when the point should be on or off
are predetermined off-line and given to the thread as parameter. It seems that our
approach of automatically adjusting the overhead online for a particular set of control
sites will be beneficial to the second optimization.

Dwyer and Purandare [2007, 2008] show how dynamic typestate checking can lever-
age a preceding static typestate checking phase to reduce runtime costs. Their ap-
proach can be combined with QVM to further lower overhead and increase sampling
coverage.

Sampling for Scalable Monitoring. Previous work has focused on low overhead tech-
niques for sampling instrumentation [Arnold and Ryder 2001] and collecting such pro-
files in bursts [Chilimbi and Hirzel 2002]. However these techniques turn sampling
on and off based on time or code execution frequency, and do not support a technique
such as our object-centric sampling.

In Jump et al. [2004], profiling is limited to objects that are tagged at allocation
time, an approach that is similar to our object-centric sampling, but is applied in the
context of profiling for pre-tenuring.

In the cooperative bug isolation (CBI) project [Liblit 2007], the overhead of monitor-
ing program execution is mitigated by using sparse random sampling and collecting
information from a large number of users exercising the code. Collaborative techniques
could be combined into QVM to collect application errors from a wider group of users.
We believe that the ubiquity of QVM provides a natural channel for wider adoption of
CBI-based techniques.

Typestate Verification and Static Leak Detection. A number of sound static tools target
detection or prevention of memory and resource leaks [DeLine and Fahndrich 2001;
DeLine and Fähndrich 2002; Fink et al. 2006, 2008; Foster et al. 2002; Heine and Lam
2003; Shaham et al. 2003]. Some tools specifically target detection of SWT resource
leaks [Livshits 2005], and others target automatic generation of resource management
code [Dillig et al. 2008]. In principle, most of these approaches are capable of detecting
cases where an object is leaked or double disposed. In practice, however, these ap-
proaches do not scale to industrial-sized applications, and produce a large percentage
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of false alarms. In addition, some of these approaches either require additional (poten-
tially cumbersome) annotations or restrict the class of programs that may be written,
e.g. by restricting aliasing [DeLine and Fahndrich 2001; Foster et al. 2002].

Heap Properties. Mitchell [2006] provides concise and informative summaries of real
world heap graphs arising in production applications. The summaries are done offline
and follow a set of useful heuristical patterns for summarizing graphs. In contrast,
our goal is to check various user specified heap properties online. Subsequent work
by Mitchell and Sevitsky [2007] study offline heap snapshots with the goal of finding
inefficiencies in memory usage enforced by a particular program design.

Shacham et al. [2009] introduced CHAMELEON, a tool for profiling Java collections
for finding inefficient use of collection in terms of space (“collection bloat”), and time.
Their approach combines information from the garbage collector with collection usage
statistics.

Chilimbi and Ganapathy [2006] provide a two-stage framework suitable for test-
ing, where in the first stage a set of likely heap invariants based on node degree are
computed at a small number of program points. Then the instrumented program is
executed and checked against these invariants and a bug is reported if a deviation is
observed.

Various works have relied on the garbage collector to find memory leaks. Jump and
McKinley [2007] use the collector to help in suggesting potential leaks. Bond and
McKinley [2006] study efficient leak detection for Java. Similarly to us, they make
use of available bits in the object header and the adaptive profiling techniques from
Hauswirth and Chilimbi [2004] applied on object use sites to reduce the space and time
overheads. We see these advances as potential QVM clients, which could manage the
overall overhead for them.

In recent work Aftandilian and Guyer [2008, 2009], use a sequential garbage col-
lector to check several assertions specified by the programmer. Variants of two of the
assertions proposed here, namely isShared and isObjectOwned, have been implemented
in their system, albeit with different semantics. Our assertions are evaluated at the
program point where they are issued, while in their work, assertions are evaluated
when GC operates. Evaluating assertions only during GC allows to reduce the over-
head of evaluation by batching all assertions up to that point in time. In contrast, we
control the overhead of heap assertions using sampling. Further, our assertions are
evaluated in parallel, enabling full use of the underlying multicore processor.

Current approaches typically study in detail a single useful property (such as leak
detection) and modify the VM to support that property. In contrast, QVM can support
clients checking many properties and automatically manage the performance overhead
of such clients.

JVMTI. The current set of heap probes can also be implemented using JVMTI.
However, even ignoring the already mentioned disadvantages of JVMTI, it is often
difficult to implement what is required with a fixed set of functions without incurring
significant overhead. For example, for our probe isShared() we avoid synchronization
during traversal when parallel threads are used. In the case of JVMTI however, the
notion of a parallel traversal thread is abstracted away (not seen at the callback level)
and hence it would be required to synchronize internally to invoke the callback. Other
probes such as isThreadOwned() requires the computation of the transitive closure of a
given thread. Such a function is not provided in JVMTI (although the transitive clo-
sure of the object is provided), but can be simulated through other methods. Another
problem are further optimizations such as concurrent processing of heap probes or fil-
ters on write barriers (to check if an escape bit in the object header is set, allowing the
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avoidance of traversal). It is clear that if we are to support a language of core heap
probes in the future, a flexible and high performance implementation is necessary,
preferably realized through a specialized extendable interface at the virtual machine
level.

9. FUTURE WORK

The overhead manager is a key component of the QVM. Our current implementation
uses simple strategies that work well in practice, but do not guarantee any sort of
optimality or enforce provable bounds. In the future, we plan to investigate how tech-
niques from control theory can be used to provide a robust theoretical foundation for
the overhead manager.

While our preliminary experience with heap assertions is promising, a thorough
evaluation of these assertions is required on two aspects: (i) the appeal of heap as-
sertions to programmers; (ii) the performance impact of heap assertions written in
practice. We plan to address these questions in future work.
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