
Test Execution Checkpointing for Web Applications
Marco Guarnieri

Department of Computer Science
ETH Zurich, Switzerland

marco.guarnieri@inf.ethz.ch

Petar Tsankov
Department of Computer Science

ETH Zurich, Switzerland
ptsankov@inf.ethz.ch

Tristan Buchs
Swiss Finance Institute
EPLF, Switzerland

tristan.buchs@epfl.ch

Mohammad Torabi Dashti
Department of Computer Science

ETH Zurich, Switzerland
torabidm@inf.ethz.ch

David Basin
Department of Computer Science

ETH Zurich, Switzerland
basin@inf.ethz.ch

ABSTRACT
Test isolation is a prerequisite for the correct execution of test suites
on web applications. We present Test Execution Checkpointing, a
method for efficient test isolation. Our method instruments web
applications to support checkpointing and exploits this support to
isolate and optimize tests. We have implemented and evaluated this
method on five popular PHP web applications. The results show
that our method not only provides test isolation essentially for free,
it also reduces testing time by 44% on average.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Test Execution, Checkpointing, Web Applications
ACM Reference format:
Marco Guarnieri, Petar Tsankov, Tristan Buchs, Mohammad Torabi Dashti,
and David Basin. 2017. Test Execution Checkpointing for Web Applications.
In Proceedings of 26th International Symposium on Software Testing and
Analysis , Santa Barbara, CA, USA, July 2017 (ISSTA’17), 12 pages.
https://doi.org/10.1145/3092703.3092710

1 INTRODUCTION
Testing is a widespread quality assurance method for web applica-
tions [2, 6, 7, 33, 42]. A web application test consists of a sequence
of HTTP requests. These sequences often have side effects, where
executing one test influences the results of subsequent tests by
changing the web application’s session variables, its databases, and
so forth. These side effects can alter the test verdicts, introduc-
ing false positives and false negatives [34, 38, 48, 53]. Test isolation
prevents these side effects and is thus imperative in practice.

Isolating web application tests is challenging. Straightforward
state-restore approaches, such as resetting the application’s state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’17, July 2017, Santa Barbara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5076-1/17/07. . . $15.00
https://doi.org/10.1145/3092703.3092710

Web Application

WWW

Test Execution Checkpointing

WWW

Checkpointing EngineTransformation Engine

Tests

Test Results

✓
×

✓

Figure 1: An overview of Test Execution Checkpointing.

between successive test executions, are prohibitively expensive.
This is not surprising because resetting a real-world web application
requires restoring its database state, its session variables and session
files, and restarting the web server. Alternatively, test engineers
can manually modify tests to enforce isolation. But test modification
is not only error prone [38, 53], it must be repeated each time
the application is modified. In short, state-restore approaches are
universally applicable and can be automated, but are inefficient.
In contrast, test modification approaches can be efficient but are
application-dependent and largely manual.

In this paper, we propose Test Execution Checkpointing (TEC), a
test execution method for web applications that achieves the best of
the two aforementioned approaches. Namely, it provides automatic
test isolation in an efficient and application-independent manner. It
allows test engineers to focus on writing tests and delegate isolation
entirely to the execution engine. Our method’s key ingredient is
to extend test execution engines with checkpointing capabilities
to save and restore application states with minimal overhead. Our
empirical results show that TEC not only provides test isolation
essentially for free, but it significantly reduces testing time.
Test Execution Checkpointing. TEC is an automated method,
which relies both on state-restoring and test modification, for isolat-
ing and optimizing tests. The inputs to TEC are a web application
and a test suite, i.e., a set of tests. Our solution, illustrated in Figure 1,
consists of two main components: a Checkpointing Engine and a
Transformation Engine. The checkpointing engine instruments the

https://doi.org/10.1145/3092703.3092710
https://doi.org/10.1145/3092703.3092710

ISSTA’17, July 2017, Santa Barbara, CA, USA M. Guarnieri, P. Tsankov, T. Buchs, M. Torabi Dashti, and D. Basin

web application to support efficient checkpointing, which is a tech-
nique for saving a snapshot of an application’s state and restoring
the state from a previously saved snapshot.

The transformation engine modifies the tests in an automated
and provably correct manner. The modifications, which amount
to adding save state and restore state commands to the tests, are
application-independent. The tests are then executed sequentially
on the instrumented application. The modifications guarantee test
isolation: in its simplest form, the application’s initial state is saved
and each test is modified by adding a command to restore the initial
state. This reinitializes the application before executing each test.
In contrast to the aforementioned straightforward state-restore
approach, our tailored checkpointing engine renders the reinitial-
ization overhead negligible. In addition to isolation, we also reduce
testing time significantly by carefully choosing where save and
restore commands are added to the tests. Web application tests, i.e.,
sequences of HTTP requests, typically have shared prefixes. By
simply saving the application’s state after a test prefix is executed
and restoring the application to that state, we avoid re-executing
the prefix. Our transformation engine automatically detects the
longest shared test prefixes and applies the corresponding test mod-
ifications. We prove that the modifications are optimal.

Contributions. Wepropose Test Execution Checkpointing, amethod
for automatically isolating, optimizing, and executing web applica-
tion tests. We also developWebCheck, a tool that instantiates TEC
for PHP web applications, and use it to evaluate TEC’s benefits on
five popular PHP applications.

We develop an efficient and scalable checkpointing engine tai-
lored towards web applications. Our engine checkpoints session
and static variables, databases, accessed files, random seeds, and
timestamps. This is sufficient to correctly checkpoint a large class
of PHP web applications, as we demonstrate in our experiments.
Our engine efficiently checkpoints web applications, taking less
than 2 milliseconds on average. This enables WebCheck to isolate
tests almost for free, with less than 2% average overhead.

We also propose an algorithm that isolates and optimizes tests
by exploiting the features provided by our checkpointing engine.
The algorithm is the heart of the transformation engine in Figure 1.
We prove that (1) our algorithm isolates the tests, and (2) it is
optimal, meaning that there is no application-independent test
transformation that achieves isolation and results in tests with a
smaller number of HTTP requests. Using our algorithm,WebCheck
significantly reduces the tests size and reduces testing time by 44%.

Scope and Limitations. TEC is applicable to server-side tests,
i.e., tests that consist of sequences of HTTP requests. However, it
applies neither to client-side code, such as Javascript, nor to web
applications not supported by our checkpointing engine. In more
detail, our checkpointing engine supports web applications that
(1) store state in session variables, static variables, and persistent
storage, such as files and databases, and (2) access random values
and timestamps using standard APIs. We discuss the limitations of
our checkpointing engine in §3.2.

Organization. In §2 we explain the importance of isolation in
web application testing. In §3 and §4 we describe our checkpoint-
ing technique for web applications and our test transformation

t1 l o g i n . php? username= a l i c e&password =1234 ,
add . php? i d =1& sh i pp i ng = s t anda rd

t2 l o g i n . php? username= a l i c e&password =1234 ,
e d i t . php? i d =1& sh i pp i ng = ove rn i gh t

(a) Tests

1 <?
2 include (c h e ck_ l og i n . php) ;
3 $o rde r = $db . ge tOrde r ($_GET [" i d "]) ;
4 $order −> sh i pp i ng = $_GET [" sh i pp i ng "] ; / / f a u l t
5 $db . i n s e r tO r d e r ($o rde r) ;
6 ?>

(b) edit.php

Figure 2: The two test cases for our web application for man-
aging client orders, and the fauly code snippet of edit.php.

algorithm. We present and empirically evaluateWebCheck in §5.
Finally, we discuss related work in §6 and we conclude in §7.

2 OVERVIEW
In this section, we first present an example and illustrate the prob-
lem of test isolation in web application testing. Afterwards, we
overview TEC and illustrate how it isolates and optimizes tests.

2.1 Motivating Example
Consider a simple web application for managing client orders,
which stores all orders in a database. Figure 2a shows two tests
that exercise the application’s functionality for adding and editing
orders. Each test is a sequence of HTTP requests. Both tests first log
in the user by passing the username alice and the password 1234
as parameters to the web page login.php. Afterwards, the first
test adds an order with identifier 1 and shipping type standard,
whereas the second test changes the shipping type of the order
with identifier 1 to overnight.

The PHP implementation of edit.php is given in Figure 2b.
Clients pass the order identifier and the shipping type as parame-
ters. The web page retrieves the order object using the getOrder
method, updates the shipping type, and commits the updated order
to the database. The getOrder method returns null if an order
with the given identifier does not exist in the database. Therefore,
this web page contains a null-pointer dereference error at line 4.
The web application throws an error when it dereferences the field
shipping whenever the value of the variable order is null.

2.2 Test Isolation
Test isolation guarantees that the test results are identical to those
obtainedwhen executing each test with the web application starting
in its initial state. Therefore, the results of the isolated tests are
independent of the other tests, the order in which the tests are
executed, and the number of times the tests are executed.

Web application testing, however, does not guarantee test iso-
lation. Standard test execution practice is to (1) start the web ap-
plication, (2) for each test, sequentially send the HTTP requests to
the web server, and (3) observe the results of the respective compu-
tations. We call this approach standard test execution. In contrast

Test Execution Checkpointing for Web Applications ISSTA’17, July 2017, Santa Barbara, CA, USA

s0

s1

s2 s3

login

add
edit

s0

s1

s2 s3

instrument

restore
save

login

add
edit

t1 = login, add
t2 = login, edit

t1 = login, save, add
t2 = restore, edit

transform

execute

Test Execution Checkpointing

Figure 3: An overview of TEC. The test execution engine
takes as input a test suite (top left) and a web application
(top right), whichwe abstractly depict as a transition system.
The transformation engine isolates the tests (bottom left) by
adding save and restore requests and optimizes them by re-
moving shared prefixes. The checkpointing engine instru-
ments the web application (bottom right) to support check-
pointing (depicted using dashed arrows).

to traditional software testing, the web application is not restarted
between tests as the time required for this is usually prohibitive.
Tests, however, often have persistent side effects, such as changes
to session variables and database content. These side effects may
influence the execution of the remaining tests, resulting in both
false positives and false negatives [4, 38, 53].

To illustrate, consider the two tests t1 and t2 in Figure 2a. Both
tests have side effects: t1 adds an order entry to the database, and
t2 modifies an order entry in the database. Executing the test t1
followed by t2 results in a false negative, because t1 adds an or-
der with the identifier 1 and masks the null-pointer dereference
error in edit.php. However, we detect the aforementioned pointer
dereference error if the tests are executed in isolation.

Resetting a web application to its initial state is, unfortunately,
non-trivial. In our example, we would need to restore the database
and session variables to their initial states. This can be prohibitively
time consuming: our experiments in §5 show that reinitializing
a web application may take several seconds, even for very small
databases. This is a significant delay since, in comparison, an HTTP
request can be executed in a few milliseconds. We remark that
the time required to reinitialize the web application amounts, on
average, to 88% of the test execution time; see §5.

2.3 Test Execution Checkpointing
As illustrated above, web application testing may result both in
false positives and false negatives due to the lack of test isolation. In
the following, we describe how we address this problem using TEC.
Our method relies on two key components: (1) a checkpointing
engine, and (2) a transformation engine. The two components and
the main steps performed by TEC are illustrated in Figure 3.
Checkpointing Engine. The checkpointing engine instruments
the application, augmenting its functionality with methods for

saving and restoring checkpoints, which are invoked using two
designated HTTP requests save and restore. We illustrate the
instrumentation in Figure 3. The web application is abstractly de-
picted as a transition system with an initial state s0. The transitions
are the HTTP requests accepted by the application. For example,
the application changes its state from s0 to s1 upon receiving the
HTTP request login. The instrumentation adds new events with
associated transitions to existing states. In Figure 3, we depict two
relevant transitions labeled with the designated HTTP requests
save and restore. Executing the HTTP request save saves the
state s1, and executing the HTTP request restore restores the
application’s state back to s1.
Transformation Engine. The transformation engine isolates and
optimizes test suites. The modified tests rely on the checkpointing
features of the instrumented application, as we illustrate below.

A straightforward, but inefficient, way to isolate the tests is to
simply restore the web application to its initial state before execut-
ing each test. But one can do better. In particular, web application
tests often share test prefixes, and the execution of such prefixes
usually dominates the overall test execution time; see our experi-
mental results in §5. For example, the two tests t1 and t2 both start
with the HTTP request login. The execution of login steps is often
time consuming as it requires database queries to check the user’s
credentials as well as cryptographic operations. By avoiding the
re-execution of such shared prefixes, we can significantly reduce
the overall test execution time.

Our test execution engine avoids re-executing a shared prefix
by checkpointing the web application’s state immediately after
executing the shared prefix. To illustrate, consider the two tests t1
and t2. The transformation first inserts the HTTP request save in
the test t1 after the HTTP request login to save the application’s
state. Afterwards, the transformation replaces the shared prefix
in the test t2 with the HTTP request restore, which restores the
application to the state s1 and thereby avoids executing the HTTP
request login. Executing the tests in this way is equivalent to
executing both t1 and t2 starting in the application’s initial state,
and the HTTP request login is executed just once.

3 CHECKPOINTINGWEB APPLICATIONS
We present here our technique for checkpointing web applications.

3.1 Web Application States
We consider the server-side of web applications. A web application
stores state in its data layer, which consists of session variables and
persistent storage such as databases and files. Most web applications
are stateful as they modify their data layer when processing HTTP
requests. For example, the web page edit.php in our motivating
example updates the database. Furthermore, web applications often
use random values and timestamps, for instance to generate cookies
and session identifiers. These values influence the web application’s
executions [36] and are also part of the web application’s state.

3.2 Checkpointing Engine
Our checkpointing engine, depicted in gray in Figure 4, intercepts
all HTTP requests sent to the web application as well as all com-
munication between the application and its data layer. The engine

ISSTA’17, July 2017, Santa Barbara, CA, USA M. Guarnieri, P. Tsankov, T. Buchs, M. Torabi Dashti, and D. Basin

ApplicationBrowser

save(ℓ)

restore(ℓ)

State

DB Files

x, y, . . . Variables

Random Time

Snapshotℓ1 :
...

Snapshotℓn :

Figure 4: Checkpointing engine for web applications.

augments the web application with support for two additional
HTTP requests, namely save(ℓ) and restore(ℓ), which are used
to save and restore snapshots of the web application’s state. Upon
receiving a save(ℓ) request, the checkpointing engine saves the
web application’s state and labels it with ℓ, e.g., a natural number.
This label can later be used to refer to the saved data. Upon receiv-
ing a restore(ℓ) request, the checkpointing engine restores the
web application’s state labeled with ℓ. All HTTP requests except the
designated save(ℓ) and restore(ℓ) requests are forwarded to the
web application intact. Below we describe how the checkpointing
engine saves a snapshot of the state’s main components.
Database. We leverage the transaction mechanisms provided by
SQL databases to efficiently save the database state, since storing
a complete snapshot of the database is impractical. Specifically,
the checkpointing engine creates a single SQL transaction with
the database and forwards all SQL commands issued by the web
application to this transaction. Effectively, the checkpointing engine
unifies all SQL connections used by the web application into a
single database transaction. Then, to save the database state, the
checkpointing engine creates a transaction savepoint using the
SQL command SAVEPOINT ℓ. The checkpoint engine uses the SQL
command ROLLBACK TO SAVEPOINT ℓ to rollback the transaction to
the savepoint labeled with ℓ, without aborting the transaction.
Session and Static Variables. The values stored in session vari-
ables persist across HTTP requests and the checkpointing engine
saves and restores them. The concrete mechanism for capturing
the values of session variables depends on the language used to
implement the web application. In PHP, for example, session vari-
ables are stored in local files and their values are easily accessed by
saving and restoring copies of the relevant files.

Static variables may also persist across HTTP requests and there-
fore must be saved and restored. In JSP web applications, for ex-
ample, they are persistent and can be handled using lightweight
virtualization containers, such as [4]. In other languages, such as
PHP, static variables do not preserve values across requests and
need not be checkpointed.
Files. Web applications may access local files. As files are accessed
through standard APIs, it is sufficient to monitor the calls to the
relevant APIs to detect the concrete paths of the files accessed at run
time. The size of such files is usually small, and for most practical
examples it is sufficient to store a complete copy of the accessed
files. To efficiently checkpoint large files, one can just store file
differences rather than complete files.

Random values and Time. Both random values and time are
accessed through standard APIs. The checkpointing engine instru-
ments all calls to these APIs to control their return values, similarly
to [36]. The checkpointing engine defines an initial seed seed and
timestamp time, and keeps two counters cseed and ctime . Each call
to the time API returns time + ctime and increments ctime . Similarly,
each call to the random API returns rngcseed (seed), where rng is a
random number generator initialized with seed, and increments
cseed . Checkpointing random values and time then amounts to sav-
ing and restoring the values of seed, time, cseed , and ctime . We refer
the reader to §5.1 for our concrete implementation for PHP.
Limitations. In general, a web applicationmay store state-relevant
values in other components, such as remote web services. To handle
such applications, one must either checkpoint these additional com-
ponents or reinitialize them programmatically inside the tests. For
instance, for multi-threaded web applications, the scheduler’s state,
which is part of the web application’s state, can be checkpointed
using techniques similar to [13]. In practice, however, most web
applications store their state in the components described above.
We support this claim empirically with our experiments; see §5.

4 TRANSFORMATION ENGINE
Our transformation engine modifies test suites by adding the save
and restore requests in the tests and removing redundant test
prefixes. The modified tests are guaranteed to be executed in iso-
lation by sequentially sending all HTTP requests contained in the
tests to the instrumented web application. In §4.1 we describe the
algorithm implemented in our transformation engine, and in §4.2
we prove that it achieves test isolation and is optimal.

4.1 Transforming Test Suites
The transformation engine takes a set of testsT as input and outputs
a sequence of tests T ′ that are isolated and optimized. We remark
that the order of the tests in T ′ is essential both for achieving isola-
tion and for the well-formedness of the tests, e.g., a save request
should be executed before the corresponding restore request.

A simple way to isolate tests using checkpointing is to save the
web application’s state before executing the first test and then to
restore the web application to its initial state before executing each
test. This is achieved by prepending the save request to the first
test and then prepending the restore request to all remaining
tests. This suffices to isolate the tests, but it does not remove the
redundant HTTP requests.

In the following, we define an algorithm that isolates the tests
and optimizes them by removing shared test prefixes.
Background. We use the following notation to define the algo-
rithm. A test suite is a set {t1, . . . , tn } of tests. Each test ti consists
of a sequence [qi1, . . . ,q

i
mi

] of HTTP requests. Given two tests
t = [q1, . . . ,qn] and t ′ = [q′1, . . . ,q

′
m], we write t · t ′ for the test

[q1, . . . ,qn ,q′1, . . . ,q
′
m] obtained by appending t ′ to t .

Without loss of generality, we assume that each web application
has a designated initial state. Thus, executing a test suite on a web
application amounts to executing the test suite from the initial state.

Our algorithm uses prefix trees [28]. A prefix tree (also called a
trie) is a tree that compactly stores strings over an alphabet Σ. We
represent a prefix tree as a pair (N ,E) where N is a set of nodes and

Test Execution Checkpointing for Web Applications ISSTA’17, July 2017, Santa Barbara, CA, USA

E is a set of labeled edges. Each edge is of the form (n1,q,n2), where
n1 and n2 are nodes in N and q ∈ Σ is a character in the alphabet.
Each node represents the string obtained by concatenating the
characters along the path from the root to the node. In our setting,
the alphabet consists of HTTP requests.

Our algorithm constructs a prefix tree over the HTTP requests
in the test suite provided as input. To illustrate, consider the test
suite T = {t1, t2, t3}, where t1 = [a,b, c,d], t2 = [a,b, c, e], and
t3 = [a, f]. The test suite T and its corresponding prefix tree are
shown in Figure 5. Each path in the prefix tree represents a test. We
denote the prefix tree derived from a test suite T by prefixTree(T).

Algorithm. Algorithm 1 takes a test suiteT as input and outputs a
sequence of testsT ′. The algorithmfirst constructs a prefix tree from
the input test suite T . It then iteratively constructs the optimized
test suite by traversing the prefix tree in a depth-first manner. The
stack S , constructed during the depth-first traversal, contains pairs
of the form (n, t), where n is a node in the prefix tree and t is a
test, whereas T ′ contains the optimized tests. Initially, the stack
S contains a pair (n0, []), where n0 is the prefix tree’s root and []
stands for the empty sequence. Each iteration of the while loop
processes one node in the prefix tree as well as the associated partial
test. If the node is a leaf node, the test is fully modified and appended
to T ′. Otherwise, the node is an inner node. The algorithm inserts
save and restore HTTP requests whenever the inner nodes are
branching, that is, where tests have a shared prefix. Note that the
running time of the algorithm is linear in the number of HTTP
request in the test suite.

Without loss of generality, we assume that the test suite does
not contain tests that are prefixes of other tests. For example, we
do not consider test suites such as {[a], [a,b]}. These test suites can
be supported by appending a designated request end to all tests,
e.g., {[a, end], [a,b, end]}.

Example. Consider the test suite given in Figure 5. The figure also
depicts how the stack and the generated tests evolve during the ex-
ecution of Algorithm 1. Initially the stack contains the pair (n0, []).
The first iteration of the while loop follows the second branch
(lines 16–18) because n0 has just one child, namely n1, which is
reachable from n0 by issuing the HTTP request a. After the first
iteration, the stack S contains the pair (n1, [a]), which associates
to the node n1 the partial test a, and the test suite T ′ is still empty.
The second iteration of the while loop executes the if branch (lines
10–15) because n1 has two children, one reachable using b and the
other reachable using f . After the second iteration, the stack S
contains the pairs (n2, [a, save(ℓ1),b]) and (n6, [restore(ℓ1), f]).
In the third iteration, we extend the first partial test by appending
the HTTP request c . At the end of the iteration, the stack contains
(n3, [a, save(ℓ1),b, c]) and (n6, [restore(ℓ1), f]). In the fourth it-
eration, we execute again the if branch (lines 10–15) because n3
has two children. We therefore pop (n3, [a, save(ℓ1),b, c]) from the
stack and replace it with (n4, [a, save(ℓ1),b, c, save(ℓ2),d]) and
(n5, [restore(ℓ2), e]). We have now visited the entire prefix tree.
Therefore, in the last three iterations we collect the modified tests
from the stack and append them toT ′. Finally, the algorithm returns
the tests [t ′1, t

′
2, t
′
3], where t

′
1 is [a, save(ℓ1),b, c, save(ℓ2),d], t

′
2 is

[restore(ℓ2), e], and t ′3 is [restore(ℓ1), f].

Algorithm 1: Isolating and optimizing test suites.
Input: A test suite T .
Output: A sequence of tests T ′.

1 begin
2 (N ,E) := prefixTree(T)
3 n0 := root (N ,E) // n0 is the root of prefixTree(T)
4 S := [(n0, [])] // S is a stack
5 c := 0 // c is a counter
6 T ′ := []
7 while S , [] do
8 (n, t) := pop(S)
9 O := {(n,q,n2) ∈ E}

10 if |O | > 1 then
11 Pick (n,q,n2) ∈ O

12 c := c + 1
13 for (n,q′,n′2) ∈ (O \ {(n,q,n2)}) do
14 push(S, (n′2, [restore(ℓc),q

′]))
15 push(S, (n2, t · [save(ℓc),q]))
16 else if |O | = 1 then
17 Pick (n,q,n2) ∈ O

18 push(S, (n2, t · [q]))
19 else if |O | = 0 then
20 T ′ := T ′ · [t]

21 return T ′

Test Oracles. Test oracles are used to determine whether tests
pass or fail. Our transformation engine guarantees that the results
of state assertions (i.e., oracles that check a property of a web
application’s state) are the same for both the transformed tests
and the original tests, provided the latter are properly isolated.
Furthermore, navigation assertions (e.g., checking whether a web
page is accessible after the user has logged in) can be also easily
checked as one can construct the original traces from those observed
when executing the transformed tests. Note that oracles that do
not depend on the web application’s state may not be preserved by
our transformation. For example, oracles checking non-functional
requirements, such as performances, are, in general, not preserved
by our transformation.

IntegrationwithOther Techniques. Our transformation engine
can be directly integrated with test selection techniques by first
selecting a subset of the tests and then applying our transformation.
Our algorithm currently does not support test prioritization, since
the latter orders the tests while our algorithm takes as input a set.
We leave this extension as future work.

4.2 Transformation Engine Correctness
We first formalize test isolation and optimality. We then prove that
the output of Algorithm 1 satisfies these two properties. We start
with several definitions.

Without loss of generality, we model a web application as a de-
terministic Labelled Transition Systems (LTS) ⟨S, Σ,δ , sinit⟩ where

ISSTA’17, July 2017, Santa Barbara, CA, USA M. Guarnieri, P. Tsankov, T. Buchs, M. Torabi Dashti, and D. Basin

n0

n1

n2 n6

n3

n4 n5

t1 = [a, b, c, d]
t2 = [a, b, c, e]
t3 = [a, f]

a

b

c

d e

f

Test suite T = {t1, t2, t3 }

Prefix tree derived from T

(n0, [])S0

(n1, [a])S1

(n2, [a, save(ℓ1), b])
(n6, [restore(ℓ1), f])

S2

(n2, [a, save(ℓ1), b, c])
(n6, [restore(ℓ1), f])

S3

(n4, [a, save(ℓ1), b, c, save(ℓ2), d])
(n5, [restore(ℓ2), e])
(n6, [restore(ℓ1), f])

S4

[]S7

[]T ′0

[restore(ℓ1), f]
[restore(ℓ2), e]
[a, save(ℓ1), b, c, save(ℓ2), d]T ′7

Steps of the algorithm

...

...

Figure 5: A test suite and its corresponding prefix tree (left) and the evolution of the stack and the generated tests (right). Each
Si and T ′i correspond to the state of the stack and, respectively, generated tests, at the i-th loop iteration of Algorithm 1.

Domains

n,m ∈ N Set of nodes
ℓ ∈ L Set of labels
µ ∈ M Set of maps from N to L
q ∈ Σ Set of requests
e ∈ E ⊆ (Σ ∪ {save(ℓ), restore(ℓ) | ℓ ∈ L })∗ Set of extended tests

tree : E → Trees
build : N × E ×M → Trees

Tree building

tree(e) = build (e, n, ∅) build ([], n, µ) = n

build (q · e, n, µ) = n
q

build (e,m, µ)

build (save(ℓ) · e, n, µ) = build (e, n, µ[ℓ 7→ n])

build (restore(ℓ) · e, n, µ) = build (e, µ (ℓ), µ)

Example

e = [a, save(ℓ), b, d, restore(ℓ), c]

tree(e) =

d

cb

a

Figure 6:The function tree for building trees from extended tests. The nodes n andm are fresh to ensure that the result is a tree.

S is a set of states, Σ is a set of HTTP requests, δ ⊆ S × Σ→ S is a
transition function, and sinit ∈ S is the initial state.

LetW = ⟨S, Σ,δ , sinit⟩ be aweb application. A test forW is a finite
sequence over Σ, and a test suite forW is a set of tests forW . A trace
ofW is a sequence of states in S that starts from the initial state sinit
and respects the transition function δ . Given a web applicationW
and a test t , wewrite apply (W , t) for the trace obtained by executing
t onW . Here apply (W , t) captures the web application’s behavior
where t is executed from the initial state. Formally, apply (W , t) =
s0, . . . , s |t | such that s0 = sinit and (si ,qi , si+1) ∈ δ for all i ∈
{0, . . . , |t | − 1}, where |t | is the number of requests in t and qi is
the i-th request in t . We lift the function apply to test suites in
the standard way: apply (W ,T) = {apply (W , t) | t ∈ T }. Note that
apply (W ,T) represents the behavior ofW where the tests in T are
correctly isolated, i.e., each test is executed from the initial state.

To represent instrumented applications and modified tests, we
introduce the notion of extended tests, which are tests extended
with save and restore commands. Formally, an extended test forW
is a finite sequence over Σ ∪ {save(ℓ) | ℓ ∈ L} ∪ {restore(ℓ) |

ℓ ∈ L}, where L is a fixed set of labels, such as the set of natural
numbers N. To guarantee well-formedness, we further require that
in any extended test e , each restore(ℓ) is preceded by exactly
one save(ℓ). Note that any save(ℓ) can be restored multiple times.
We remark that the concatenation of the tests output by Algorithm 1
is an extended test.

Next, we define the apply function for extended tests. Let e be
an extended test with n ∈ N restore commands. We first construct
a tree of requests from e , where each path in the tree corresponds
to a (non-extended) test forW . We then define the apply function
as the set of n + 1 traces obtained from these tests. We formalize
this in the following.

We define the function tree in Figure 6, which maps an extended
test to a directed labelled tree where each edge is labelled with an
element of Σ. We illustrate the definition with an example in the fig-
ure. The tree induces a test suite, denoted byTtree(e) , in the standard
manner: each path from the tree’s root to a leaf corresponds to a
test. Then, we define apply (W , e) as the set apply (W ,Ttree(e)). Note
that we have overloaded the symbol apply in the above definitions.

Test Execution Checkpointing for Web Applications ISSTA’17, July 2017, Santa Barbara, CA, USA

Also note that apply (W , e) captures the semantics of the save and
restore requests.

We are now ready to define test isolation and optimality. LetW be
a web application,T be a set of tests forW , and e be an extended test
forW . We say e andT are semantically equivalent if apply (W ,T) =
apply (W , e). A (test) transformation τ is a function that maps a set
of tests to an extended test.We say τ achieves test isolation if, for any
web applicationW and any test suite T forW , τ (T) is semantically
equivalent to T . We denote by T R the set of transformations that
achieve test isolation.

We now turn to optimality. A natural measure of the cost of
executing a test is the number of HTTP requests it contains. We
ignore the save and restore HTTP requests because the time
for saving and restoring the state is negligible compared to the
time needed to execute the HTTP requests, as our experiments in
§5 demonstrate. A transformation τ ∈ T R is therefore optimal
if for any web application W , any test suite T for W , and any
transformation τ ′ ∈ T R, we have |τ (T) | ≤ |τ ′(T) |, where |e |
denotes the number of HTTP requests in the extended test e .

Theorem 4.1. Algorithm 1 achieves test isolation and is optimal.

Proof. Let T be an input to the algorithm and e be the output
extended test. Then, prefixTree(T) is identical (up to isomorphism)
to tree(e); this can be established by a straightforward induction on
the size of the input’s prefix tree. Test isolation immediately follows.
The optimality of the algorithm is then simply a consequence of
the minimality of prefix trees. □

5 EVALUATION
Here, we describe WebCheck and report on the efficiency and
scalability of its checkpointing engine, and on the impact of its
optimization algorithm on the overall test execution time. We use
WebCheck to isolate, optimize, and execute test suites for five
popular PHP web applications. Our experiments show that even
without optimization WebCheck isolates web application tests
with negligible overhead — 2% on average. Using our optimization
technique,WebCheck significantly reduces the test execution time
— 44% on average — over the standard test execution time. In the
following, we first describeWebCheck and our experimental setup,
and then we report on our experiments.

5.1 Implementation
To conduct our experiments, we have instantiated TEC for PHP
web applications. Our tool, called WebCheck, along with the test
suites and all scripts used in our experiments are publicly available.1
WebCheck implements the checkpointing engine described in §3
and Algorithm 1 given in §4. A preliminary version of WebCheck’s
checkpointing engine is described in [10].

WebCheck intercepts all HTTP requests sent to the web appli-
cation and handles the save(ℓ) and restore(ℓ) requests. Further-
more, it instruments all calls to the SQL API. The SQL queries are
forwarded to an SQL proxy, which maintains a persistent SQL con-
nection to the database. All SQL queries are thus executed within a
persistent SQL transaction, which enables WebCheck to save and
restore the database using the standard SQL queries SAVEPOINT ℓ
1See http://www.infsec.ethz.ch/research/software/webcheck.html .

and ROLLBACK TO SAVEPOINT ℓ. All session variables in PHP are
stored in files. To save and restore session variables, WebCheck
copies and replaces these files. To handle local files, WebCheck
instruments file system API calls and makes a copy of all accessed
files. Finally, as described in §3,WebCheck instruments the rand,
mt_rand, random_int, and uniqid APIs for producing random val-
ues, the microtime and time APIs for getting timestamps, and the
session_id, session_start, and session_regenerate_id APIs
for generating session identifiers. To instrument the APIs, We-
bCheck uses the PHP extension runkit.

To test a web application using WebCheck, the test engineer
provides the URL of the web application, the SQL connection details,
and the path to the web application’s test suite.WebCheck auto-
matically retrieves the path to the web application’s session files
using the PHP API.WebCheck then transforms the test suite as de-
scribed in Algorithm 1, and sequentially executes the transformed
tests on the web application.

5.2 Experimental Setup
As test subjects, we have selected five popular open-source PHP
web applications, using MySQL as database backend:

• phpBB v.3.1.6 [40]: a bulletin board application.
• OSCommerce v2.3.3 [39]: an e-commerce application.
• WordPress v.4.3.1 [51]: a content management system.
• BambooInvoice v0.8.9 [1]: an invoicing software.
• Gallery3 v3.0.9 [20]: a photo album organizer.

Our test subjects do not ship with system-wide tests. Therefore,
for each test subject, we automatically generated a test suite con-
sisting of 1000 tests. Each test consists of up to 20 HTTP requests,
exercising different portions of the application. We generate each
test usingw3af [49], a state-of-the-art web application crawler that
automatically exercises the test subject. For each test subject, we
run w3af 1000 times with a one-minute timeout and intercept all
the HTTP requests produced by the tool. We then filter the resulting
requests to remove duplicates and requests that do not exercise the
web application, such as requests that retrieve Javascript files and
images. The test is then obtained by selecting the first 20 requests
from the filtered sequence of HTTP requests. We have performed
all the experiments on a Linux machine, with an i7-4770 CPU, 32GB
of RAM, running PHP v5.5.9 and Apache v2.4.7.

5.3 Experiments
In the following, test execution time is the total time spent to execute
all requests, including the save and restore requests, whereas
checkpointing time refers to the time spent to handle only the save
and restore requests.

Checkpointing Engine Correctness. Here we evaluate whether
WebCheck correctly checkpoints web applications. To this end,
we compareWebCheck’s save and restore capabilities with those
provided by Virtual Machines (VMs). First, we execute each test
suite usingWebCheck. Afterwards, we run the web server within a
VM, and we execute the test suites again by reinitializing the VM’s
state before each test. In both cases, we record the HTTP responses
and the web application’s state after each HTTP request; we refer
to these as outputs.

ISSTA’17, July 2017, Santa Barbara, CA, USA M. Guarnieri, P. Tsankov, T. Buchs, M. Torabi Dashti, and D. Basin

We compare the collected outputs. Note that when the web appli-
cation’s state is reinitialized using VMs, the resulting outputs may
differ slightly due to variations, such as timestamps. To account for
this, we execute each test twice using the VM and we identify those
portions of the output that do not change in both executions. We
then compare these portions of the VM’s output withWebCheck’s
output. If the outputs are identical, thenWebCheck checkpoints
our test subjects as correctly as virtual machines do. Using this
method, we confirmed thatWebCheck correctly checkpoints our
test subjects. Along with Theorem 4.1, this guarantees that We-
bCheck correctly isolates test suites. Therefore, false positives and
false negatives due to the lack of test isolation are avoided.

Efficiency. To evaluate the efficiency of our checkpointing engine
and the benefits of our optimization algorithm, we measure the test
execution time using five different test configurations, summarized
in Figure 7. Each configuration defines the test isolation mode and
the optimization mode. There are three test isolation modes:

• Interfering (I). There is no test isolation, i.e., the tests are
executed without reinitializing the web application’s state.

• Script-based (S). We save the web application’s database
state by dumping it in an SQL script and we restore it by
executing the same script. The other components of the
web application’s state are treated as described in §5.1.

• Checkpointed (C).WebCheck’s checkpointing engine is
used to isolate the tests.

We did not use VMs for isolating tests as saving and restoring
the web server’s virtual machine is very expensive (> 10s).

As for the test optimization, there are two modes:
• Unoptimized (U). The tests are not optimized, i.e., the

tests are just sequentially executed on the web application.
• Optimized (O). The tests are optimized prior to execution

using WebCheck’s transformation engine, as described in
§4. The optimized tests are sequentially executed against
the instrumented web application.

A configuration is a pair of letters XY , where X ∈ {I , S,C} and
Y ∈ {U ,O }, indicating the isolation and optimization modes.

Existing checkpointing tools do not fully support web applica-
tions; see §6. Therefore, we do not have a canonical baseline to
compare our results with. This motivated us to thoroughly compare
WebCheck, which corresponds to the configuration CO , with four
other configurations, namely IU , SU , SO , and CU . The configura-
tion IU represents the standard test execution, i.e., the currently
adopted testing technique, which does not provide test isolation
and sequentially executes all the tests. To evaluate the impact of our
checkpointing engine, we compare the test execution time of the
configurations SU and SO , which employ a straightforward check-
pointing technique based on SQL scripts, with that of the configu-
rations CU and CO , which use WebCheck’s checkpointing engine.
Similarly, to evaluate the impact of WebCheck’s transformation
engine, we compare the test execution time of the configurations
SU and CU , which do not optimize the tests, with that of the con-
figurations SO and CO , which optimize tests using WebCheck’s
transformation engine.

For each test subject and test configuration, we measure the
time to execute all tests in the subjects’ respective test suites, and
we depict these results using a bar chart in Figure 8. For each test

Configuration Test Isolation Optimization

IU Interfering Unoptimized
SU Script-based Unoptimized
SO Script-based Optimized
CU Checkpointed Unoptimized
CO Checkpointed Optimized

Figure 7: Test configurations.

102

104

106

108

Te
st
ex
ec
ut
io
n
tim

e
(lo

g-
sc
al
e)

[m
s]

phpBB OSComm. WordPress BambooInv. Gallery3

IU SU SO CU CO

Figure 8: Test suite execution times for each test subject us-
ing the five configurations.

subject, this figure shows five bars, one for each configuration.
The y-axis shows the test execution time in milliseconds using a
logarithmic scale. We also measure the checkpointing time in the
script-based and the checkpointed modes. These results are given
in Figure 9. For each test subject, this figure shows four bars, one for
each configuration that achieves test isolation. The y-axis shows the
checkpointing time using a logarithmic scale in milliseconds. Note
that the configuration IU does not isolate test suites and is thus not
shown in Figure 9. Also observe that Figure 9 reports only the time
to execute the save and restore commands, while Figure 8 also
reports the time to execute the requests.

Our baseline is the configuration IU , which does not achieve test
isolation. As expected, achieving test isolation using the straightfor-
ward solution based on SQL scripts, namely the configuration SU ,
introduces a significant overhead — from 1.3x for BambooInvoice
to 150x for Gallery3, even though the test subjects’ databases are
relatively small (about 1 MB). For this configuration, most of the
checkpointing time is spent for restoring the database state — 7.5
seconds on average per restore request — whereas saving the
database state takes, on average, less than a millisecond per save
request. In contrast, as shown by the measurements for the CU
configuration, our checkpointing engine achieves test isolation for
our test subjects almost for free. The overhead is less than 2% on
average whereas the checkpointing time is, on average, less than 2
milliseconds per restore request. Note that, for the phpBB appli-
cation, the overall checkpointing time for the SU configuration is
3.7 hours, as opposed to 2.7 seconds for the CU configuration.

The overall testing time can be further reduced by optimizing
the tests usingWebCheck’s transformation engine, as shown by
WebCheck’s configurationCO . Our transformation engine reduces
the test execution time with respect to the CU configuration — the

Test Execution Checkpointing for Web Applications ISSTA’17, July 2017, Santa Barbara, CA, USA

102

104

106

108

Ch
ec
kp

oi
nt
in
g
tim

e
(lo

g-
sc
al
e)

[m
s]

phpBB OSComm. WordPress BambooInv. Gallery3

SU SO CU CO

Figure 9: Checkpointing times for each test subject using the
configurations SU , SO , CU , and CO that use checkpointing.

Test Subject Checkpoints % Optimized

phpBB 624 60%
OSCommerce 550 31%
WordPress 419 26%
BambooInvoice 483 35%
Gallery3 79 71%

Figure 10: Total number of checkpoints and average opti-
mization for the test suites.

savings range from 25% for OSCommerce to 78% for BambooIn-
voice. We remark thatWebCheck outperforms also our baseline
configuration IU — with an average reduction of 44% in the test
execution time. Therefore, test engineers can use WebCheck to
achieve test isolation almost for free and to reduce the overall test
execution time with respect to currently adopted testing techniques.
The test transformation time for our subjects is less than 10ms.

Figure 10 describes the number of checkpoints and the reduction
in the test size for the optimized test suites, i.e., those generated us-
ingWebCheck’s transformation engine. Gallery3 is the test subject
with the highest optimization rate and with the lowest number of
checkpoints. We manually inspected the test suite and discovered
that they share long prefixes. In contrast, the number of checkpoints
for the other applications is comparable.

Quite surprisingly, combining straightforward script-based check-
pointing with our optimization algorithm, namely the SO configura-
tion, increases the overall checkpointing time. The reason is that in
the SU configuration, each test suite contains just one save request
and 999 restore requests, whereas, in the SO configuration there
is a larger number of save requests, as shown in Figure 10, and the
same amount of restore requests.
Scalability. The size of a web application’s state naturally influ-
ences the time required to save and restore it. Here, we report how
the two modes of test isolation, namely the script-based and the
checkpointed modes, scale in the size of the database. We ignore
the other components of a web application’s state as they have a
negligible impact on the checkpointing engine’s performance.

We select phpBB for our scalability experiments because it is the
test subject with the longest checkpointing time; see Figure 9. We
generate 10 database instances of different sizes, ranging between

0 100 200 300 400 500

103

106

109

Database size [MB]

Ch
ec
kp

oi
nt
in
g
tim

e
(lo

g-
sc
al
e)

[m
s]

Script-based Checkpointed

Figure 11: Impact of the database size on the checkpointing
time when using the script-based and checkpointed modes
of test isolation.

0.5MB and 500MB. These database instances are populated with
random data. For each database instance, we run phpBB’s test suite
and measure the time required to restore a database’s snapshot
using the script-based and the checkpointed test isolation modes.
Note that WebCheck uses the checkpointed test isolation mode.

We depict the results in Figure 11. The script-based test isolation
mode is depicted using a solid line and the checkpointed test isola-
tion mode using a dashed line. The y-axis shows the checkpointing
time on a logarithmic scale. The results show that while the check-
pointing time for the script-based test isolation mode increases
linearly in the size of the database, the time for the checkpointed
isolation mode remains constant in the database’s size. This is be-
cause the checkpointed test isolation mode relies on transaction
database features. The script-based test isolation mode is impracti-
cal even for small database, while the checkpointed test isolation
mode scales to arbitrarily large databases.

5.4 Threats to Validity
The main threat to the validity of our study is the choice of the test
subjects, which may not be representative of all PHP applications.
We believe, however, that our test subjects cover a wide spectrum
of common PHP applications. They include widely used bulletin
boards and content management systems, as well as data-intensive
applications such as e-commerce and invoicing applications.

Another threat to the validity of our results is the nature of
the test cases. Although the choice of tests does not impact the
correctness results, the savings in the test execution time directly
depend on the tests. We usedw3af to automatically explore the web
application under test. Test suites generated using other techniques,
e.g., manually created test suites, may produce different results.

6 RELATEDWORK
Test Isolation. Test isolation has attracted considerable attention
in recent years [3–5, 21, 30, 34, 48, 53]. Most existing work studies
test dependence, a property related to test isolation. A test is depen-
dent if there is a subset of the original tests that can be reordered
to modify the test result [53]. Note that test isolation guarantees
test independence. Several empirical studies [30, 34, 48, 53] high-
light that dependencies between tests, and missing test isolation

ISSTA’17, July 2017, Santa Barbara, CA, USA M. Guarnieri, P. Tsankov, T. Buchs, M. Torabi Dashti, and D. Basin

in general, can cause false positive and false negative test results.
The lack of isolation can also affect the results of testing techniques
that implicitly rely upon it, such as test prioritization, test selection,
and test parallelization [4, 5, 30, 38, 53].

As noted by Bell et al. [4], it is common practice to isolate each
JUnit test in its own process. This provides test isolation when
the tests depend only on static variables; but it can be extremely
inefficient: the overhead introduced by isolating tests in this way is
about 600%. A similar technique is proposed by Muşlu et al. [38],
who execute each test in an isolated environment by restarting
the Java Virtual Machine before each test. Their results are consis-
tent with our findings that straightforward state-restore isolation
techniques cause considerable overhead. A more efficient check-
pointing engine for the in-memory state, i.e., the static variables, of
Java applications is implemented in VmVm [4]. This checkpointing
engine avoids the re-execution of the setUp methods in JUnit tests
and achieves up to 60% speedups when compared to traditional
test execution. This agrees with our findings that checkpointing
engines are essential to efficiently isolate and optimize tests. In
contrast to our checkpointing engine, VmVm does not deal with
other components of the web application’s state, such as databases
and session files, and it cannot be used to checkpoint web applica-
tions. Furthermore, WebCheck removes all shared test prefixes, as
opposed to VmVm which removes only the test setup.

An alternative approach to deal with the test isolation problem is
to detect the lack of test isolation and just notify the tester about the
possibly unsound results. Zhang et al. [53] prove that detecting test
dependencies is NP-complete, even without considering the com-
plexity of test execution, and propose four dependency detection
algorithms. Dynamic techniques for detecting dependencies have
also been proposed [5, 21]. Gyori et al. [21] present a technique for
finding potential dependencies between tests by identifying tests
that pollute the state shared between different tests, whereas Bell et
al. [5] identify dependencies by leveraging data dependencies and
anti-dependencies. Instead of detecting the lack of test isolation,
TEC transparently provides it.

Test Optimization. Test optimization techniques based on remov-
ing redundant test steps without modifying the test suite semantics
have been proposed in [15, 19, 27, 55]. Fraser and Wotawa [19]
present an optimization algorithm for tests generated using amodel-
checker. Similarly toWebCheck, their algorithm removes shared
test prefixes. They use a model checker to generate gluing sequences,
which reinitialize the system to a desired state, similarly to our
restore commands. Gluing sequences, however, are not guaran-
teed to exist and can be expensive to compute and execute. In
contrast, restoring a checkpoint is always possible and can be done
in negligible time. The algorithm in [19] requires a formal model
of the system, whereas TEC works directly with the system.

Similarly to WebCheck, Khalek et. al. [27] optimize tests by
avoiding the re-execution of common prefixes. Their approach
relies onmanually-defined undo operations. In contrast,WebCheck
focuses on web applications, is fully automatic, and is guaranteed
to provide test isolation. Devaki et al. [15] present test merging, a
technique that optimizes tests by merging independent tests that
share common steps. Unlike TEC, test merging neither isolates
tests nor optimizes dependent tests. Zhongsheng [55] presents

an algorithm for optimizing web application tests. The algorithm
removes redundant tests, i.e., tests that are prefixes of other tests. In
contrast to TEC, it does not remove redundant test prefixes, such as
the prefix login of the tests [login, add] and [login, edit], and
it does not provide test isolation.

Test minimization techniques [11, 12, 22, 23, 25, 26, 46, 50, 54] aim
to reduce testing time without impacting thoroughness. To do so,
they rely on heuristics such as code or requirement coverage. While
also reducing testing time, these techniques modify the test suite
semantics and may thus reduce its fault detection ability [19, 24,
26, 43]. Moreover, test minimization techniques implicitly assume
that tests are correctly isolated. Indeed, as shown in [4, 5, 30, 53],
missing isolation can affect the soundness of test minimization
techniques. In contrast, TEC guarantees that the optimized tests
are semantically equivalent to the original ones and it provides,
rather than assumes, test isolation.

Application Checkpointing. Checkpointing [8, 9, 16, 17] is a
technique for saving and restoring application states. It was origi-
nally developed to extend applications with fault-tolerant features
and also for load-balancing by migrating applications between
hosts [17]. State-of-the-art general-purpose checkpointing tools,
such as [14, 29, 32], are limited to storing local variables, while
web applications also store state in session files and databases. Our
checkpointing engine supports these features.

Language-specific checkpointing tools have been used to pro-
vide test optimization [4], incremental checkpointing [31], recovery
techniques [41], or capture and replay capabilities [52]. These tools
rely on a mix of static and dynamic analysis for tracking state
changes to efficiently save and restore a program states. However,
these tools do not support persistent storage, which web applica-
tions often use. They can be integrated with our checkpointing
engine to extend TEC with support for other languages, e.g., JSP.

Database transactions have been used to isolate unit tests for
data-intensive applications and database procedures [18, 35, 37, 47].
WebCheck’s checkpointing engine provides a similar functionality
for PHP applications. Additionally, it checkpoints the other compo-
nents of a web application’s state, i.e., session variables, local files,
randomness, and timestamps.

Capture and replay tools for web applications save and restore
the web application’s state to faithfully replicate executions. Exist-
ing tools [44, 45], however, only account for database and cookies.
Furthermore, to checkpoint the database, they rely on inefficient
SQL scripts. In contrast, WebCheck captures additional compo-
nents of a web application’s state, such as session files and variables,
and exploits transactions to efficiently checkpoint the database.

7 CONCLUSION
Test isolation is essential to ensure correct test results [30, 34, 48, 53].
Test engineers usually adopt straightforward techniques to achieve
it [4], thereby incurring significant overheads. We have proposed
Test Execution Checkpointing, a novel method that exploits check-
pointing to isolate and optimize tests. We have developed We-
bCheck, a tool that instantiates TEC for PHP web applications. We
have shown that WebCheck achieves test isolation with a negligi-
ble overhead of 2% on average, and that our optimization technique
even reduces test execution time by 44% on average.

Test Execution Checkpointing for Web Applications ISSTA’17, July 2017, Santa Barbara, CA, USA

REFERENCES
[1] Derek Allard. Bamboo Invoice. http://github.com/derekallard/BambooInvoice

(Retrieved: January 2016).
[2] Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. 2005. Testing web

applications by modeling with FSMs. Software and Systems Modeling 4, 3 (2005),
326–345.

[3] Jonathan Bell. 2014. Detecting, isolating, and enforcing dependencies among
and within test cases. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 799–802.

[4] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In
Proceedings of the 36th International Conference on Software Engineering. ACM,
550–561.

[5] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
dependency detection for safe Java test acceleration. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM, 770–781.

[6] Francesco Bolis, Angelo Gargantini, Marco Guarnieri, and Eros Magri. 2012.
Evolutionary testing of PHP web applications with WETT. In International
Symposium on Search Based Software Engineering. Springer, 285–291.

[7] Francesco Bolis, Angelo Gargantini, Marco Guarnieri, Eros Magri, and Lorenzo
Musto. 2012. Model-driven testing for web applications using abstract state ma-
chines. In Current Trends in Web Engineering: ICWE 2012 International Workshops.
Springer, 71–78.

[8] Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. 2003. Au-
tomated Application-level Checkpointing of MPI Programs. In Proceedings of the
9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’03). ACM, New York, NY, USA, 84–94. https://doi.org/10.1145/781498.
781513

[9] Greg Bronevetsky, Daniel Marques, Keshav Pingali, Peter Szwed, and Martin
Schulz. 2004. Application-level Checkpointing for Shared Memory Programs.
In Proceedings of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS XI). ACM, New York,
NY, USA, 235–247. https://doi.org/10.1145/1024393.1024421

[10] Tristan Buchs. 2015. Checkpointing-based testing. Master’s thesis. ETH Zurich,
Switzerland.

[11] Tsong Yueh Chen and Man Fai Lau. 1998. A new heuristic for test suite reduction.
Information and Software Technology 40, 5-6 (1998), 347–354.

[12] Tsong Yueh Chen and Man Fai Lau. 1998. A simulation study on some heuristics
for test suite reduction. Information and Software Technology 40, 13 (1998),
777–787.

[13] Jong-Deok Choi and Harini Srinivasan. 1998. Deterministic Replay of Java
Multithreaded Applications. In Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools (SPDT ’98). ACM, New York, NY, USA, 48–59.
https://doi.org/10.1145/281035.281041

[14] CRIU. Checkpoint/Restore In Userspace. http://criu.org (Retrieved: January 2016).
[15] Pranavadatta Devaki, Suresh Thummalapenta, Nimit Singhania, and Saurabh

Sinha. 2013. Efficient and Flexible GUI Test Execution via Test Merging. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis
(ISSTA 2013). ACM, New York, NY, USA, 34–44. https://doi.org/10.1145/2483760.
2483781

[16] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. 1992. The performance of
consistent checkpointing. In Proceedings 11th Symposium on Reliable Distributed
Systems. 39–47. https://doi.org/10.1109/RELDIS.1992.235144

[17] Elmootazbellah N. Elnozahy and James S. Plank. 2004. Checkpointing for Peta-
Scale Systems: A Look into the Future of Practical Rollback-Recovery. IEEE
Transactions on Dependable and Secure Computing 1, 2 (2004), 97–108.

[18] Sequel: The Database Toolkit for Ruby. Testing with Sequel. http://sequel.
jeremyevans.net/rdoc/files/doc/testing_rdoc.html (Retrieved: January 2016).

[19] Gordon Fraser and Franz Wotawa. 2007. Redundancy based test-suite reduction.
In Proceedings of the 10th International Conference on Fundamental Approaches to
Software Engineering (FASE 2007). 291–305.

[20] Gallery. Gallery - Your photos on your website. http://galleryproject.org/ (Re-
trieved: January 2016).

[21] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:
Detecting State-polluting Tests to Prevent Test Dependency. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015).
ACM, New York, NY, USA, 223–233. https://doi.org/10.1145/2771783.2771793

[22] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. 2012. On-
demand Test Suite Reduction. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 738–748.

[23] M Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A methodology for
controlling the size of a test suite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 2, 3 (1993), 270–285.

[24] Mats PE Heimdahl and Devaraj George. 2004. Test-suite reduction for model
based tests: Effects on test quality and implications for testing. In Proceedings of
the 19th IEEE International Conference on Automated Software Engineering. IEEE,
176–185.

[25] Dennis Jeffrey and Neelam Gupta. 2007. Improving fault detection capability by
selectively retaining test cases during test suite reduction. IEEE Transactions on
software Engineering 33, 2 (2007).

[26] James A Jones and Mary Jean Harrold. 2003. Test-suite reduction and prioriti-
zation for modified condition/decision coverage. IEEE Transactions on software
Engineering 29, 3 (2003), 195–209.

[27] S. A. Khalek and S. Khurshid. 2011. Efficiently Running Test Suites Using Abstract
Undo Operations. In Proceedings of the 22nd IEEE International Symposium on
Software Reliability Engineering. 110–119. https://doi.org/10.1109/ISSRE.2011.20

[28] Donald E. Knuth. 1998. The Art of Computer Programming (2nd ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[29] Berkeley Lab. Berkeley Lab Checkpoint/Restart (BLCR) for LINUX. http://crd.lbl.
gov/departments/computer-science/CLaSS/research/BLCR/ (Retrieved: January
2016).

[30] Wing Lam, Sai Zhang, and Michael D. Ernst. 2015. When tests collide: Evaluating
and coping with the impact of test dependence. Technical Report UW-CSE-15-03-
01. University of Washington Department of Computer Science and Engineering,
Seattle, WA, USA.

[31] J. L. Lawall and G. Muller. 2000. Efficient incremental checkpointing of Java
programs. In Proceedings of the 2000 International Conference on Dependable
Systems and Networks. 61–70. https://doi.org/10.1109/ICDSN.2000.857515

[32] LibCkpt. A Portable Checkpointer for Unix. http://web.eecs.utk.edu/plank/plank/
www/libckpt.html (Retrieved: January 2016).

[33] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, Francesco Faralli, and Ugo
De Carlini. 2002. Testing web applications. In ICSM.

[34] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 643–653. https://doi.org/10.1145/2635868.2635920

[35] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[36] James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Determinis-
tic Capture and Replay for JavaScript Applications. In 7th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 10). USENIX
Association, San Jose, CA. https://www.usenix.org/conference/nsdi10-0/
mugshot-deterministic-capture-and-replay-javascript-applications

[37] Microsoft MSDN. How to: Write a SQL Server Unit Test that Runs within
the Scope of a Single Transaction. http://msdn.microsoft.com/en-US/library/
jj851217(v=vs.103).aspx (Retrieved: January 2016).

[38] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating
Unit Tests. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (ESEC/FSE ’11). ACM,
New York, NY, USA, 496–499. https://doi.org/10.1145/2025113.2025202

[39] OSCommerce. OSCommerce - Creating Online Stores Worldwide. http://www.
oscommerce.com/ (Retrieved: January 2016).

[40] phpBB. phpBB - Free and Open Source Forum Software. http://www.phpbb.com/
(Retrieved: January 2016).

[41] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. 2005.
Rx: Treating Bugs As Allergies—a Safe Method to Survive Software Failures. In
Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP
’05). ACM, New York, NY, USA, 235–248. https://doi.org/10.1145/1095810.1095833

[42] Filippo Ricca and Paolo Tonella. 2001. Analysis and Testing of Web Applications.
In Proceedings of the 23rd International Conference on Software Engineering (ICSE
’01). IEEE Computer Society, Washington, DC, USA, 25–34.

[43] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie Hong. 1998. An
empirical study of the effects of minimization on the fault detection capabilities
of test suites. In Proceedings of the 14th International Conference on Software
Maintenance. IEEE, 34–43.

[44] Sreedevi Sampath, Valentin Mihaylov, Amie Souter, and Lori Pollock. 2004. Com-
posing a Framework to Automate Testing of Operational Web-Based Software.
In Proceedings of the 20th IEEE International Conference on Software Maintenance
(ICSM ’04). IEEE Computer Society, Washington, DC, USA, 104–113.

[45] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. 2005. Auto-
mated Replay and Failure Detection for Web Applications. In Proceedings of the
20th IEEE/ACM International Conference on Automated Software Engineering (ASE
’05). ACM, New York, NY, USA, 253–262. https://doi.org/10.1145/1101908.1101947

[46] Sriraman Tallam and Neelam Gupta. 2005. A Concept Analysis Inspired Greedy
Algorithm for Test Suite Minimization. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFTWorkshop on ProgramAnalysis for Software Tools and Engineering (PASTE
’05). ACM, New York, NY, USA, 35–42. https://doi.org/10.1145/1108792.1108802

[47] tSQLt. tSQLt – Database Unit Testing for SQL Server. http://tsqlt.org/ (Retrieved:
January 2016).

[48] A. Vahabzadeh, A. M. Fard, and A. Mesbah. 2015. An empirical study of bugs
in test code. In 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 101–110. https://doi.org/10.1109/ICSM.2015.7332456

[49] w3af. Open Source Web Application Security Scanner. http://w3af.org/ (Retrieved:
January 2016).

https://doi.org/10.1145/781498.781513
https://doi.org/10.1145/781498.781513
https://doi.org/10.1145/1024393.1024421
https://doi.org/10.1145/281035.281041
https://doi.org/10.1145/2483760.2483781
https://doi.org/10.1145/2483760.2483781
https://doi.org/10.1109/RELDIS.1992.235144
https://doi.org/10.1145/2771783.2771793
https://doi.org/10.1109/ISSRE.2011.20
https://doi.org/10.1109/ICDSN.2000.857515
https://doi.org/10.1145/2635868.2635920
https://www.usenix.org/conference/nsdi10-0/mugshot-deterministic-capture-and-replay-javascript-applications
https://www.usenix.org/conference/nsdi10-0/mugshot-deterministic-capture-and-replay-javascript-applications
https://doi.org/10.1145/2025113.2025202
https://doi.org/10.1145/1095810.1095833
https://doi.org/10.1145/1101908.1101947
https://doi.org/10.1145/1108792.1108802
https://doi.org/10.1109/ICSM.2015.7332456

ISSTA’17, July 2017, Santa Barbara, CA, USA M. Guarnieri, P. Tsankov, T. Buchs, M. Torabi Dashti, and D. Basin

[50] W. Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bellcore. 1997.
A Study of Effective Regression Testing in Practice. In Proceedings of the 8th
International Symposium on Software Reliability Engineering (ISSRE ’97). IEEE
Computer Society, Washington, DC, USA, 264–274.

[51] Wordpress. Wordpress - Blog, Tool, Publishing Platform, and CMS.
http://wordpress.org/ (Retrieved: January 2016).

[52] Guoqing Xu, Atanas Rountev, Yan Tang, and Feng Qin. 2007. Efficient Check-
pointing of Java Software Using Context-sensitive Capture and Replay. In
Proceedings of the the 6th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering (ESEC-FSE ’07). ACM, New York, NY, USA, 85–94. https:
//doi.org/10.1145/1287624.1287638

[53] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically Revisiting the Test Independence
Assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (ISSTA 2014). ACM, New York, NY, USA, 385–396. https:
//doi.org/10.1145/2610384.2610404

[54] Hao Zhong, Lu Zhang, and Hong Mei. 2006. An Experimental Comparison of
Four Test Suite Reduction Techniques. In Proceedings of the 28th International
Conference on Software Engineering (ICSE ’06). ACM, New York, NY, USA, 636–640.
https://doi.org/10.1145/1134285.1134380

[55] Qian Zhongsheng. 2010. Test case generation and optimization for user session-
based web application testing. Journal of Computers 5, 11 (2010), 1655–1662.

https://doi.org/10.1145/1287624.1287638
https://doi.org/10.1145/1287624.1287638
https://doi.org/10.1145/2610384.2610404
https://doi.org/10.1145/2610384.2610404
https://doi.org/10.1145/1134285.1134380

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Test Isolation
	2.3 Test Execution Checkpointing

	3 Checkpointing Web Applications
	3.1 Web Application States
	3.2 Checkpointing Engine

	4 Transformation Engine
	4.1 Transforming Test Suites
	4.2 Transformation Engine Correctness

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Experiments
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

