
diss. eth no. 23746

L E A R N I N G F R O M
L A R G E C O D E B A S E S

A thesis submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

veselin raychev

Master in Informatics
Sofia University “St. Kliment Ohridski”

born on 23.04.1984

citizen of Bulgaria

accepted on the recommendation of

Prof. Dr. Martin Vechev
Prof. Dr. Eran Yahav

Prof. Dr. Armando Solar-Lezama
Prof. Dr. Charles Sutton

2016

Veselin Raychev: Learning from Large Codebases, © 2016

A B S T R A C T

As the size of publicly available codebases has grown dramatically in
recent years, so has the interest in developing programming tools that
solve software tasks by learning from these codebases. Yet, the problem
of learning from programs has turned out to be harder than expected
and thus, up to now, there has been little progress in terms of practical
tools that benefit from the availability of these massive datasets.

This dissertation focuses on addressing this problem: we present
new techniques that learn probabilistic models from large datasets of
programs as well as new tools based on these probabilistic models
which improve software development.

The thesis presents three new software systems (JSNice, Slang and
DeepSyn) that learn from large datasets of programs and provide
likely solutions to previously unsolved programming tasks including
deobfuscation, static type prediction for dynamic languages, and code
synthesis. All three of these systems were trained on thousands of open
source projects and answer real-world queries in seconds and with high
precision. One of these systems, JSNice, was publicly released and is
already widely used in the JavaScript community.

An important ingredient of the thesis is leveraging static analysis
techniques to extract semantic representations of programs and building
powerful probabilistic models over these semantics (e.g., conditional
random fields). Working at the semantic level also allows us to enforce
important constraints on the predictions (e.g. typechecking). The net
result is that our tools make predictions with better precision than
approaches whose models are learned directly over program syntax.

Finally, the dissertation presents a new framework for addressing
the problem of program synthesis with noise. Using this framework,
we show how to construct programming-by-example (PBE) engines
that handle incorrect examples, and introduce a new learning approach
based on approximate empirical risk minimization. Based on the frame-
work, we developed a new code synthesis system (DeepSyn) which
generalizes prior work and provides state-of-the-art precision.

iii

Z U S A M M E N FA S S U N G

So wie die Größe der öffentlich zugänglichen Codebasen in den letz-
ten Jahren dramatisch zugenommen hat, so hat auch das Interesse an
der Entwicklung von Programmier-Tools zugenommen, die Software-
Probleme lösen indem sie von diesen Codebasen lernen. Doch das
Problem des Lernens von Programmen hat sich als schwieriger als
erwartet herausgestellt und bisher hat es wenig Fortschritt bei prakti-
schen Tools gegeben, die von massiven Datenmengen profitieren. Die
vorliegende Arbeit konzentriert sich auf die Lösung dieses Problems:
Wir präsentieren neue Techniken, die Wahrscheinlichkeitsmodelle von
großen Datensätzen von Programmen lernen, sowie neue Tools, die
Software-Entwicklung verbessern.

Diese Doktorarbeit präsentiert drei neue Software-Systeme (JSNice,
Slang und DeepSyn), die von großen Datenmengen von Program-
men lernen und Lösungen für bisher ungelöste Programmierprobleme
bieten, unter anderem Deobfuscation, statische Typinferenz für dyna-
mische Sprachen und Programmsynthese. Alle drei dieser Systeme
wurden mit Tausenden von Open-Source-Projekten trainiert und be-
antworten reale Abfragen in Sekunden und mit hoher Präzision. Eines
dieser Systeme, JSNice wurde veröffentlicht und in großem Umfang in
der JavaScript-Community verwendet.

Ein wichtiger Bestandteil der Arbeit ist die Verwendung von Techni-
ken der statischen Analyse zur Extraktion semantischer Repräsentationen
von Programmen und der Erzeugung von mächtigen Wahrscheinlich-
keitsmodellen anhand dieser Semantiken (z.B. Conditional Random
Fields). Auf semantischer Ebene zu arbeiten erlaubt es auch wichtige
Einschränkungen auf die Vorhersagen zu erzwingen (z.B. Typkorrekt-
heit). Das Endergebnis ist, dass unsere Tools Vorhesagen mit einer
höheren Präzision machen als Ansätze, deren Modelle direkt von Pro-
grammsyntax lernen.

Schließlich stellt die Dissertation einen neuen Framework für die
Behandlung des Problems der Programmsynthese mit Rauschen vor.
Mit diesem Framework zeigen wir, wie man Programming-by-Example-
Systeme (PBE) konstruiert, die falsche Beispiele verstehen. Wir führen
einen neuen Lernansatz basierend auf approximierter empirischer Risi-

iv

kominimierung (ERM) ein. Basierend auf dem Framework haben wir
ein neues Programmsynthesesystem (DeepSyn) entwickelt, welches
vorherige Resultate verallgemeinert und Präzision auf dem Stand der
Technik bietet.

v

P U B L I C AT I O N S

This thesis is based on the following publications:

• Veselin Raychev, Martin Vechev, and Eran Yahav.
“Code Completion with Statistical Language Models.”
ACM PLDI 2014. [110].

• Veselin Raychev, Martin Vechev, and Andreas Krause.
“Predicting Program Properties from ”Big Code”.”
ACM POPL 2015. [107].

• Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause.
“Learning Programs from Noisy Data.”
ACM POPL 2016. [104].

The following publications were part of my PhD research and present
results that are supplemental to this work or build upon results of this
thesis:

• Pavol Bielik, Veselin Raychev, and Martin Vechev.
“Programming with ”Big Code”:
Lessons, Techniques and Applications.”
SNAPL 2015. [18].

• Pavol Bielik, Veselin Raychev, and Martin Vechev.
“PHOG: Probabilistic Model for Code.”
ICML 2016 [20]

• Veselin Raychev, Pavol Bielik, and Martin Vechev.
“Probabilistic Model for Code with Decision Trees.”
ACM OOPSLA 2016 [103]

• Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin
Vechev.
“Statistical Deobfuscation of Android Applications.”
ACM CCS 2016 [17]

The remaining publications were part of my PhD research, but are
not covered in this thesis. The topics of these publications are outside
of the scope of the material covered here.

vii

• Veselin Raychev, Martin Vechev, and Eran Yahav.
“Automatic Synthesis of Deterministic Concurrency.”
SAS 2013 [109].

• Veselin Raychev, Martin Vechev, and Manu Sridharan.
“Effective Race Detection for Event-driven Programs.”
ACM OOPSLA 2013 [108].

• Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev.
“Refactoring with Synthesis.”
ACM OOPSLA 2013 [106].

• Dimitar Dimitrov, Veselin Raychev, Martin Vechev, and
Eric Koskinen.
“Commutativity Race Detection.”
ACM PLDI 2014 [37].

• Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev.
“Phrase-Based Statistical Translation of Programming Languages.”
Onward! 2014 [70].

• Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz.
“Parallelizing User-defined Aggregations Using Symbolic
Execution.”
ACM SOSP 2015 [105].

• Pavol Bielik, Veselin Raychev, and Martin Vechev.
“Scalable Race Detection for Android Applications.”
ACM OOPSLA 2015. [19].

• Casper S. Jensen, Anders Møller, Veselin Raychev,
Dimitar Dimitrov, and Martin Vechev.
“Stateless Model Checking of Event-driven Applications.”
ACM OOPSLA 2015. [66].

viii

A C K N O W L E D G M E N T S

First, I would like to thank my professor Martin Vechev for the contin-
uous support during my PhD studies at ETH. The provided scientific
freedom and guidance were instrumental to the success of this thesis.
I would also like to express my gratitude to the reviewers: Armando
Solar-Lezama, Eran Yahav and Charles Sutton, who provided valuable
feedback which I incorporated in the final version of the dissertation. I
would like to also thank Sasa Misailovic and Otmar Hilliges for their
valuable suggestions.

I would like to acknowledge my co-workers and co-authors of papers
published during my PhD. It was a great experience working with
all of you: Anders Møller, Andreas Krause, Benjamin Bichsel, Casper
S. Jensen, Christine Zeller, Dimitar Dimitrov, Eran Yahav, Eric Koski-
nen, Madanlal Musuvathi, Manu Sridharan, Max Schäfer, Pascal Roos,
Pavol Bielik, Petar Tsankov, Svetoslav Karaivanov and Todd Mytkowicz.
Thank you!

Many thanks to my Bulgarian friends in Switzerland who supported
me in my pursuit for academic excellence. Without you guys, I would
still be in the potato fields of the software industry, roaming for the
clicks of yet another million users.

Special thanks to my mother, father and brother for their encourage-
ment and love throughout these years. Last but not least, there is a
special place in my heart and in my mind for Elena.

ix

C O N T E N T S

1 introduction 1

1.1 Tools showcase . 3

1.2 Architecture of Statistical Programming Tools 8

1.3 Problem Dimensions . 9

1.4 Challenges . 11

1.5 Related work . 12

1.6 Thesis Contributions . 13

2 discriminative models for predicting program prop-
erties 15

2.1 Overview . 19

2.2 Structured Prediction for Programs 22

2.2.1 Conditional Random Fields (CRFs) 24

2.2.2 Making Predictions for Programs 25

2.2.3 MAP Inference . 29

2.2.4 Learning . 30

2.3 JSNice: Predicting Names and Type Annotations for
JavaScript . 30

2.3.1 Probabilistic Name Prediction 31

2.3.2 Probabilistic Type Annotation Prediction 32

2.3.3 Relating Program Elements 34

2.3.4 Obtaining Pairwise Feature Functions 37

2.4 Prediction Algorithm . 38

2.4.1 Greedy Inference Algorithm 39

2.4.2 Obtaining Candidates 41

2.4.3 Additional Improvements 43

2.5 Learning . 43

2.5.1 Learning with Stochastic Gradient Descent 45

2.5.2 Regularization . 46

2.5.3 Complete Training Phase 46

2.5.4 Example of Learning Weights for Type Annotations 47

2.6 Implementation and Evaluation 51

2.6.1 Parameter Selection 53

2.6.2 Precision . 53

2.6.3 Model Sizes . 57

2.6.4 Running Times . 57

xi

contents

2.7 Lessons and Design Decisions 58

2.7.1 Clustering vs. Probabilistic Models 62

2.8 Related Work . 62

2.9 Discussion . 64

3 generative models for api completion 67

3.1 Motivation . 68

3.2 Overview . 70

3.3 Formal Semantics . 74

3.3.1 Concrete Semantics 74

3.3.2 Abstract Semantics 76

3.4 Statistical Language Models 77

3.4.1 N-gram Language Models 78

3.4.2 Recurrent Neural Networks (RNNs) 79

3.4.3 Sentence Completion with Language Models . . 81

3.4.4 Training on Programs 82

3.5 Synthesis . 82

3.6 Implementation . 88

3.6.1 Program Analysis: Heap and Sequences 88

3.6.2 Language Models: Preprocessing 89

3.6.3 Query Processing 89

3.7 Evaluation . 90

3.7.1 Training Parameters 90

3.7.2 Training Phase . 91

3.7.3 Code Completion 92

3.8 Related work . 98

4 program synthesis with noise 101

4.1 Problem Formulation . 104

4.2 Iterative Synthesis Algorithm 105

4.2.1 Reduction of Search Space 107

4.2.2 Hard Dataset Sampler (dsH) 108

4.2.3 Representative Dataset Sampler (dsR) 110

4.2.4 Cost Functions and Regularization 112

4.3 The Case of Bounded Noise 113

4.4 BitSyn: Bitstream Programs from Noisy Data 115

4.4.1 Program Generator with Errors 117

4.4.2 Case 1: Examples in D are provided dynamically 118

4.4.3 Case 2: All examples in D are given in advance . 119

4.5 Related work . 121

4.6 Summary . 122

xii

contents

5 learning a synthesizer with “big code” 123

5.1 Inductive Synthesis for Empirical Risk Minimization . . 126

5.1.1 Empirical Risk Minimization 127

5.1.2 Using Representative Dataset Sampler 129

5.2 DeepSyn: Learning Statistical Code Completion Systems 129

5.2.1 Preliminaries . 130

5.2.2 Our Method: Second-order learning 131

5.2.3 TCond: Domain Specific Language for Tree Con-
texts . 134

5.2.4 Learning p≈best . 136

5.2.5 Summary of Approach 139

5.3 Evaluation of DeepSyn . 140

5.3.1 Learning p≈best . 140

5.3.2 Precision of DeepSyn 141

5.3.3 Interpreting p≈best 143

5.3.4 Comparison to Existing Systems 145

5.4 Related work . 146

6 conclusion and future work 149

6.1 Future Work . 149

6.1.1 Creating Probabilistic Tools on Top of Our Models 150

6.1.2 Universal Model for Code 151

6.1.3 Statistical Program Synthesis 152

bibliography 153

index 173

xiii

L I S T O F F I G U R E S

Figure 1.1 Impact of the amount of training data and prob-
abilistic model on the accuracy of the Slang

code completion system. 3

Figure 1.2 A screenshot of the JSNice website. On the left
side: minified code that is to be deobfuscated.
On the right side: code with names inferred by
the JSNice tool. 4

Figure 1.3 Histogram of query sizes to http://jsnice.

org/ sent by its users in the period May 10, 2015

– May 10, 2016. 5

Figure 1.4 A code completion plugin capable to predict
multiple statements at once. 6

Figure 1.5 The DeepSyn tool for completing JavaScript code.
In this snippet of code, standard type analysis
cannot resolve the types of the used variables.
Our statistical model predicts that if width was
set, height may need to be set as well. 8

Figure 1.6 General architecture of “Big Code” tools. 9

Figure 1.7 Dimensions and instantiations of statistical pro-
gramming tools. that learn from “Big Code” . . 10

Figure 2.1 Statistical Prediction of Program Properties. . . . 16

Figure 2.2 A JavaScript program with new names and type
annotations, along with an overview of the name
inference procedure. 18

Figure 2.3 A general schema for building a network for a
program x and finding the best scoring assign-
ment of properties y. 28

Figure 2.4 The lattice of types over which prediction occurs. 34

Figure 2.5 (a) the AST of expression i+j<k, and two depen-
dency networks built from the AST relations: (b)
for name predictions, and (c) for type predictions. 35

xiv

http://jsnice.org/
http://jsnice.org/

List of Figures

Figure 2.6 Example of structured/multi-class SVM on one
training sample. (a) Training data program x.
(b) Formulation of a type prediction problem for
x as a dependency graph. (c) The linear classifi-
cation task that says that the correct label scores
better than any other label. (d) Feature func-
tions for x. (e) Visualization of finding weights
w = {w1, w2} that make correct classification
and also have maximize margin like in SVM.
Note that correct classification here means to be
on the right size of the hyperplane defined by w. 48

Figure 2.7 Two iterations of stochastic gradient descent
steps done in SSVM learning on the example
from Fig. 2.6. 50

Figure 2.8 Evaluation results for the number of typecheck-
ing programs with manually provided types and
with predicted types. 56

Figure 2.9 Illustration of configurations that are inside or
outside the search space of a MAP inference
procedure starting from an initial configuration
(a). 65

Figure 3.1 The architecture of Slang. 70

Figure 3.2 (a) A partial program using MediaRecorder and
other APIs, and (b) its completion as synthesized
by Slang. 72

Figure 3.3 A scheme of a recurrent neural network (RNN).
The input is a word vector for the i-th word in a
sentence, the output is probabilities for different
possible words at position i + 1. 79

Figure 3.4 (a) A partial program, and (b) its completion as
automatically synthesized by Slang (the full list
of parameters is omitted for clarity). The exam-
ple is based on a question from StackOverflow. . 84

Figure 3.5 The partial sequences extracted from the pro-
gram in Fig. 3.4 and their candidate completions
(with probabilities). 86

Figure 4.1 General approach of program synthesis with noise.102

Figure 4.2 Trimming the space of programs (a) for noise-
free synthesis and (b) for synthesis with noise. . 107

xv

Figure 4.3 Ability of BitSyn to detect an incorrect example
for programs (P1-P9) depending on total number
of examples and regularization constant λ. . . . 120

Figure 5.1 Architecture variants of tools learning tools from
“Big Code”. (a) Learning with a manually de-
signed analysis. (b) Learning with synthesized
analysis. 124

Figure 5.2 Terminology for “Big Code” systems based on
program synthesis. 126

Figure 5.3 A tree completion query (ptree, xcomp, rules) cor-
responding to completion for the code: ”console”.132

Figure 5.4 (a) TCond program pa = Left WriteValue ex-
ecuted on a partial tree producing [console],
(b) rules with their probabilities conditioned on
[console], (c) the final completion. 134

Figure 5.5 The TCond language for extracting context from
trees. 134

Figure 5.6 Overall diagram of learning a statistical code
completion system using DeepSyn. 138

Figure 5.7 Effect of various data sampling policies used to
find TCond programs. 142

Figure 5.8 The (a) p≈best TCond program describing which
parts of the code to condition on for an API
method completion task, (b) a JavaScript code
snippet on which we want to perform API com-
pletion, and (c) a relevant part of the AST rep-
resentation of (b) where the execution of the
TCond program from (a) is illustrated. 144

L I S T O F TA B L E S

Table 2.1 Precision and recall for name and type recon-
struction of minified JavaScript programs evalu-
ated on our test set. 55

xvi

List of Tables

Table 2.2 Trade-off between precision and runtime for the
name and type predictions depending on beam
search parameter s. 59

Table 3.1 Dimensions in encoding the probabilistic code
completion problem into a language model. . . 68

Table 3.2 Training phase running times. 91

Table 3.3 Data size statistics used for evaluation of Slang. 92

Table 3.4 Description on the examples from task 1 on
which we perform prediction. 93

Table 3.5 Accuracy of Slang on the test datasets depend-
ing on the amount of training data, the analysis
and the language model. 95

Table 4.1 Number of input/output examples needed by
BitSyn to synthesize the correct program (pro-
gram taken from [68, 134]) depending on the
number of errors in the examples as well as the
synthesis time with the respective number of
errors. 116

Table 5.1 Accuracy of API method and object field com-
pletion depending on the task and the amount
of training data. 143

xvii

1
I N T R O D U C T I O N

Learning from large datasets (also called “Big Data”) using powerful
probabilistic models has transformed a number of areas such as natural
language processing [25, 74], computer vision [115], recommendation
systems [59] and many others. Prominent examples include automatic
machine translation systems such as Google Translate [48] that learn
a probabilistic model of a natural language from existing documents
and use that model to translate sentences from one natural language
to another. Accurate face detection for photo sharing services such as
Facebook [39] is another example of successful learning from a large
dataset of images.

In the meantime, there has been significant progress in the area of
programing languages driven by advances in type systems, constraint
solving and other program analysis techniques. These advances have
enabled a range of powerful specialized programming tools for bug
finding [10, 108], model checking [43, 66], verification [44, 67, 116, 131],
code completion [86, 99], program synthesis [51, 68, 81, 98, 120, 121, 122,
133] and others. However, these tools are nearing their inherent limits
in terms of scalability meaning that a significant improvement is likely
to come from a more disruptive change. For example, current synthesis
approaches start from scratch considering each task in isolation [6,
52] and as a result, their focus is on discovering small (albeit tricky)
programs. At the same time, significant advances in this area have the
potential to transform software engineering as a whole [51].

Despite the overwhelming success of “Big Data” in a variety of
application domains, up to now, learning from big datasets has not had
tangible impact on programming tools. Meanwhile, the last few years
have seen a dramatic increase in the amount of available source code
typically found in public repositories such as GitHub [46], BitBucket [22]
and others (termed “Big Code” by a recent initiative [34]).

The question then is: can one learn from “Big Code” in a way
that the effort spent in designing existing programs is leveraged to
help the development of new software? Addressing this question is
challenging, because as opposed to other kinds of data, programs are

1

introduction

data transformers with complex structure and semantics that should be
captured in the learned model. Existing naı̈ve approaches which treat
programs as pure syntax [61] (and ignore semantics) are too imprecise
leading to limited practical applicability. Thus, the main question we
investigate in this thesis is:

How to leverage large datasets of code to build practical programming tools?

a new research direction Leveraging “Big Code” to create
programming tools is a new research direction we explore with two
main goals in mind: usability of the resulting tools (i.e. scalability and
precision) and generality of the underlying techniques upon which the
tools are built. For example, as we will describe later in the thesis, our
JavaScript deminification tool JSNice is used by thousands of people
with the feedback being overwhelmingly positive. A search on Twitter1

shows remarks such as:
“I’ve been looking for this for years” “This is magic!”

“Tell me how this works. Impressive!”

Further, we developed frameworks such as Nice2Predict
2 which

enable a number of interesting new programming tools for deobfusca-
tion, program understanding, type analysis and others. In this thesis,
we cover a wide range of applications including learning program
invariants and predicting the most likely snippets for code synthesis.
Finally, we provide important guarantees (e.g. semantic equivalence
or typechecking) for our predictions to ensure their correctness and
connect core techniques from statistical learning (e.g. empirical risk
minimization [84]) and program synthesis (e.g. counterexample guided
inductive synthesis [121]), enabling new applications.

The thesis focuses on two core research challenges that affect the
prediction accuracy of a ”Big Code” system: creating a suitable proba-
bilistic model for programs and learning from a large corpus of training
data. We address the first challenge by carefully designing program
analyses that capture semantic information and feed it into a prob-
abilistic model. This is an essential design decision with significant
impact on the overall system precision. Consider the following example
demonstrating this point: Fig. 1.1 presents several configurations of
our Slang code completion system (discussed in Chapter 3) trained

1 https://twitter.com/search?f=tweets&q=jsnice.org&src=typd

2 http://nice2predict.org/

2

https://twitter.com/search?f=tweets&q=jsnice.org&src=typd
http://nice2predict.org/

1.1 tools showcase

1% of data 10% of data all data
Amount of training data

P
re

d
ic

ti
o

n
a

cc
u

ra
cy

0.2

0.4

0.6

0.8 Probabilistic model
on API sequences
computed

without
alias analysis

with
alias analysis

Figure 1.1: Impact of the amount of training data and probabilistic
model on the accuracy of the Slang code completion system.

on different amounts of data and using different program analysis
abstractions. It is notable that using more semantic static analysis (i.e.
a more precise abstraction with alias analysis) improves the accuracy
of the predictions as much as an order of magnitude more data. This
observation motivated us to formulate the problem of synthesizing the
best (with respect to some user-defined metric) program analysis for a
probabilistic model. We investigate this problem in Chapter 5.

Even with a well chosen probabilistic model, efficiently training
that model on a large dataset is pivotal. Thus, we design learning
procedures that take less than a day on datasets consisting of hundreds
of thousands source code files. Importantly, user queries are also
answered quickly. For example, a key factor for the success of JSNice is
that it can analyze thousands of lines of JavaScript code from real-world
web applications (e.g. CNN, Facebook, Google Maps) in a few seconds.
This was enabled by our scalable inference algorithms.

1.1 tools showcase

Next, we give a brief informal overview of the probabilistic tools pre-
sented in this thesis. The goal is to provide an intuition for the capa-
bilities of these tools from the perspective of their users and to discuss
the challenges and choices when designing these systems. The general
approach underlying these tools and formal definitions are provided
later in the thesis.

3

introduction

Figure 1.2: A screenshot of the JSNice website. On the left side: mini-
fied code that is to be deobfuscated. On the right side: code
with names inferred by the JSNice tool.

jsnice Fig. 1.2 shows a screenshot of http://jsnice.org/ which
hosts the JSNice service. JSNice takes as input JavaScript code and re-
names its local variables and function parameters. It outputs JavaScript
code that is semantically equivalent to the input, but is more human
readable. In essence, JSNice reverses the obfuscation process done by
JavaScript minifiers that rename all variables to shorter, but meaningless
names. In the example in Fig. 1.2, the code on the left is minified with
the parameter names set to a, b and c. Only the function name is not
shortened to preserve the external interface of the function. The code
on the right is produced by JSNice and includes meaningful identifier
names that make the code significantly easier for a human to read and
understand. The names suggested by JSNice were learned from a large
corpus of JavaScript code that we collected and used as training data.

Several authors studied the importance of meaningful identifier
names [26, 126] and some of those works [27, 64, 112] attempt to
improve identifier names by enforcing coding conventions. These
works, however, can only apply certain predefined fixes to the names
and are not applicable to arbitrary name predictions like JSNice. A
recent work [1] uses a probabilistic model to predict identifier names.
However, it can only make predictions of one identifier name at a time
and only in the context of other already present good identifier names

4

http://jsnice.org/

1.1 tools showcase

0

3.0K

6.0K

9.0K

12.0K

15.0K

1 2 5 10 22 46 10
0

21
5

46
4

1.
0K

2.
2K

4.
6K

10
.0

K

21
.5

K

46
.4

K

10
0.

0K

21
5.

4K

46
4.

2K
1.

0M
2.

2M
4.

6M

10
.0

MN
u

m
b

er
of

q
u

er
ie

s

Size of the JavaScript programs given by our users (in bytes)

Figure 1.3: Histogram of query sizes to http://jsnice.org/ sent by
its users in the period May 10, 2015 – May 10, 2016.

and thus, it is not directly applicable to the deobfuscation problem
considered by JSNice.

To construct JSNice, we framed the name prediction task as a struc-
tured prediction problem, developed a fast inference algorithm that
assigns labels such that an optimization function is maximized and
used an efficient learning algorithm that generalizes support vector
machines to train a prediction model. The general approach and the
resulting system are discussed in Chapter 2.

JSNice is widely used in the JavaScript community (it has users from
every country in the world). In a period of a year, our users have
deobfuscated over 9 gigabytes of unique (non-duplicate) JavaScript
programs. Fig. 1.3 shows a histogram of the size of these programs,
showing that users often query it with large code fragments, with
average size of 91.7 kilobytes.

JSNice is not only applicable to name inference, but also to other
settings. For instance, JSNice automatically predicts optional type
annotations in JavaScript code. Several JavaScript extensions (e.g. Type-
Script [130] and Google Closure Compiler [47]) add optional type
annotations to program variables using a gradual type system. These
extensions help discover type errors and improve code documenta-
tion. Despite their advantages, all of these techniques require manual
effort to provide the initial type annotations. In this thesis, we devel-
oped a type prediction engine for a portion of the type system in the
Google Closure Compiler. This engine learns type annotation rules
from existing code and uses these rules to annotate new, unseen code.
Overall, JSNice generates annotations that typecheck and often agree

5

http://jsnice.org/

introduction

Figure 1.4: A code completion plugin capable to predict multiple state-
ments at once.

with annotations manually provided by developers. As a result, our
type prediction engine may help adoption of gradual type systems.

slang The thesis also explores the problem where the number of
predicted program elements is not known in advance – a setting not
supported by the JSNice model. We handle this new setting with differ-
ent statistical models and learning techniques. Based on these models,
we propose an API code completion system called Slang, capable of
predicting one or multiple method invocations at once. Fig. 1.4 shows
an experimental user interface of such a system for Eclipse. In this case,
the system suggests a code snippet consisting of multiple Android API
invocations that complete the given program so to display a webpage.
We present the techniques that enable such multi-API code completion
in Chapter 3. In fact, our approach is applicable beyond the case of
API ”dot” code completion and allows completions of a partial pro-
gram with multiple APIs at different program locations simultaneously.
This extended setting is similar to the one suggested in Sketch synthe-
sis [120], but instead of user-provided specifications, the completions
are guided by a probability distribution. Finally, Slang does not return
only the best ranked solution, but can efficiently compute and return
multiple completions sorted according to their probabilities.

The effectiveness of Slang comes from the insight that predicting
an API call on an object can be effectively done if conditioned on
the APIs previously called on the same object. To build a model that
captures this insight, we propose a scalable static analysis that combines
Steensgaard style alias analysis [123] and typestate analysis [41] in order

6

1.1 tools showcase

to perform this conditioning. Once sequences of API invocations are
obtained for all the programs in the training data, a probabilistic model
predicts the probability of an API invocation x based on previous API
invocations x1 · · · xn−1. Here, we leverage state-of-the-art probabilistic
models from natural language processing such as n-gram models with
smooting [114] and recent advances in recurrent neural networks [89].

In contrast to the traditional use of static analysis for verification and
bug finding, the static analysis we developed to extract the sequences
upon which the probabilistic model is built, need not be sound. The
reason is that many probabilistic models provide smooth probability
estimates (i.e. assign non-zero probabilities to any values outside of the
training data) and thus, strict constraints (e.g. sound typechecking) are
enforced separately. That interaction between the static analysis and
the probabilistic model raises several key research questions:

1. What is the best program analysis for making predictions about
programs?

2. How will the analysis look like in programming languages which
lack static type information (e.g. JavaScript)?

3. Can we use similar techniques to perform completion of other
program elements that are not API calls?

deepsyn To answer these questions, in Chapter 5 we developed a
systematic, general technique that automatically synthesizes code com-
pletion systems described by a domain specific language (DSL).

This technique effectively searches and evaluates thousands of pos-
sible completion systems and returns the most precise one according
to an empirical risk metric. We applied this idea in the context of
JavaScript where it is notoriously hard to perform static analysis due to
lack of static type information. Despite this difficulty, our algorithm syn-
thesized a code completion system for JavaScript that predicts around
half of JavaScript API calls and almost 40% of field accesses correctly.
Fig. 1.5 shows a possible use-case of such a system.

In addition to providing several programming tools, this thesis also
discusses a number of new research directions such as extending the
ideas to new programming languages (e.g. functional), applying our
techniques to new areas such as security (e.g. deobfuscating Android
application using techniques from JSNice), integrating statistical syn-

7

introduction

Figure 1.5: The DeepSyn tool for completing JavaScript code. In this
snippet of code, standard type analysis cannot resolve the
types of the used variables. Our statistical model predicts
that if width was set, height may need to be set as well.

thesis with traditional synthesizers (combining probabilities with con-
straints), as well as making connections between traditional program
synthesis, program analysis and statistical learning.

1.2 architecture of statistical programming tools

In Fig. 1.6, we show the general architecture of a statistical tool which
learns from programs, consisting of two phases: a training phase and a
query phase. In the training phase, for every program in “Big Code”,
program analysis is applied to convert it into a specialized intermediate
representation. That representation aims to capture an abstraction of
the training data suitable for the task solved by the particular tool. For
example, a code completion tool which tries to complete a program
using date and time APIs, should be able to learn from programs that
use the same API (e.g. calendar applications) even if these programs
are not identical to the query program or use the API in different
contexts. The intermediate representation in this case would capture
rich sequences of APIs from the training data. Once extracted, these
intermediate representations are used to train a probabilistic model.
We advocate that statistical tools which learn from programs should
use intermediate representations and probabilistic models that are able
to generalize beyond what is seen in the training data. That is, the
predictions made by these tools need not be present at training time.

At query time, the user provides an application-specific input. For
example, in code completion, the input is typically a partial program
and a position in the program to be completed. This user-provided
input is then processed with program analysis and again converted

8

1.3 problem dimensions

Training
phase

”Big Code”
repositories

Training data

Intermediate

representation

Probabilistic

model

Intermediate

representation

Input
(partial)
program

Predicted
result

Query
Program analysis

Figure 1.6: General architecture of “Big Code” tools.

into an intermediate representation suitable to query the probabilistic
model. Finally, the probabilistic model returns the most likely output
to the user – e.g. a synthesized program.

1.3 problem dimensions

In Fig. 1.7 (left column) we present several dimensions that a statistical
tool needs to consider. In this thesis, we consider several different
instantiations of these dimensions summarized in the right column
of the figure. For instance, we consider the applications of JavaScript
deobfuscation, property prediction and code synthesis. Although there
are multiple dimensions in the design space of “Big Code” systems,
some of the dimensions are correlated.

First, the intermediate representations must match the corresponding
probabilistic models. For example, sequences are indexed in statistical
language models (this model comes from natural language process-
ing and its goal is to estimate probabilities of sequences of words).
Conditional Random Fields (CRF) [79] and Structured Support Vec-
tor Machine (SSVM) [127, 129] models match with the intermediate
representation of a factor graph.

Second, the corresponding program analysis must produce an in-
termediate representation that matches the particular application. For
example, when renaming variables for deobfuscation, all references to

9

introduction

Dimensions Instantiations in this thesis

Application Deobfuscation (§2)
Type Prediction (§2)

Code Synthesis (§3, §5)

Program analysis Scope Analysis, Type Analysis (§2)
TypeState and Alias Analysis (§3)

Domain Specific Languages (§5)

Intermediate representation Factor Graphs (§2)
Sequences (§3, §5)

Probabilistic model CRF, Structured SVM (§2)
Statistical Language Models (§3, §5)

Query MAP Inference (§2, §3)

Figure 1.7: Dimensions and instantiations of statistical programming
tools. that learn from “Big Code”

a local variable must be renamed to the same name in order to preserve
the program semantics and thus scope analysis of local variables is
used. Still, when mapping an application to an intermediate represen-
tation, there are multiple possible viable choices of program analysis
and in Chapter 5, we present an approach that searches a space of such
analyses defined by a domain specific language.

Finally, for our applications we consider MAP inference (Maximum
APosteriori) queries. MAP inference means predicting multiple values
at once such that the score of the whole assignment according to the
probabilistic model is maximized. For example, when performing
type predictions, all types of a program are predicted simultaneously
enabling the inference to typecheck the predictions. To the best of our
knowledge, this work is the first to use MAP inference in the context of
programming problems. For two of our applications (JSNice, Slang),
we include efficient procedures for MAP inference, while for DeepSyn

we do not discuss it, even though MAP inference is also applicable in
that setting.

10

1.4 challenges

1.4 challenges

In designing the systems presented in this thesis, we had to address a
number of challenges.

vast number of labels For our applications, the number of la-
bels is typically very large. Thus, trying every possible label at query
time is practically infeasible. For example, when predicting identifier
names, the range of labels are all possible identifier names – hundreds
of thousands of names in our training data. A similar issue arises in
API code completion with tens of thousands of possible APIs.

dependent predictions The problem with a large number of
labels is further exacerbated by the fact that multiple predictions are
performed simultaneously, leading to a combinatorial explosion. For
example, to predict the names of n variables, we need to consider up to
nk possible name assignments if each variable name ranges over a set
of size k. We address this problem by designing an approximate greedy
algorithm that is fast and precise for our applications. Similarly, we
designed an algorithm for predicting sequences of multiple API calls
subject to additional constraints.

estimating probabilities and learning Some machine learn-
ing techniques compute predictions and return the associated proba-
bility with each prediction. Valid probabilities, however, need to be
positive and sum to one over all possible outcomes. With the large
number of predictions and specifically the presence of constrains (e.g.
non-duplicate names, type checking rules, API restrictions), it becomes
intractable to even count the number of possible predictions (i.e. pos-
sible outcomes). For some probabilistic models such an intractable
computation appears in computing the so called partition function [93]
that makes probabilities sum to one. In our approach, we avoid comput-
ing expensive partition functions by carefully selecting our models and
training algorithms. One such model is the structured support vector
machine (SSVM) trained using the MAP inference procedure [102]. This
model is discriminative, which means that it models the conditional
probabilities of one set of properties given another set of properties.
For example, in name prediction, we learn the names of local variables
given other values such as field names, strings and other constants.

11

introduction

feature engineering Finally, many machine learning models can
be expressed in terms of a linear combination of feature functions.
These feature functions are typically defined by experts that design the
specific tool. In our JSNice and Slang tools we manually define feature
functions that parametrize the probabilistic model. This effort, however,
does not scale as experts are needed to fine-tune every specific tool
variant. We address this challenge with a general program synthesis
technique over a domain-specific language. The synthesis technique
behind our DeepSyn system replaces the feature engineering process
and even leads to models that exceed the precision of current models
manually tailored by experts.

1.5 related work

The developments presented in this thesis have already led to various
subsequent works by other groups [23, 50, 71, 83, 97]. Here we list
some of these works, other relevant works are mentioned within the
appropriate chapter.

A recent work of Katz et al. [71] applies a language model similar to
the one we introduce in Chapter 3, to reverse engineer binaries where
types of registers are estimated. The works of Oh et al. [97] and Grigore
and Yang [50] use learned models for abstraction refinement in order
to speed-up a program verifier. Another recent work applies a model
similar to the one we use in JSNice to triage false positives in static
analysis [87]. The work of Long and Rinard [83] uses probabilistic
models to sometimes improve the number of correct patches over their
prior patch generation system. However, most of these works are less
scalable, train on orders of magnitude smaller datasets than ours, learn
only a small number of parameters and as a result provide relatively
small improvements over non-machine learning approaches.

machine learning within a single program Several recent
works use machine learning techniques such as support vector ma-
chines [116] or decision trees [44] to discover inductive invariants for
program verification. These works are orthogonal to the direction
explored in this thesis and have a different focus: they use machine
learning only within a program and do not “transfer” learned facts
from one program to another.

12

1.6 thesis contributions

1.6 thesis contributions

We next summarize the main contributions of this thesis:

• In Chapter 2 we describe a new approach for probabilistic predic-
tion of program properties and the JSNice system based on this
approach. That chapter is the first to connect conditional random
fields [79] to the problem of learning from programs.

• In Chapter 3 we connect static analysis with statistical language
models and present the Slang API code completion tool based on
this approach. That chapter also illustrates how to apply recent
advances in deep learning (recurrent neural networks [89]) to the
problem of learning from programs.

• In Chapter 4, we develop a new framework for program synthesis
with noise, connecting traditional program synthesis with statisti-
cal learning. This framework: (i) enables existing programming-
by-example engines (PBE) to deal with noise, (ii) provides a fast
procedure for approximate empirical risk minimization in ma-
chine learning, and (iii) serves as a basis for developing learning
procedures from “Big Code” with high precision.

• In Chapter 5, we introduce a new learning approach based on
the ideas from Chapter 4, generalizing many prior works [61, 94,
95, 110]. We implemented this approach in the DeepSyn system
and showed that its precision significantly improves over existing
approaches.

We believe this thesis provides an in-depth investigation of construct-
ing programming tools based on probabilistic models learned from a
large set of programs, and opens several promising directions for future
research, both practical and theoretical. We discuss some of these in
Chapter 6.

13

2
D I S C R I M I N AT I V E M O D E L S F O R P R E D I C T I N G
P R O G R A M P R O P E RT I E S

In this chapter we focus on the problem of inferring program properties.
We introduce a novel statistical approach which predicts properties
of a given program by learning a probabilistic model from existing
codebases already annotated with such properties. We use the term
program property to encompass both: classic semantic properties of
programs (e.g. type annotations) as well as syntactic program elements
(e.g. identifiers or code).

The core technical insight is transforming the input program into a
representation that enables us to formulate the problem of inferring
program properties (be it semantic or syntactic) as structured prediction
with conditional random fields (CRFs) [79], a powerful undirected
graphical model successfully used in a wide variety of applications
including computer vision, information retrieval, and natural language
processing [16, 60, 79, 100, 101].

To our knowledge, this is the first work which shows how to leverage
CRFs in the context of programs. This work also presents a class of
relevant feature functions that allow for efficient MAP inference in a
graphical model. By connecting programs to CRFs, we can reuse state-
of-the-art learning algorithms [75] to the domain of programs. Another
benefit of this encoding is that we can make multiple predictions at
once – a desired feature of the predictions about program elements
when there are multiple possibly dependent ones.

Fig. 2.1 illustrates our two-phase structured prediction approach.
In the prediction phase (upper part of figure), we are given an input
program for which we are to infer properties of interest. In the next
step, we convert the program into a representation which we call a
dependency network. The essence of the dependency network is to
capture relationships between program elements whose properties are
to be predicted with elements whose properties are known. Once the
network is obtained, we perform structured prediction and in particular,
a query referred to as Maximum a Posteriori (MAP) inference [75]. This
query makes a joint prediction for all elements together by optimiz-

15

discriminative models for predicting program properties

Input
program

Dependency network
relating unknown

with known properties

Predicted properties Output
program

Training data Learned CRF model
Training §2.5.

§2.2,§2.3 §2.4

Figure 2.1: Statistical Prediction of Program Properties.

ing a scoring function based on the learned CRF model. Making a
joint prediction which takes into account structure and dependence is
particularly important as properties of different elements are often re-
lated. A useful analogy is the ability to make joint predictions in image
processing where the prediction of a pixel label is influenced by the
predictions of neighboring pixels. To achieve good performance for the
MAP inference, we developed a new algorithmic variant which targets
the domain of programs (existing inference algorithms cannot efficiently
deal with the combination of unrestricted network structure and mas-
sive number of possible predictions per element). Finally, we output a
program where the newly predicted properties are incorporated. In the
training phase (lower part of Fig. 2.1), we find a good scoring function
by learning a CRF model from a large training set of programs. Here,
because we deal with CRFs and MAP inference queries, we are able to
leverage state-of-the-art max-margin CRF training methods [127].

training data An important requirement of our statistical ap-
proach is relevant training data. In our case, the data consists of
programs with their corresponding program properties that were already
computed or manually annotated. The amount of data should be large
enough to enable learning of a sophisticated model that makes interest-
ing predictions. For our applications, such a training corpus is obtained
by downloading a large number of code repositories from GitHub [46].

applications This work focuses on applications in the context
of Software Engineering, Program Analysis and Security. In one of
our applications we perform identifier renaming, which is a form of

16

discriminative models for predicting program properties

semantic preserving transformation (refactoring) that improves the code
readability. In another application, we propose to add type annotations
to code. This is, we learn a program analyzer based on a probabilistic
model. Finally, inferring name and type information for programs is a
form of decompilation or deobfuscation which is an interesting problem
in the context of security.

To build these individual applications, we first phrase them in terms
of CRF models and then apply the techniques presented in this chapter.
Phrasing a problem into a CRF involves defining feature functions
for each individual problem as we show in Section 2.2.2. To facilitate
faster creation of new applications, we open sourced a framework
called Nice2Predict 1, which includes all the components discussed
in this chapter except defining the feature functions. Nice2Predict
enables applications such as code deobfuscation (an example is Android
deobfuscation [17] where all method, class and field names are changed
by ProGuard [118]) or learning other types of program analyzers beyond
type annotations. Nice2Predict can be directly applied to tasks where
the set of possible predicted labels is finite, e.g. for the applications in
this chapter, we predict from a finite set of names and types.

jsnice: name and type inference for javascript As an example
of our approach, we built a system called JSNice which addresses
two important challenges in JavaScript: predicting (syntactic) identifier
names and predicting (semantic) type annotations of variables. We
focused on JavaScript for three reasons. First, in terms of type infer-
ence, recent years have seen extensions of JavaScript that add type
annotations such a Google Closure Compiler [47] and TypeScript [130].
However, these extensions rely on traditional type inference which does
not scale to realistic programs that make use of dynamic evaluation
and complex libraries (e.g. jQuery) [67]. Our work predicts likely type
annotations for real world programs which can then be provided to the
programmer or to a standard type checker. Second, much of JavaScript
code found on the Web is obfuscated, making it difficult to understand
what the code is doing. Our approach recovers likely identifier names
thereby making the code readable again. Finally, JavaScript programs
are readily available in source code repositories (e.g. GitHub) meaning
that we can obtain a large set of high quality training programs.

1 https://github.com/eth-srl/Nice2Predict

17

https://github.com/eth-srl/Nice2Predict

discriminative models for predicting program properties

function chunkData(e, t) {

var n = [];

var r = e.length;

var i = 0;

for (; i < r; i += t) {

if (i + t < r) {

n.push(e.substring(i, i + t));

} else {

n.push(e.substring(i, r));

}

}

return n;

}

(a) JavaScript program with minified identifier names

Unknown properties
(variable names):

? ? ? ? ?
e t n r i

Known properties
(constants, APIs):

0 [] length push

...

(b) Known and unknown properties

?

?

?

length

t

i

r

L+=R

L<R L= .R

(c) Dependency network

step

i

len

length

t

i

r

L R Score

i step 0.5
j j 0.4
i j 0.1
u q 0.01

L R Score

i len 0.8
i length 0.6

L R Score

length length 0.5
len length 0.4

(d) Result of MAP inference

(e) JavaScript program with new identifier names (and type annotations)
/* str: string , step: number , return: Array */

function chunkData(str , step) {

var colNames = [];

/* colNames: Array */

var len = str.length;

var i = 0; /* i: number */

for (;i < len;i += step) {

if (i + step < len) {

colNames.push(str.substring(i, i + step));

} else {

colNames.push(str.substring(i, len));

}

}

return colNames;

}

Figure 2.2: A JavaScript program with new names and type annotations,
along with an overview of the name inference procedure.

18

2.1 overview

The JSNice service is publicly available at http://jsnice.org and
was used by more than 100, 000 JavaScript developers from every coun-
try worldwide. As of writing this thesis, JSNice also has thousands of
active users and according to the statistics in Google Analytics 2, the
ratio of returning users increases over time.

2.1 overview

In this section we provide an informal description of our statistical
inference approach on a running example. Consider the JavaScript
program shown in Fig. 2.2(a). This is a program which has short, non-
descriptive identifier names. Such names can be produced by both a
novice inexperienced programmer or by an automated process known
as minification (a form of obfuscation) which replaces identifier names
with shorter names. In the case of client-side JavaScript, minification
is a common process on the Web and is used to reduce the size of
the code being transferred over the network and/or to prevent users
from understanding what the program is actually doing. In addition
to obscure names, variables in this program also lack annotated type
information. The net effect is that it is difficult to understand what the
program actually does, which is that it partitions an input string into
chunks of given sizes and stores those chunks into consecutive entries
of an array.

Given the program in Fig. 2.2(a), our system produces the program
in Fig. 2.2(e). The output program has new identifier names and is
annotated with predicted types for the parameters, the local variables
and the return statement. Overall, it is easier to understand what that
program does when compared to the input program. Next, we provide
a step by step overview of the prediction procedure that performs that
program transformation. We focus on predicting names (reversing
minification), but the process for predicting types is identical.

step 1 : determine known and unknown properties Given
the program in Fig. 2.2(a), using a simple analysis for the scope of the
variables, we first determine the set of program elements for which we
would like to infer properties. These are elements whose properties are
unknown in the input (i.e. are affected by minification). For example, in

2 http://analytics.google.com/

19

http://jsnice.org
http://analytics.google.com/

discriminative models for predicting program properties

the case of name inference, this set consists of all the local variables and
function parameters in the input program: e, t, n, r, and i. We also
determine the set of elements whose properties are known (not affected
by minification). One such element is the name of the field length in
the input program or the names of the methods. Both kinds of elements
are shown in Fig. 2.2(b). The goal of the prediction task is to predict
the unknown properties based on: i) the obtained known properties, and
ii) the relationship between various elements (discussed below).

step 2: build dependency network Next, using features that
we later define in Section 2.2.2, we build a dependency network cap-
turing various kinds of relationships between program elements. The
dependency network is key to capturing structure when performing
predictions and intuitively captures how properties which are to be pre-
dicted influence each other. For example, the link between known and
unknown properties allows us to leverage the fact that many programs
use common anchors (e.g. common API’s such as JQuery) meaning
that the unknown quantities we aim to predict are influenced by the
way the known elements are used by the program. Further, the link
between two unknown properties signifies that the prediction for the
two properties is related in some way. Dependencies are triplets of
the form 〈n,m,rel〉 where n and m are program elements and rel is
the particular relationship between the two elements. In our work all
dependencies are triplets, but in general, they can be extended to other
more complex relationships that relate more than two elements.

In Fig. 2.2(c), we show three example dependencies between the
program elements. For instance, the statement i += t generates a
dependency 〈i,t,L+=R〉, because i and t are on the left and right side of
a += expression. Similarly, the statement var r = e.length generates
several dependencies including 〈r,length,L= .R〉 which designates that
the left part of the relationship, denoted by L, appears before the de-
reference of the right side denoted by R (we elaborate on the different
types of relationships later in the chapter). For clarity, in Fig. 2.2(c) we
include only some of the relationships.

step 3 : map inference After obtaining the dependency network
of a program, the next step is to infer the most likely values (according
to a probabilistic model learned from data) for the nodes of the network,
a query referred to as MAP inference [75]. As illustrated in Fig. 2.2(d),

20

2.1 overview

for the network of Fig. 2.2(c), our system infers the new names step

and len. It also inferred that the previous name i was most likely.
Let us consider how we predicted the names step and len. Consider

the network in Fig. 2.2(d). This is the same network as in Fig. 2.2(c) but
with additional tables we elaborate on now (these tables are produced as
an output of the training phase). Each table is a function that scores the
assignment of properties for the nodes connected by the corresponding
edge. The function takes as input two properties and returns the score
for the pair (intuitively, how likely is the particular pair). In Fig. 2.2(d),
each table shows possible functions for the three kinds of relationships
we have.

Now, consider the topmost table in Fig. 2.2(d). The first row says that
the assignment of i and step is scored with 0.5. The MAP inference
tries to find an assignment of properties to the nodes so that the as-
signment maximizes the sum of the given scoring functions shown in
the tables. For the two nodes i and t, the inference ends up selecting
the highest score from that table (i.e., the values i and step). Similarly
for the nodes i and r. However, for nodes r and length, the inference
does not select the topmost row but selects values from the second row.
The reason is that if it had selected the topmost row, then the only
viable choice (in order to match the value length) for the remaining
relationship is the second row of that table (with value 0.6). However,
the assignment 0.6 leads to a lower combined overall score. That is, the
MAP inference must take into account the structure and dependencies
between the nodes and cannot simply select the maximal score of each
function and then stop.

output program Finally, after the new names are inferred, our
system transforms the original program to use these names. The output
of the entire inference process is captured in the program shown in
Fig. 2.2(e). Notice how in this output program, the names tend to
accurately capture what the program does.

predicting type annotations Even though we illustrated the
inference process for variables names, the overall flow for predicting
type annotations is identical. First, using program analysis, we define
the program elements with unknown properties to infer type annota-
tions for. Then, we define elements with known properties such as API
names or variables with known types. Next, we build the dependency

21

discriminative models for predicting program properties

network (some of the relationships overlap with those for names) and
finally we perform MAP inference and output a program annotated
with the predicted type annotations. One can then run a standard
type checker to check whether the predicted types are valid for that
program. In our example program shown in Fig. 2.2(e), the predicted
type annotations (shown in comments) are indeed valid. In general,
when automatically trying to predict semantic properties (such as types)
where soundness is required, the approach presented here will have
value as part of a guess-and-check loop.

independence from the minifier used We note that our name
inference process is independent of what the minified names are. In
particular, the process will return the same names regardless of which
minifier was used to obfuscate the original program (provided these
minifiers always rename the same set of variables).

2.2 structured prediction for programs

In this section we introduce our approach for predicting program
properties. The key idea is to formulate the problem of inferring
program properties as structured prediction with conditional random
fields (CRFs). We first introduce CRFs, then show how the framing
is done in a step-by-step manner, and finally discuss the specifics of
inference and learning in the context of programs. The prediction
framework presented in this section is fairly general and can potentially
be instantiated to many different kinds of problems. In Section 2.3 of
this work, we instantiate it for name and type annotation inference.

notation: programs, labels, predictions Let x ∈ X be a
program. As with standard program analysis, we will infer properties
about program statements or expressions (referred to as program el-
ements). For a program x, each element (e.g. a variable) is identified
with an index (a natural number). We will usually need to separate
the elements into two kinds: i) elements for which we are interested
in inferring properties and ii) elements for which we already know
their properties (e.g. these properties may have been obtained via stan-
dard program analysis or via manual annotation). We use two helper
functions n, m : X →N to return the appropriate number of program
elements for a given program x: n(x) returns the total number of ele-

22

2.2 structured prediction for programs

ments of the first kind and m(x) returns the total number of elements
of the second kind. To avoid clutter, when x is clear from the context,
we write n instead of n(x) and m instead of m(x).

We use the set LabelsU to denote all possible values that a predicted
property can take. For instance, in type prediction, LabelsU contains all
possible basic types (e.g. number, string, etc). Then, for a program x,
we use the notation y = (y1, ..., yn(x)) to denote a vector of predicted
program properties. Here, y ∈ Y where Y = (LabelsU)

∗. That is, each
entry yi in the vector y ranges over LabelsU and denotes that program
element i has a property yi.

Note that we fixed the number of the inferred program elements y to
be n(x). With the approach we show here we determine n and m after
reading the input program and not as we make predictions. In later
chapters we will remove this limitation with other probabilistic models.

For a program x, we define the vector zx = {zx
1 , ..., zx

m} to capture
the set of properties that are already known; that is, each element
in Vx

K is assigned a property from zx. Each zx
i ranges over a set of

properties LabelsK which could potentially differ from the properties
LabelsU that we use for inference. For example, if the known properties
are integer constants, LabelsK will be all valid integers. To avoid clutter
where x is clear from the context, we use z instead of zx. We use
Labels = LabelsU ∪ LabelsK to denote the set of all properties.

problem definition Let D = {〈x(j),y(j)〉}t
j=1 denote the training

data: a set of t programs each annotated with corresponding program
properties. Our goal is to learn a model that captures the conditional
probability Pr(y | x). Once the model is learned, we can predict
properties of new programs by posing the following query (also known
as MAP or Maximum a Posteriori query):

Given a new program x, find y = arg maxy′∈Ωx
Pr(y′ | x)

That is, for a new program x, we aim to find the most likely assign-
ment of program properties y according to the probabilistic distribution.
Here, Ωx ⊆ Y describes the set of possible assignments of properties
y′ for the program elements of x. The set Ωx is important as it allows
restricting the set of possible properties and is useful for encoding
problem-specific constraints. For example, in type annotation inference,
the set Ωx may restrict resulting annotation to types that make the
resulting program typecheck.

23

discriminative models for predicting program properties

2.2.1 Conditional Random Fields (CRFs)

We now describe CRFs, a particular model defined in [79] and previ-
ously used for a range of tasks such as natural language processing,
image processing and others. CRFs represent the conditional proba-
bility Pr(y | x). We consider the case where the factors are positive in
which case, without loss of generality, any conditional probability of
properties y given a program x can be encoded as follows:

Pr(y | x) =
1

Z(x)
exp(score(y, x))

where score is a function that returns a real number indicating the
score of an assignment of properties y for a program x. Assignments
with higher score are more likely than assignments with lower score.
Z(x), called the partition function, ensures that the above expression
does in fact encode a conditional distribution. It returns a real number
depending only on the program x, such that the probabilities over all
possible assignments y sum to 1, i.e.:

Z(x) = ∑
y∈Ωx

exp(score(y, x))

Without loss of generality, score can be expressed as a composition of a
sum of k feature functions fi associated with weights wi:

score(y, x) =
k

∑
i=1

wi fi(y, x) = wTf (y, x)

Here, f is a vector of functions fi and w is a vector of weights wi. The
feature functions fi : Y× X → R are used to score assignments of pro-
gram properties. This representation of score functions is particularly
suited for learning (as the weights w can be learned from data). Based
on the definition above, we can now define a conditional random field.

Definition 2.1 (Conditional Random Field (CRF)). A model for the
conditional probability of labels y given observations x is called (log-
linear) conditional random field, if it is represented as:

Pr(y | x) =
1

Z(x)
exp(wTf (y, x))

24

2.2 structured prediction for programs

features as constraints Feature functions are key to control-
ling the likelihood of an assignment of properties y for a program x.
For instance, a feature function can be defined in a way which prohibits
or lowers the score of undesirable predictions: say if fi(y

B, x) = −∞,
the feature function fi (with weight wi > 0) disables an assignment yB,
thus resulting in Pr(yB | x) = 0.

We discuss how the feature functions are defined in the next subsec-
tion. Note that feature functions are defined independently of the program
being queried, and are only based on the particular prediction problem
we are interested in. For example, when we predict types of a program,
we define one set of feature functions and when we predict identifier
names, we define another set. Once defined, the feature functions are
reused for predicting the particular kind of property we are interested
in for any input program.

2.2.2 Making Predictions for Programs

We next describe a step-by-step method for predicting program prop-
erties using CRFs. We first give definitions, then show how to build
a network between elements, then describe how to build the feature
functions fi based on that network and finally illustrate how to score a
prediction.

defining program element relations Before we start with
the problem of making predictions, we need to define what kind of
relations between program elements are going to be used for the pre-
dictions. Let the set of all element relations be Rels. In practice, the set
Rels is specific to the application that is solved with CRFs. An example
relation that we considered in our running example is L+=R as seen
in Fig. 2.2(c) where the relation relates the variable i to the variable
t because there is an expression i+=t in the code. Detailed concrete
instantiations for the relations we use in our applications for JavaScript
are given in Section 2.3.

defining pairwise feature functions Let {ψi}k
i=1 be a set of

pairwise feature functions where each ψi : Labels× Labels× Rels → R

25

discriminative models for predicting program properties

scores a pair of program properties when they are related with the given
relation from Rels. As an example feature function, consider:

ψexample(l1, l2, e) =

{
1 if l1 = i and l2 = step and e = L+=R

0 otherwise

In the example from Fig. 2.2, this feature function scores with 1 an
assignment of names of i and step to the variables participating in a
“+=” expression and scores with 0 any other assignment of names. We
discuss the particular kinds of pairwise feature functions for JavaScript
in Section 2.3.4. Although in this work we use pairwise feature func-
tions, there is nothing specific in our approach which precludes us from
using functions with higher arity. Using the definitions of the set of
possible program element relations and feature functions were defined,
we proceed to the step-by-step prediction method.

step 1 : build dependency network The first step to make pre-
dictions for an input program x is to build what we refer to as a
dependency network Gx = 〈Vx, Ex〉. This network captures dependen-
cies between the predictions made for the program elements of interest.
Here, Vx = Vx

U ∪Vx
K denotes the set of program elements (e.g. variables)

and consists of elements for which we would like to predict properties
Vx

U and elements whose properties we already know Vx
K . The set of

edges Ex ⊆ Vx ×Vx × Rels denotes the fact that there is a relationship
between two program elements and describes what that relationships is.
This definition of network is also called multi-graph because there is no
restriction on having only a single edge between a pair of edges – our
definition permits multiple dependencies with different Rels between a
pair of program elements.

Recall that the number of known and unknown properties for a
program x were defined to be n(x) and m(x). Thus, the resulting
multi-graph Gx consists of n(x) + m(x) nodes.

step 2 : define feature functions over entire programs x
Recall that the definition of a CRF (Definition 2.1) uses a vector features
functions f (y, x) defined over all unknown program elements y in a
program x. In contrast, our pairwise feature functions only apply on
two program properties. In this step, we define feature functions fi
from ψi using the network Gx.

26

2.2 structured prediction for programs

Let the assignment vector A = (y, zx) be a concatenation of two
assignments: the unknown properties y and the known properties
zx in x. As usual, the property of the j’th element of the vector A is
accessed via Aj. Then, the feature function fi is defined as the sum of
the applications of its corresponding pairwise feature function ψi over
the set of all network edges in Gx as follows:

fi(y, x) = ∑
〈a,b,rel〉∈Ex

ψi
(
(y, zx)a, (y, zx)b, rel

)
step 3 : score a prediction y Based on the above definition of
feature functions, we can now define how to obtain a total score for a
prediction y. According to the definition of score and by substitution,
we obtain:

score(y, x) =
k

∑
i=1

wi fi(y, x) = ∑
〈a,b,rel〉∈Ex

k

∑
i=1

wiψi((y, z)a, (y, z)b, rel)

That is, for a program x and its dependency network Gx, by using
the pairwise functions ψi and the learned weights wi associated with
each ψi, we can obtain the score of a prediction y.

example Let us illustrate the above steps as well as some key points
about Gx on the simple example in Fig. 2.3. Here we have 6 program
elements for which we would like to predict program properties. We
also have 4 program elements whose properties we already know. Each
program element is a node with an index shown outside the circles. The
edges indicate relationships between the nodes and the labels inside
the nodes are the predicted program properties or the already known
properties. As explained earlier, the known properties z are fixed before
the prediction process begins. In a structured prediction problem, the
properties y1, . . . , y6 of program elements 1 . . . 6 are predicted such that
Pr(y | x) is maximal.

edges and dependencies of program properties The shape
of the dependency network Gx for a program x determines several im-
portant properties about the predictions y that we illustrate in Fig. 2.3.
First, predictions for a node (e.g. 5) disconnected from all other nodes
in the network can be made independently of the predictions made
for the other nodes. Second, nodes 2 and 4 are connected but only

27

discriminative models for predicting program properties

Unknown properties Known properties

y

yi ∈ LabelsU

z

zi ∈ LabelsK

(), |

y1
1

y2
2

y3
3

y4
4

y5
5y6

6

z1
7

z2
8

z3
9

z4
10

Prediction: y = arg maxy′∈Ωx Pr(y′ | x)

Figure 2.3: A general schema for building a network for a program x
and finding the best scoring assignment of properties y.

via nodes with known predictions. Therefore, the properties for nodes
2 and 4 can be assigned independently of one another. That is, the
prediction y2 of node 2 will not affect the prediction y4 of node 4 with
respect to the total score function and vice versa. The reason why this is
the case is due to a property in CRFs known as conditional independence.
We say that the prediction for a pair of nodes a and b is conditionally
independent given a set of nodes C if the predictions for the nodes in
C are fixed and all paths between a and b go through a node in C. This
is why the predictions for nodes 2 and 4 are conditionally indepen-
dent of node 7. Conditional independence is an important property of
CRFs and is leveraged to speed up both the inference and the learning
algorithms. We do not discuss conditional independence further but
refer the reader to a standard reference [75]. Finally, a path between
two nodes (not involving known nodes) means that the predictions
for these two nodes may (and generally will) be dependent on one
another. For example, nodes 2 and 6 are transitively connected (without
going through known nodes) meaning that the prediction for node 2
can influence the scores of predictions for node 6.

28

2.2 structured prediction for programs

2.2.3 MAP Inference

Recall that the key query we perform is MAP inference:

Given a program x, find y = arg maxy′∈Ωx
Pr(y′ | x)

In a CRF, this amounts to the query:

y = arg max
y′∈Ωx

1
Z(x)

exp(score(y′, x))

where:
Z(x) = ∑

y′′∈Ωx

exp(score(y′′, x))

Note that Z(x) does not depend on y′ and as a result it does not affect
the final choice for the prediction y. This is an important observation,
because computing Z(x) is generally very expensive as it may need to
sum over all possible assignments y′′. Therefore, we can exclude Z(x)
from the maximized formula. Next, we take into account the fact that
exp is a monotonically increasing function enabling us to remove exp
from the equation. This leads to an equivalent simplified query:

y = arg max
y′∈Ωx

score(y′, x)

This is, an algorithm answering the MAP inference query must
ultimately maximize the score function. For instance, for the example in
Fig. 2.3, once we fix the known labels z, we need to find labels y such
that score is maximized.

In principle, at this stage one can use any algorithm to answer the
MAP inference query. For instance, a naı̈ve but inefficient way to solve
this query is by trying all possible outcomes y′ ∈ Ωx and scoring each
of them to select the highest scoring one. Other exact and inexact [75]
inference algorithms exist if the network Gx and the outcomes set Ωx

have certain restrictions (e.g. Gx is a tree).

specifics of programs Unfortunately, the problem with existing
inference algorithms is that they are too slow to be usable for our
problem domain (i.e. programs). For example, in typical applications
of CRFs [75] such as text parsing [79], it is unusual to have more than
a handful of possible assignments for an element (e.g. 10), while in
our case there could potentially be thousands of possible assignments

29

discriminative models for predicting program properties

per element. To address this issue, in Section 2.4 we present a fast and
approximate MAP inference algorithm that is tailored to the specifics
of dealing with programs: the shape of the feature functions, the
unrestricted nature of Gx and the massive set of possible assignments.

2.2.4 Learning

The weights w used in the scoring function score cannot be directly
obtained by means of counting in the training data [75, § 20.3.1]. Instead,
we use stochastic gradient descent and learning technique from online
support vector machines: given a training dataset D = {〈x(j),y(j)〉}t

j=1
of t samples, the goal is to find w such that the given assignments
y(j) are the highest scoring assignments in as many training samples
as possible subject to additional learning constraints. We discuss the
learning procedure in detail in Section 2.5.

Before we give more details about the inference and learning proce-
dures, we describe a specific application in the context of the JavaScript
programming language.

2.3 jsnice: predicting names and type annotations for javascript

In this section we present an example of using our structured prediction
approach presented in Section 2.2 for inferring two kinds of properties:
(i) predicting names of local variables, and (ii) predicting type annota-
tions of function arguments. We investigate the above challenges in the
context of JavaScript, a popular language where addressing the above
two questions is of significant importance. We do note however that
much of the machinery discussed in this section applies as-is to other
programming languages.

presentation flow Recall that in Section 2.2.2, we defined a
method to score predictions of program properties of a program x
by defining a network Gx = 〈Vx, Ex〉 and pairwise feature functions
{ψi}k

i=1. In what follows, we first present the probabilistic name predic-
tion and define Vx for that problem. We then present the probabilistic
type prediction and define Vx in that context. Then, we define Ex:
which program elements from Vx are related as well as how they are
related (that is, Rels). Some of these relationships are similar for both

30

2.3 jsnice: predicting names and type annotations for javascript

prediction problems and hence we discuss them in the same section.
Finally, we discuss how to obtain the pairwise feature functions ψi.

2.3.1 Probabilistic Name Prediction

The goal of our name prediction task is to predict the (most likely)
names of local variables in a given program x. The way we proceed
to solve this problem is as follows. First, as outlined in Section 2.2,
we identify the set of known program elements, referred to as Vx

K , as
well as the set of unknown program elements for which we will be
predicting new names, referred to as Vx

U .
For the name prediction problem, we take Vx

K to be all constants,
objects properties, methods and global variables of the program x.
Each program element in Vx

K can be assigned values from the set
LabelsK = JSConsts ∪ JSNames, where JSNames is a set of all valid
identifier names, and JSConsts is a set of possible constants. We note
that object property names and API names are modeled as constants,
as the dot (.) operator takes an object on the left-hand side and a string
constant on the right-hand side. We define the set Vx

U to contain all
local variables of a program x. Here, a variable name belonging to two
different scopes leads to two program elements in Vx

U . Finally, LabelsU

ranges over JSNames.
To ensure the newly predicted names are semantic preserving, we

ensure that the prediction satisfies the following constraints:

1. All references to a renamed local variable must be renamed to the
same name.

2. The predicted identifier names must not be reserved keywords.

3. The prediction must not suggest the same name for two different
variables in the same scope.

The first property is naturally enforced in the way we define Vx
U

where each element corresponds to a local variable as opposed to
having a unique element for every variable occurrence in the program.
The second property is enforced by making sure the set LabelsU from
which predicted names are drawn does not contain keywords. Finally,
we enforce the third constraint by restricting Ωx so that predictions
with conflicting names are prohibited.

31

discriminative models for predicting program properties

2.3.2 Probabilistic Type Annotation Prediction

Our second application involves probabilistic type annotation inference
of function parameters. Focusing on function parameters is particularly
important for JavaScript, a duck-typed language lacking type annota-
tions. Without knowing the types of function parameters, a forward
type inference analyzer will fail to derive precise and meaningful types
(except the types of constants and those returned by common APIs
such as DOM APIs). As a result, real-world programs using libraries
cannot be analyzed precisely [67].

Instead, we propose to probabilistically predict the type annotations
of function parameters. Here, our training data consists of a set of
JavaScript programs that have already been annotated with types for
function parameters. In JavaScript, these annotations are provided in a
specially formatted comments known as JSDoc3.

The simplified language over which we predict type annotations is
defined as follows:

expr ::= val | var | expr1(expr2) | expr1 ~ expr2 Expression

val ::= λvar : τ.expr | n Value

Here, n ranges over constants (n ∈ JSConsts), var is a meta-variable
ranging over the program variables, ~ ranges over the standard binary
operators (+, -, *, /, ., <, ==, ===, etc.), and τ ranges over all possible
variable types. That is, τ = {?} ∪ L where L is a set of types (we
discuss how to instantiate L below) and ? denotes the unknown type.
To be explicit, we use the set JSTypes where JSTypes = τ. We use the
function:

[]x : expr → JSTypes

to obtain the type of a given expression in a given program x. This map
can be manually provided or built using program analysis. When the
program x is clear from the context we use [e] as a shortcut for []x(e).

3 https://developers.google.com/closure/compiler/docs/js-for-compiler

32

https://developers.google.com/closure/compiler/docs/js-for-compiler

2.3 jsnice: predicting names and type annotations for javascript

defining known and unknown program elements As usual,
our first step is to define the two sets of known and unknown elements.
We define the set of unknown program elements as follows:

Vx
U = {e | e is var, [e] = ?}

LabelsU = JSTypes

That is, Vx
U contains variables whose type is unknown. We differenti-

ate between the type > and the unknown type ? in order to allow for
finer control over which types we would like to predict. For instance,
a type may be > if a classic type inference algorithm fails to infer
more precise types (usually, standard inference only discovers types
of constants and values returned by common APIs, but fails to infer
types of function parameters because it is unable to approximate all
the possible callers of a function). A type may be denoted as unknown
(i.e. ?) if the type inference did not even attempt to infer types for
the particular expression (e.g. function parameters). Of course, in the
above definition of Vx

U we could also include > and use our approach
to potentially refine the results of classic type inference.

Next, we define the set of known elements Vx
K . Note that Vx

K can
contain any expression, not just variables like Vx

U above:

Vx
K = {e | e is expr, [e] 6= ?} ∪ {n | n is constant}

LabelsK = JSTypes ∪ JSConsts

That is, Vx
K contains both, expressions whose types are known as well

as constants. Currently, we do not apply any global restriction on the
set of possible assignments Ωx, that is, Ωx = (JSTypes)n (recall that n
is a function which returns the number of elements whose property
is to be predicted). This means that we rely entirely on the learning
to discover the rules that will produce non-contradicting types. The
only restriction (discussed below) that we apply is constraining JSTypes
when performing predictions.

defining JSTypes So far, we have not discussed the exact contents
of the set JSTypes except to state that JSTypes = {?} ∪ L where L is a
set of types. The set L can be instantiated in various ways. In this work,
we chose to define L as L = P(T) where 〈T,v〉 is a complete lattice of
types with T and v as defined in Fig. 2.4. In the figure we use ”...” to
denote a potentially infinite number of user-defined object types.

33

discriminative models for predicting program properties

> - Any type

string number boolean Function Array ...

Other objects:

e.g. RegExp,

Element,

Event, etc.

⊥ - No type

Figure 2.4: The lattice of types over which prediction occurs.

obtaining JSTypes We note several important points here. First, the
set JSTypes is built during training from a finite set of possible types
that are already manually provided or are inferred by the classic type
inference. Therefore, for a given training data, JSTypes is necessarily
a finite set. Second, because JSTypes may contain a subset of types
O ⊆ JSTypes specific to a particular program in the training data, it
may be the case that when we are considering a new program whose
types are to be predicted, the types found in O are simply not relevant
to that new program (for instance, the types in O refer to names that
do not appear in the new program). Therefore, when we perform
prediction, we filter irrelevant types from the set JSTypes. This is the
only restriction we consider when performing type predictions. Finally,
because L is defined as a powerset lattice, it encodes (in this case, a
finite number of) disjunctions. That is, a variable whose type is to
be predicted ranges over exponentially many subsets allowing many
choices for the type. For example, a variable can have a type {string,
number} which for convenience can also be written as string ∨ number.

2.3.3 Relating Program Elements

We next describe the relationships we introduce between program
elements. These relationships define how to build the set of edges Ex

of a program x. Since the program elements for both prediction tasks
are similar (e.g. they both contain JavaScript constants, variables and
expressions), we discuss the relationships we use for each task together.
If a relationship is specific to a particular task, we explicitly state so
when describing it.

34

2.3 jsnice: predicting names and type annotations for javascript

i

+

j

<

k
i j

k

1 2

3

[i] [j]

[k]

[i+j]

L+R

+L<RL+ <R

L+R

+L<RL+ <R

L<R

(a) (b) (c)

Figure 2.5: (a) the AST of expression i+j<k, and two dependency net-
works built from the AST relations: (b) for name predictions,
and (c) for type predictions.

2.3.3.1 Relating Expressions

The first relationship we discuss is syntactic in nature: it relates two
program elements based on the their syntactic relationship in the pro-
gram’s Abstract Syntax Tree (AST). Let us consider how we obtain the
relationships for the expression i+j<k. First, we build the AST of the
expression shown in Fig. 2.5 (a). Suppose we are interested in per-
forming name prediction for variables i, j and k (denoted by program
properties with indices 1, 2 and 3 respectively), that is, Vx

U = {1, 2, 3}.
Then, we build the dependency network as shown in Fig. 2.5 (b) to
indicate that the prediction for the three elements are dependent on
one another (with the particular relationship shown over the edge). For
example, the edge between 1 and 2 represents the relationships that
these nodes participate in an expression L+R where L is a node for 1

and R is a node for 2.
The relationships are defined using the following grammar:

relast ::= relL(relR) | relL ~ relR

relL ::= L | relL() | (relL) | relL ~ | ~ relL

relR ::= R | relR() | (relR) | relR ~ | ~ relR

All relationships relast are part of Rels, that is, relast ∈ Rels. Here,
as discussed earlier, ~ ranges over binary operators. All relation-
ships derived using the above grammar have exactly one occurrence
of L and R. For a relationship r ∈ relast, let r[x/L, y/R, e/] denote the
expression where x is substituted for L, y is substituted for R and

35

discriminative models for predicting program properties

the expression e is substituted for . Then, given two program ele-
ments a and b and a relationship r ∈ relast, a match is said to exist if
r[a/L, b/R, [expr]/] ∩ Exp(x) 6= ∅ (here, [expr] denotes all possible
expressions in the programming language and Exp(x) is all expressions
of program x). An edge (a, b, r) ∈ Ex between two program elements a
and b exists if there exists a match between a, b and r.

Note that for a given pair of elements a and b there could be more
than one relationship which matches, that is, both r1, r2 ∈ relast match
where r1 6= r2 (therefore, there could be multiple edges between a
and b with different relationships). Here, we leverage the fact that by
definition Gx is a multi-graph.

The relationships described above are useful for both name and type
inference. In the case of predicting names, the expressions being related
are always variables, while for type annotations, the expressions need
not be restricted to variables. For example, in Fig. 2.5(c) there is a
relationship between the types of k and i+j via L<R. Note that our rules
do not directly capture relationships between [i] and [i+j], but they
are transitively dependent. Still, many useful and interesting direct
relationships for type inference are present. For instance, in classic type
inference, the relationship L=R implies a constraint rule [L] w [R] where
w is the super-type relationship (indicated in Fig. 2.4). Interestingly,
our inference model can learn such rules instead of providing them
explicitly.

2.3.3.2 Aliasing Relations

Another kind of (semantic) relationship we introduce is that of aliasing.
Let alias(e) denote the set of expressions that may alias with the expres-
sion e (this information can be determined via standard alias analysis
[123]).

argument-to-parameter We introduce the ARG TO PM relation-
ship which relates arguments of a function invocation (the arguments
can be arbitrary expressions) with parameters in the function declara-
tion (variables whose names or types are to be inferred). Let e1(e2) be
an invocation of the function captured by the expression e1. Then, for
all possible declarations of e1 (those are an over-approximation), we
relate the argument of the call e2 to the parameter in the declaration.
That is, for any v ∈ {p | (λp : τ.e) ∈ alias(e1)}, we add the edge

36

2.3 jsnice: predicting names and type annotations for javascript

(e2, v, ARG TO PM) to Ex. When predicting names e2 is always a variable,
while when predicting types e2 is not restricted to variables.

transitive aliasing Second, we introduce a transitive aliasing
relationship referred to as (r, ALIAS) between variables which may alias.
This is a relationship that we introduce only when predicting types.
Let a and b be related via the relationship r where r ranges over the
grammar defined earlier. Then, for all c ∈ alias(b) where c is a variable,
we include the edge (a, c, (r, ALIAS)).

2.3.3.3 Function name relationships

We introduce two relationships referred to as MAY CALL and MAY ACCESS.
These relationships are only used when predicting names and are
particularly useful for predicting function names. The reason is that in
JavaScript many of the local variables are function declarations. The
MAY CALL relationship relates a function name f with names of other
functions g that f may call (this semantic information can be obtained
via program analysis). That is, if a function f may call function g,
we add the edge (f , g, MAY CALL) to the set of edges Ex. Similarly, if
in a function f , there is an access to an object field named f ld, we
add the edge (f , f ld, MAY ACCESS) to the set Ex. Naturally, f and g are
allowed to only range over variables (as when predicting names the
nodes represent variables and not arbitrary expressions), and the name
of an object field f ld is a string constant.

2.3.4 Obtaining Pairwise Feature Functions

Finally, we describe how to define the pairwise feature functions {ψi}k
i=1.

We obtain these functions as a pre-processing step before the training
phase begins. Recall that our training set D = {〈x(j),y(j)〉}t

j=1 consists of
t programs where for each program x we are given the corresponding
properties y. For each tuple (x,y) ∈ D, we define the set of features as
follows:

features(x,y) = {
(
(y, z)a, (y, z)b, rel

)
| (a, b, rel) ∈ Ex}

37

discriminative models for predicting program properties

Then, for the entire training set we obtain all features as follows:

all features(D) =
t⋃

j=1

features(x(j),y(j))

We then define the pairwise feature functions to be indicator func-
tions of each feature triple in all features(D). Let the all features(D) =

{ 〈l1
i , l2

i , reli〉 }k
i=1. Then, we define the feature functions as follows:

ψi(l1, l2, rel) =

{
1 if l1 = l1

i and l2 = l2
i and rel = reli

0 otherwise

In addition to indicator functions, we have features for equality of
program properties ψ=(l1, l2, rel) that return 1 if and only if the two
related labels are equal. Our feature functions are fully inferred from
the available training data and the network Gx of each program x.
After the feature functions are defined, in the training phase (discussed
later), we learn their corresponding weights {wi}k

i=1 (k is the number
of pairwise functions). Note that the weights and the feature functions
can vary depending on the training data D, but both are independent
of the program for which we are trying to predict properties.

2.4 prediction algorithm

In this section we present our inference algorithm for making pre-
dictions (also referred to as MAP inference). Recall that predicting
properties y of a program x involves finding a y such that:

y=arg max
y′∈Ωx

Pr(y′|x)=arg max
y′∈Ωx

score(y′, x)=arg max
y′∈Ωx

wTf (y′, x)

When designing our inference algorithm, a key objective was optimiz-
ing the speed of prediction. There are two reasons why speed is critical.
First, we expect prediction to be done interactively, as part of a program
development environment or as a service (e.g., via a public web site
such as JSNice). This requirement renders any inference algorithm
that takes more than a few seconds unacceptable. Second (as we will
see later), the prediction algorithm is part of the inner-most loop of
training, and hence its performance directly impacts an already costly
and work-intensive training phase.

38

2.4 prediction algorithm

exact algorithms Exact inference in CRFs is generally NP-hard
and computationally prohibitive in practice. This problem is well
known and hard specifically for denser networks with no predefined
shape like the ones we obtain from programs [75].

approximate algorithms Previous studies [42, 69] for MAP in-
ference in networks of arbitrary shapes discuss loopy-belief propaga-
tion, greedy algorithms, combination approaches or graph-cut based
algorithms. In their results, they show that advanced approximate algo-
rithms may result in higher precision for the inference and the learning,
however they also come at the cost of significantly more computation.
Their experiments confirm that techniques such as belief propagation
are consistently at least an order of magnitude slower than greedy
algorithms.

As our focus is on performance, we proceeded with a greedy ap-
proach (also known as iterated conditional modes [16]). Our algorithm
is tailored to the nature of our prediction task (especially when predict-
ing names where we have a massive number of possible assignments
for each element) in order to significantly improve the computational
complexity over a naı̈ve greedy approach. In particular, our algorithm
leverages the shape of the feature functions discussed in Section 2.3.4.
In essence, the approach works by selecting candidate assignments from
a beam of s-best possible labels leading to significant gains in perfor-
mance at the expense of slightly higher chance of obtaining non-optimal
assignments.

2.4.1 Greedy Inference Algorithm

Algorithm 1 illustrates our greedy inference procedure. The inference
algorithm has four inputs: (i) a network Gx obtained from a program
x, (ii) an initial assignment of properties for the unknown elements
y0, (iii) the obtained known properties z, and (iv) the pairwise feature
functions and their weights. The way these inputs are obtained was
already described earlier in Section 2.2. The output of the algorithm
is an approximate prediction y which also conforms to the desired

39

discriminative models for predicting program properties

Input: network Gx = 〈Vx, Ex〉 of program x,
initial assignment of n unknown properties y0 ∈ Ωx,
known properties z
pairwise feature functions ψi and their learned weights wi

Output: y ≈ arg maxy′∈Ωx

(
score(y′, x)

)
1 begin
2 y ← y0
3 for pass ∈ [1..num passes] do
4 // for each node with unknown property in the graph Gx

5 for v ∈ [1..n] do
6 Ev ← {(v, ,) ∈ Ex} ∪ {(, v,) ∈ Ex}
7 scorev ← scoreEdges

(
Ev, (y, z)

)
8 for l′ ∈ candidates

(
v, (y, z), Ev

)
do

9 l ← yv // get current label of v
10 yv ← l′ // change label of v in y
11 score′v ← scoreEdges

(
Ev, (y, z)

)
12 if y ∈ Ωx ∧ score′v > scorev then
13 scorev ← score′v
14 else
15 yv ← l // no score improvement: revert label.
16 end
17 end
18 end
19 end
20 return y
21 end

Algorithm 1: Greedy Inference Algorithm

40

2.4 prediction algorithm

constraints Ωx. The algorithm also uses an auxiliary function called
scoreEdges defined as follows:

scoreEdges(E, A) = ∑
(a,b,rel)∈E

k

∑
i=1

wiψi(Aa, Ab, rel)

The scoreEdges(E, A) function is the same as score defined earlier
except that scoreEdges works on a subset of the network edges E ⊆ Ex.
Given a set of edges E and an assignment of elements to properties A,
scoreEdges iterates over E, applies the appropriate feature functions to
each edge and sums up the results.

The basic idea of the algorithm is to start with an initial assignment
y0 (Line 2) and to make a number of passes over all nodes in the
network, attempting to improve the score of the current prediction y.
The algorithm works on a node by node basis: it selects a node v ∈ [1..n]
and then finds a label for that node which improves the score of the
assignment. That is, once the node v is selected, the algorithm first
obtains the set of edges Ev in which v participates (shown on Line 6)
and computes via scoreEdges the contribution of the edges to the total
score. Then, the inner loop starting at Line 8 tries new labels for the
element v from a set of candidate labels and accepts only labels that
lead to a score improvement.

time complexity The time complexity for one iteration of the
prediction algorithm depends on the number of nodes, the number of
adjacent edges for each node and the number of candidate labels. Since
the total number of edges in the graph |Ex| is a product of the number
of nodes and the number of edges per node, then one iteration of the
algorithm has O(d|Ex|) time complexity, where d is the total number of
possible candidate assignment labels for a node (obtained on Line 8).

2.4.2 Obtaining Candidates

Our algorithm does not try all possible labels for a node. Instead,
we define the function candidates(v, A, E) which suggests candidate
labels given a node v, assignment A, and a set of edges E. Recall
that all features(D) is a (large) set of triples (l1, l2, r) obtained from the
training data D relating labels l1 and l2 via r. Further, our pairwise
feature functions {ψi}k

i=1 (where k = |all features(D)|) defined earlier

41

discriminative models for predicting program properties

are indicator functions meaning there is a one to one correspondence
between a triple (l1, l2, r) and a pairwise function. In the training phase
(discussed later), we learn a weight wi associated with each function
ψi (and because of the one-to-one mapping, with each triple (l1, l2, r)).
We use these weights in order to restrict the set of possible assignments
we consider for a node v. Let tops be a function which given a set
of features (triples) returns the top s triples based on the respective
weights. Let for convenience F = all features(D). Then, we define the
following auxiliary functions:

topLs(lbl, rel) = tops({t | tl = lbl∧ trel = rel∧ t ∈ F})
topRs(lbl, rel) = tops({t | tr = lbl∧ trel = rel∧ t ∈ F})

The above functions can be easily pre-computed for a fixed beam size s
and all triples in the training data F. Finally, we define:

candidates(v, A, E) =

=
⋃

〈a,v,rel〉∈E

{l2 | 〈l1, l2, r〉 ∈ topLs(Aa, rel)} ∪

⋃
〈v,b,rel〉∈E

{l1 | 〈l1, l2, r〉 ∈ topRs(Ab, rel)}

The meaning of the above function is that for every edge adjacent to
v, we consider at most s of the highest scoring triples (according to the
learned weights). This results in a set of possible assignments for v used
to drive the inference algorithm. The beam parameter s controls a trade-
off between precision and running time. Lower values of s decrease the
chance of predicting a good candidate label, while higher s make the
algorithm consider more labels and run longer. Our experiments show
that good candidate labels can be obtained with fairly low values of s
such as 32. Thanks to this observation, the prediction runs orders of
magnitude faster than naı̈ve algorithms that try all possible labels.

monotonicity At each pass of our algorithm, we iterate over the
nodes of Gx and update the label of each node only if this leads to a
score improvement (at Line 12). Since we always increase the score
of the assignment y, after a certain number of iterations, we reach
a fixed point assignment y that can no longer be improved by the
algorithm. The local optimum however, is not guaranteed to be a global
optimum. Since we cannot give a complete optimality guarantee, to

42

2.5 learning

achieve further speed ups, we also cap the number of algorithm passes
at a constant num passes.

2.4.3 Additional Improvements

To further decrease the computation time and possibly increase the
precision of our algorithm, we made two improvements. First, if a node
has more than a certain number of adjacent nodes, we decrease the size
of the beam s. In our implementation we decrease the beam size by a
factor of 16 if a node has more than 32 adjacent nodes. At almost no
computation cost, we also perform optimizations on pairs of nodes in
addition to individual nodes. In this case, for each edge in Gx, we use
the s best scoring features on the same type of edge in the training set
and attempt to set the labels of the two elements connected by the edge
to the values in each triple.

2.5 learning

In this section we discuss our learning procedure for obtaining the
weights w of the model Pr(y | x) from a data set. We assume that there
is some underlying joint distribution P(y, x) from which the data set
D = {〈x(j),y(j)〉}t

j=1 of t programs is drawn independently and identi-
cally distributed and from which new programs for which we want to
infer program properties are drawn. In addition to programs x(j), we
assume a given assignment of labels y(j) (names or type annotations in
our case) is provided as well. We perform discriminative training (i.e.,
estimate Pr(y | x) directly) rather than generative training (i.e., estimate
Pr(y, x), and deriving Pr(y | x) from this joint model), since the latter
requires estimating a distribution over programs x – a challenging, and
for the purposes of predicting program properties, unnecessary task.

The goal of learning is to estimate the parameters w to achieve
generalization: we wish that for a new program x drawn from the same
distribution P – but generally not contained in the data set D – its
properties y are predicted accurately (using the prediction algorithm
from Section 2.4). Several approaches to accomplish this task exist and
can potentially be used.

One approach is to fit parameters in order to maximize the (con-
ditional) likelihood of the data, that is, try to choose weights such

43

discriminative models for predicting program properties

that the estimated model Pr(y | x) accurately fits the true conditional
distribution P(y | x) associated with the data-generating distribution P.
Unfortunately, this task requires computation of the partition function
Z(x) which is a formidable task [75].

Instead, we perform what is known as max-margin training: we learn
weights w such that the training data is classified correctly subject to
additional constraints like margin and regularization. For this task,
powerful learning algorithms are available [127, 129]. In particular, we
use a variant of the Structured Support Vector Machine (SSVM)4 [129] and
we train it efficiently with the scalable subgradient descent algorithm
proposed in [102].

structured support vector machine The goal of SSVM learn-
ing is to find w such that for each training sample 〈x(j),y(j)〉 (j ∈ [1, t]),
the assignment found by the classifier (i.e., maximizing the score) is
equal to the given assignment y(j), and there is a margin between the
correct classification and any other classification:

∀j, ∀y′ ∈ Ωx(j) score(y(j), x(j)) ≥ score(y′, x(j)) + ∆(y(j),y′) (2.1)

Here, Ωx(j) is the set of all possible assignments of predicted program
properties for x(j) and ∆ : Labels∗ × Labels∗ → R is a distance function
(non-negative and satisfying triangle inequality). One can interpret
∆(y(j),y′) as a (safety) margin between the given assignment y(j) and
any other assignment y′, w.r.t. the score function. ∆ is chosen such that
slight mistakes (e.g., incorrect prediction of few properties) lead to less
margin than major mistakes. For our applications, we took ∆ to return
the number of different labels between the reference assignment y(j)

and any other assignment y′.
The weights w in (2.1) are not shown explicitly, but they are part of

the score function. Recall that by definition score(y, x) = wTf (y, x).
Generally, it may not be possible to find weights achieving the above

constraints. Hence, SSVMs attempt to find weights w that minimize the
violation of the margin (i.e., maximize the goodness of fit to the data).
At the same time, SSVMs control model complexity via regularization,
penalizing the use of large weights. This is done to facilitate better
generalization to unseen test programs.

4 Structured Support Vector Machines generalize classical Support Vector Machines to
predict many interdependent labels at once, as necessary when analyzing programs.

44

2.5 learning

2.5.1 Learning with Stochastic Gradient Descent

Achieving the balance of data-fit and model complexity leads to a
natural optimization problem for the vector of weights w:

w∗ = arg min
w∈Wλ

t

∑
j=1

`(w; x(j),y(j)) (2.2)

where

`(w; x(j),y(j))= max
y′∈Ω

x(j)

(
wT[f (y′, x(j))− f (y(j), x(j))] + ∆(y(j),y′)

)
(2.3)

is called the structured hinge loss. This nonnegative loss function mea-
sures the violation of the margin constraints caused for the j-th program,
when using a particular set of weights w. Thus, if the objective (2.2)
reaches zero, all margin constraints are respected, i.e., accurate labels
are returned for all training programs. Furthermore, the setWλ encodes
some constraints on the weights in order to control model complex-
ity and avoid overfitting. In our work, we regularize by requiring all
weights to be nonnegative and bounded by 1/λ, hence we set

Wλ = {w : wi ∈ [0, 1/λ] for all i}.

The SSVM optimization problem (2.2) is convex (since the structured
hinge loss is a pointwise maximum of linear functions, andWλ is con-
vex), suggesting the use of gradient descent optimization. In particular,
we use a technique called projected stochastic gradient descent, which
is known to converge to an optimal solution, while being extremely
scalable for structured prediction problems [102].

The algorithm proceeds iteratively; in each iteration, it picks a random
program with index j ∈ [1..t] from D, computes the gradient (w.r.t.w) of
the loss function `(w; x(j),y(j)) and takes a step in the negative gradient
direction. If it ends up outside the feasible regionWλ, it projects w to
the closest feasible point.

The gradient g = ∇w`(w; x(j),y(j)) at w w.r.t. the j-th program is

g ← f (ybest, x(j))− f (y(j), x(j))

where ybest ∈ Ωx(j) maximizes the value inside the max term of equation
(2.3). Thus

ybest ← arg max
y′∈Ω

x(j)

(
score(y′, x(j)) + ∆(y(j),y′)

)
, (2.4)

45

discriminative models for predicting program properties

Hence, computing the gradient requires solving the loss-augmented
inference problem (2.4). This problem can be (approximately) solved
using the algorithm presented in Section 2.4 by modifying the formula
scoreEdges there to also include the ∆ term.

After finishing the gradient computation, the weights w (used by
score) are updated as follows:

w ← ProjWλ
(w− αg)

where α is a learning rate constant and ProjWλ
is a projection operation

determined by the regularization described below.

2.5.2 Regularization

The function ProjWλ
: Rk → Rk projects its arguments to the point in

Wλ that is closest in terms of Euclidean distance. This operation is used
to place restrictions on the weights w ∈ Rk such as non-negativity and
boundedness. The goal of this procedure, known as regularization, is
to avoid a problem known as overfitting – a case where w is good in
predicting training data, but fails to generalize to unseen data. In our
case, we perform `inf regularization, which can be efficiently done in
closed form as follows:

ProjWλ
(w) = w′ such that w′i = max(0, min(1/λ, wi))

This projection ensures that the learned weights are non-negative and
never exceed a value 1/λ, limiting the ability to learn too strong feature
functions that may not generalize to unseen data. Our choice of `inf has
the additional benefit that it operates on vector components indepen-
dently. This allows for efficient implementation of the learning where
we regularize only vector components that changed or components
for which the gradient g is non-zero. This enables us to use a sparse
representation of the vectors g, avoiding iteration over all components
of the vector w when projecting.

2.5.3 Complete Training Phase

In summary, our training procedure first iterates once over the training
data and selects a set of pairwise feature functions (as described in
Section 2.3.4) used to compute f . We initialize the weight of each

46

2.5 learning

feature function with wi = 1/(2λ). Then, we start with a learning
rate of α = 0.1 and iterate in multiple passes to learn the weights with
stochastic gradient descent. In each pass, we compute gradients via
inference, and apply regularization as described before. Additionally,
we count the number of wrong labels in the pass and compare it to
the number of mispredicted labels in the previous pass. If we do not
observe improvement, we decrease the learning rate α by one half. In
our implementation, we iterate over the data up to 24 times.

To speed up the training phase, we also parallelized the stochastic
gradient descent on multiple threads as described in [141]. At each
pass, we randomly split the data to d threads where each thread ti
updates its own version of the weights wti . At the end of each pass, the
final weights w is set to the average of the weights {wti}d

i=1.

2.5.4 Example of Learning Weights for Type Annotations

Next, we give a geometric interpretation of the learning algorithm
with an example on learning type annotation rules. The idea is to
give an intuition for the previously described learning procedure. The
following example shows predictions for a single program property
that is the type of a variable. The case for multiple properties and
structured prediction has a similar geometric interpretation.

2.5.4.1 Multi-class SVM example

Consider the following JavaScript program i = 5 that assign a constant
value of type number to the variable i. Let this program be part of
our training data. For demonstration purposes, assume that using
existing rule-based type inference approaches can infer the type of the
constant 5 to be number, but the type of i cannot be precisely inferred.
A probabilistic model will learn rules that predict the type of i. We
show the example in Fig. 2.6.

In Fig. 2.6 (b) we define a dependency network where the type of i
is unknown and two indicator features with weights w1 and w2 predict
the type to be either number or string respectively. These weights
w1 and w2 are learned from the training data. The training data is
manually labeled and includes the correct type annotation number for
i. Ideally, the learned weights after training will be such that for the
program i = 5, the predicted type for the variable i will be number.

47

discriminative models for predicting program properties

(a)
i=5;

program x:

(b) ? number
i 5

L R weight

number number w1
string number w2

(c)

Labels:
y ∈ Y = {string, number}
Correct classification: y = number

∀y′ ∈ Y \ {y}. wTf (y, x) > wTf (y′, x)

(d)
Feature functions:
f (number, x) = 〈1, 0〉
f (string, x) = 〈0, 1〉

l = f (number, x)− f (string, x) = 〈1,−1〉

(e)

l

w

Separating hyperplane for correct classification

SVM Margin Correct classification:
wTl > 0

Classification outside
margin of size ||w||:
wTl > 1

Figure 2.6: Example of structured/multi-class SVM on one training
sample. (a) Training data program x. (b) Formulation of a
type prediction problem for x as a dependency graph. (c)
The linear classification task that says that the correct label
scores better than any other label. (d) Feature functions for
x. (e) Visualization of finding weights w = {w1, w2} that
make correct classification and also have maximize margin
like in SVM. Note that correct classification here means to
be on the right size of the hyperplane defined by w.

48

2.5 learning

This translates to the requirement that assigning y = number produces
higher score than assigning any other label that is not number. i.e.
∀y′ ∈ Y \ {y}. wTf (y, x) > wTf (y′, x) as shown in Fig. 2.6 (c).

Traditionally, linear classifiers such as support vector machines are
described in terms of finding a separating hyperplane between positive
and negative training data samples and in the context of two-class
(binary) classification [21, §4.1.1]. While this view gives an intuition of
the underlying algorithms, it does not directly generalize to multiple
classes or structured prediction like in our setting. Trying to compose
multiple binary classifiers by multiple lines separating labels one-versus-
one or one-versus-the-rest leads to ambiguity in the classification [21,
§4.1.2] so we handle multiple classes differently. Instead, we use one
linear classifier that finds the class with the highest score as shown in
Fig. 2.6 (c).

To preform multi-class classification, the vector of feature functions
f is dependent not only on the input program x, but on the predicted
label y. In Fig. 2.6 (b) we show the values of the features in a tabular
form. This table corresponds to the feature function f described in
Fig. 2.6 (d). If the predicted label y is number, then f1 is 1 and f2 is 0. If
the predicted label is string, f1 is zero and f2 – one. Now consider the
difference in features between the correct label y = number and another
label y′ = string. This is recorded by the point l. Our goal to have the
correct label score better than the label string is expressed in wTl > 0.
This is shown in Fig. 2.6 (e) where the point l is on the right side of the
hyperplane w going through the center of the coordinate system.

Finally, once the requirements for correct classification are established,
a margin is introduced. This is, from all possible hyperplanes for which
l is on the right size of the hyperplane described by w, the parameters
are chosen to maximize the distance between l and the hyperplane. The
margin is shown in Fig. 2.6 (e).

2.5.4.2 Stochastic gradient descent

Next, we visualize the technique to find the optimal parameters w.
Fig. 2.7 shows two iterations of running the stochastic gradient descent
algorithm starting with initial weights w = 〈1, 1〉, updating weights
with learning rate α = 0.5 and using regularization constant λ = 1.
At each step of the algorithm, the given correct label y = number is
compared to the label y′ that maximizes the measure wTf (y′, x) +

49

discriminative models for predicting program properties

(a) First iteration. Initial weights w = 〈1, 1〉. Then from (2.4):

l

w

ybest ← arg maxy′∈Y wTf (y′, x) + ∆(y, y′)

for y′ = number: 〈1, 1〉T〈1, 0〉+ 0 = 1
for y′ = string: 〈1, 1〉T〈0, 1〉+ 0 = 2

⇒ ybest = string

⇒ g = f (ybest, x(j))− f (y, x(j)) =

= f (string, x)− f (number, x) = 〈−1, 1〉

Perform gradient descent with α = 0.5:
w ← ProjWλ

(w− αg) = ProjWλ
(〈1, 1〉−0.5〈−1, 1〉) = ProjWλ

(〈1.5, 0.5〉)
Projection for λ = 1 is:

Wλ

w
−αg

projection toWλ

updated weights w = 〈1, 0.5〉
(b) Second iteration:

l

w

ybest ← arg maxy′∈Y wTf (y′, x) + ∆(y, y′)

for y′ = number: 〈1, 0.5〉T〈1, 0〉+ 0 = 1.0
for y′ = string: 〈1, 0.5〉T〈0, 1〉+ 0 = 1.5

⇒ ybest = string

⇒ g = f (ybest, x(j))− f (y, x(j)) =

= f (string, x)− f (number, x) = 〈−1, 1〉

Perform gradient descent with α = 0.5:
w ← ProjWλ

(w− αg) = ProjWλ
(〈1, 0.5〉−0.5〈−1, 1〉) = ProjWλ

(〈1.5, 0〉)
Projection for λ = 1 is:

Wλ w
−αg

projection toWλ

updated weights w = 〈1, 0〉

Figure 2.7: Two iterations of stochastic gradient descent steps done in
SSVM learning on the example from Fig. 2.6.

50

2.6 implementation and evaluation

∆(y, y′) as in formula (2.4). The first term of this measure checks if
the classification would score y′ higher than y and the second term
introduces a margin by giving score of 1 to any label y′ 6= y and score 0
otherwise.

Consider the first iteration of the algorithm in Fig. 2.7 (a). The label
y = number does not score better than the label y′ = string and as a
result ybest = string. Then, a gradient g is computed to update the
weights w. Following the update of w, the point l is on the right size
of hyperplane described by w = 〈1, 0.5〉 as shown in Fig. 2.7 (b).

The vector w = 〈1, 0.5〉 already classifies y = number correctly for
our training data sample. This is, as shown in Fig. 2.6 (c), for any y′ ∈
Y \ {y}. wTf (y, x) > wTf (y′, x). However, the hyperplane described
by w in Fig. 2.7 (b) does not maximize the margin to l. In this case,
note that the term ∆(y, y′) contributes in setting ybest = string. Due to
this, the second iteration of the algorithm still updates the hyperplane
w to be further away from l. Any further iterations after the second
one do not update the weights w.

At each step, regularization is performed by projecting the update of
the vector w into the areaWλ. Our regularization disallows negative
weights and limits their magnitude to 1. As a result, the final learned
weights are w = 〈1, 0〉 which describe the hyperplane with the widest
possible margin to l subject to the regularization constraints. Finally,
the obtained model learns that the predicted type annotation for i

in code like i = 5 should be number with weight 1 and string with
weight 0. The learned weights correspond to the following learned type
inference rules:

• assigning a value of type number to a variable i sets the type of i
to number with a very high confidence of 1.

• assigning a value of type number to a variable i sets the type of i
to string with a very low confidence of 0.

2.6 implementation and evaluation

We implemented our approach in an end-to-end production quality
interactive tool, called JSNice, which targets name and type annotation
prediction for JavaScript. JSNice is a modification of the Google Closure
Compiler project [47]. In standard operation, Google Closure Compiler
takes human-readable JavaScript with optional type annotations and

51

discriminative models for predicting program properties

typechecks it. It then returns an optimized, minified and human-
unreadable JavaScript with stripped annotations.

In our system, we added a new mode to the compiler that aims
to reverse its operation: given an optimized minified JavaScript code,
JSNice generates JavaScript code that is well annotated (with types)
and as human-readable as possible (with useful identifier names). Our
two applications for names and types were implemented as two models
that can be run separately.

jsnice: impact on developers A week after JSNice was made pub-
licly available, it was used by more than 100, 000 developers, with the
vast majority of feedback left in blogs and tweets being very positive
(those can be found by a simple web search). We believe the combi-
nation of high speed and high precision achieved by the structured
prediction approach were the main reasons for this positive reception.

experimental evaluation We next present a detailed experi-
mental evaluation of our statistical approach and demonstrate that the
approach can be successfully applied to the two prediction tasks we
described. Further, we evaluate how various knobs of our system affect
the overall performance and precision of the predictions.

We collected two disjoint sets of JavaScript programs to form our
training and evaluation data. For training, we downloaded 10, 517
JavaScript projects from GitHub [46]. For evaluation, we took the
50 JavaScript projects with the highest number of commits from Bit-
Bucket [22]. By taking projects from different repositories, we decrease
the likelihood of overlap between training and evaluation data. We also
searched in GitHub to check that the projects in the evaluation data are
not included in the training data. Finally, we implemented a simple
checker to detect and filter out minified and obfuscated files from the
training and the evaluation data. After filtering minified files, we ended
up with training data consisting of 324, 501 files and evaluation data of
2, 710 files. Next, we discuss how we trained and evaluated our system:
first, we discuss parameter selection (Section 2.6.1), then precision (Sec-
tion 2.6.2) and model sizes (Section 2.6.3), and finally the running times
(Section 2.6.4).

52

2.6 implementation and evaluation

2.6.1 Parameter Selection

We used 10-fold cross-validation to select the best learning parameters
of the system only based on the training data and not biased by any
test set [93]. Cross-validation works by splitting the training data into
10 equal pieces called folds and evaluating the ratio of mispredicted
program properties on each fold by training a model on the data in
the other 9 folds. Then, we trained and evaluated on a set of different
training parameters and selected the parameters with the lowest number
of mispredictions.

We tuned the values of two parameters that affect the learning:
regularization constant λ, and presence of margin. Higher values of λ

mean that we regularize more, i.e. add more restrictions on the feature
weights by limiting their maximal value to a lower value 1/λ. The
margin parameter determines if the margin function ∆ (see Section 2.5)
should return zero or return the number of different labels between the
two assignments. To reduce computation time (since we must train and
test a large number of values for the parameters), we performed cross-
validation on only 1% sample of the training data. Using subsample
here means that we bias towards more regularization than necessary
and overfit less to the data [84]. As a result, the reported precision may
not be the highest possible. This cross-validation procedure determined
that the best value for λ is 2.0 for names, 5.0 for types, and margin ∆
should be applied to both tasks.

2.6.2 Precision

After choosing the parameters, we evaluated the precision of our sys-
tem for predicting names and type annotations. Our experiments were
performed by predicting the names and types in isolation on each of the
2, 710 testing files. To evaluate precision, we first minified all 2, 710 files
with UglifyJS 5, but any other sound minifier should produce input that
is equivalent for the purposes of using JSNice to reconstruct variable
names and type annotations. The minification process renames local
variable identifiers to meaningless short names and removes whites-
paces and type annotations. Each minified program is semantically
equivalent (except when using with or eval) to the original program.

5 https://github.com/mishoo/UglifyJS

53

discriminative models for predicting program properties

Then, we used JSNice on the minified programs to evaluate its capabili-
ties to precisely reconstruct name and type information. We compared
the precision of the following configurations:

• The most powerful system works with all of the training data and
performs structured prediction as described so far.

• Two systems using a fraction of the training data – one on 10%
and one on 1% of the files.

• To evaluate the effect of structure when making predictions,
we disabled relationships between unknown properties and per-
formed predictions on that network (the training phase still uses
structure).

• A naı̈ve baseline which does no prediction: it keeps names the
same and sets all types to the most common type string.

2.6.2.1 Name predictions

To evaluate the accuracy of name predictions, we took each of the
minified programs and used the name inference in JSNice to rename
its local variables. Then, we compared the new names to the original
names (before obfuscation) for each of the tested programs. The results
for the name reconstruction are summarized in the second column
of Table 2.1. Overall, our best system produces code with 63.4% of
identifier names exactly equal to their original names. The systems
trained on less data have significantly lower precision showing the
importance of the amount of training data.

Not using structured prediction also drops the accuracy significantly
and has about the same effect as an order of magnitude less data. Finally,
not changing any identifier names produces accuracy of 25.3% – this is
because minifying the code may not rename some variables (e.g. global
variables) in order to guarantee semantic preserving transformations
and occasionally one-letter local variable names stay the same (e.g.
induction variable of a loop).

2.6.2.2 Type annotation predictions

Out of the 2, 710 test programs, 396 have type annotations for functions
in a JSDoc. For these 396, we took the minified version with no type

54

2.6 implementation and evaluation

System Names Types Types

Accuracy Precision Recall

all training data 63.4% 81.6% 66.9%

10% of training data 54.5% 81.4% 64.8%

1% of training data 41.2% 77.9% 62.8%

all data, no structure 54.1% 84.0% 56.0%

baseline - no predictions 25.3% 37.8% 100%

Table 2.1: Precision and recall for name and type reconstruction of
minified JavaScript programs evaluated on our test set.

annotations and tried to rediscover all types in the function signatures.
We first ran the closure compiler type inference, which produces no
types for the function parameters. Then, we ran and evaluated JSNice

on inferring these function parameter types.
JSNice does not always produce a type for each function parameter.

For example, if a function has an empty body, or a parameter is not used,
we often cannot relate the parameter to any known program properties
and as a result, we make no prediction and return the unknown type
(?). To take this effect into account, we do not report accuracy like
for names, but compute recall and precision. Recall is the percentage
of function parameters in the evaluation for which JSNice made a
prediction other than ?. Precision refers to the percentage of cases –
among the ones for which JSNice made a prediction – where it was
exactly equal to the manually provided JSDoc annotation of the test
programs. We note that the manual annotations are not always correct,
and as a result 100% precision is not necessarily a desired outcome.

We present our evaluation results for types in the last two columns of
Table 2.1. Since we evaluate on production JavaScript applications that
typically have short methods with complex relationships, the recall for
predicting program types is only 66.9% for our best system. However,
we note that none of the types we infer are inferred by state-of-the-art
forward type analysis (e.g. Facebook Flow 6).

6 https://github.com/facebook/flow

55

https://github.com/facebook/flow

discriminative models for predicting program properties

Input programs

107 typecheck

289 with type error

JSNice

86 programs

141 programs
fixed

148 programs

21 programs

Output programs

227 typecheck

169 with type error

Figure 2.8: Evaluation results for the number of typechecking programs
with manually provided types and with predicted types.

Since the total number of commonly used types is not as high as
the number of names, the amount of training data has less impact on
the system precision and recall. To further increase the precision and
recall of type prediction, we hypothesize that adding more (semantic)
relationships between program elements would be of higher importance
than adding more training data. Dropping structure increases the
precision of the predicted types slightly, but at the cost of a significantly
reduced recall. The reason is that some types are related to known
properties only transitively via other predicted types – relationships
that non-structured approaches cannot capture. On the other end of
the spectrum is a prediction system that suggests the most likely type
in JavaScript programs – string. Such a system produces a type for
every variable (100% recall), but its precision is only 37.8%.

usefulness of type annotations To see if the predicted type
annotations are useful, we compared them to the original types pro-
vided in the evaluated programs. First, we note that our evaluation data
has 3, 505 type annotations for function parameters in 396 programs.
After removing these annotations and reconstructing them with JSNice,
the number of annotations that are not ? increased to 4, 114 for the
same programs. The reason JSNice produces more types than originally
present despite having only 66.3% recall is that not all functions in the
original programs had manually provided type annotations.

Despite annotating more functions than in the original code, the
output of JSNice has fewer type errors. We summarize these findings
in Fig. 2.8. For each of the 396 programs, we ran the typechecking pass
of Google’s Closure Compiler to discover type errors. Among others,

56

2.6 implementation and evaluation

this pass checks for incompatible types, calling into a non-function, con-
flicting and missing types, and non-existent properties on objects. For
our evaluation, we kept all checks except the inexistent property check,
which fails on almost all (even valid) programs, because it depends on
annotating all properties of the JavaScript classes – annotations that
almost no program in the training or evaluation data possesses.

When we ran typechecking on the input programs, we found the
majority (289) to have typechecking errors. While surprising, this can
be explained by the fact that JavaScript developers typically do not
typecheck their annotations. Among others, we found the original
code to have misspelled type names. Most typecheck errors occur
due to missing or conflicting types. In a number of cases, the types
provided were interesting for documentation, but were semantically
wrong - e.g. a parameter is a string that denotes function name, but the
manual annotation designates its type to be Function. In contrast, the
types reconstructed by JSNice make the majority (227) of the programs
typecheck. In 141 of the programs that originally did not typecheck,
JSNice was able to infer correct types. On the other hand, JSNice

introduced type errors in 21 programs. We investigated some of these
errors and found that not all of them were due to wrong types – in
several cases the predicted types were rejected due to inability of the
type system to precisely express the desired program properties without
also manually providing type cast annotations.

2.6.3 Model Sizes

Our models contain 7, 627, 484 features for names and 70, 052 features
for types. Each feature is stored as a triple, along with its weight. As a
result we need only 20 bytes per feature, resulting in a 145.5MB model
for names and 1.3MB model for types. The dictionary which stores all
names and types requires 16.8MB. As we do not data compress our
model, the memory requirements for query processing are about as
much as the model size.

2.6.4 Running Times

We performed our performance evaluation on a 32-core machine with
four 2.13GHz Xeon processors and running Ubuntu 12.04 with 64-Bit

57

discriminative models for predicting program properties

OpenJDK Java 1.7.0 51. The training phase for name prediction took
around 10 hours: 57 minutes to compile the input code and generate
networks for the input programs and 23 minutes per SSVM (sub-)
gradient descent optimization pass. Similarly for types, the compilation
and network construction phase took 57 minutes and then we needed 2
minutes and 16 seconds per SSVM (sub-)gradient descent optimization
pass. For all our training, we ran 24 gradient descent passes on the
training data. All the training passes used 32 threads to utilize the cores
of our machine.

running times of prediction We evaluated the effect of chang-
ing the beam size parameter s of our MAP inference algorithm (from
Section 2.4), and the effect s has on the prediction time. The average pre-
diction times per program are summarized in Table 2.2. Each query is
performed on a single core of our test machine. As expected, increasing
s improves prediction accuracy but requires more time. Removing the
beam altogether and running naı̈ve greedy iterated conditional modes
[16] leads to running times of around two minutes per program for
name prediction, unacceptable for an interactive tool such as JSNice.
Also, its precision trails some of the beam-based systems, because it
does not perform optimization per pair of nodes, but only a node at
a time. Due to the requirements for high performance, in our main
evaluation and for our live server at http://jsnice.org/, we chose the
value s = 64. This value provides a good balance between performance
and precision suitable for an interactive system.

evaluation data metrics Our evaluation data consists of 381, 243
lines of JavaScript code with the largest file being 3, 055 lines. For each
of the evaluated files, the constructed dependency network for name
prediction has on average 383.5 arcs and 29.2 random variables. For
the type prediction evaluation tasks, each network has on average 109.5
arcs and 12.6 random variables.

2.7 lessons and design decisions

The problem of effectively learning from existing code and precisely
answering interesting questions on new programs is non-trivial and
requires careful interfacing between programs and sophisticated proba-
bilistic models. As the overall machine can be fairly complex, here we

58

http://jsnice.org/

2.7 lessons and design decisions

Beam size parameter Name prediction Type prediction

b Accuracy Time Precision Time

4 57.9% 43ms 80.6% 36ms

8 59.2% 60ms 80.9% 39ms

16 62.8% 62ms 81.6% 33ms

32 63.2% 80ms 81.3% 37ms

64 (JSNice) 63.4% 114ms 81.6% 40ms

128 63.5% 175ms 82.0% 42ms

256 63.5% 275ms 81.6% 50ms

Naı̈ve greedy, no beam 62.8% 115.2 s 81.7% 410ms

Table 2.2: Trade-off between precision and runtime for the name and
type predictions depending on beam search parameter s.

state the important design choices that we made in order to arrive at
the solution presented here.

from programs to random variables When predicting pro-
gram properties, one needs to account for both, the program elements
whose properties are to be predicted and the set of available properties
from which we draw predictions. In JSNice, the elements are local
variables (for name prediction) and function parameters (for type pre-
diction). In general however, one could instantiate our approach with
any program element that ranges over program properties for which
sufficient amount of training data is available.

We note that for our instantiation, JSNice, a predicted program
property always exists in the training data. In the case of names,
large amounts of training data still allow us to predict meaningful and
useful names. Because of the assumption that the property exists in
the training data, we create one random variable per local variable
of a program with the name to predict and the feature functions as
described in Section 2.3.4. However, the framework from Section 2.2
can be instantiated (with different feature functions) to cases where a
predicted variable name does not exist in the training data (e.g. is a
concatenation of several existing words).

59

discriminative models for predicting program properties

the need for structure When predicting facts and properties
of programs, it is important to observe that these properties are usually
dependent on one another. This means that any predictions of these
properties should be done jointly and not independently in isolation.

graphical models : undirected over directed A family of
probabilistic models able to capture complex structural dependencies
are graphical models such as Bayesian networks (directed models) and
Markov networks (undirected models) [75]. In graphical models, nodes
represent random variables and edges capture dependencies between
these random variables. Therefore, graphical models are a natural fit
for our problem domain where program elements are random variables
and the edges capture a particular dependency between the properties
to be inferred for these program elements. While we do need to capture
dependence between two (or more) random variables, it is often not
possible to decide a priori on the exact order (direction of the edges)
of that dependence. In turn, this means that undirected models are a
better match for our setting as they do not require specifying a direction
of the dependence.

inference : map inference over marginals For a given pro-
gram x and a probabilistic model P, we are fundamentally interested
in finding the most likely properties which should be assigned to pro-
gram elements Vx

U given the known, fixed values for the elements Vx
K .

What is the right query for computing this most likely assignment?
Should we try to find the value v of each random variable ri ∈ Vx

U
which maximizes its marginal probability P(ri = v) separately, or
should we try to find the values v0, v1, . . . , vn for all random variables
r0, . . . , rn ∈ Vx

U together so that the joint probability is maximized, that
is, P(r0 = v0, r1 = v1, . . . , rn = vn) (called MAP inference)?

We decided to use MAP inference over marginals for several reasons.
First, we ultimately aim to find the best joint assignment and not
make independent, potentially contradicting predictions. Second, it
is easy to show that maximizing the marginal probability of each
variable separately does not lead to the optimum assignment computed
by MAP inference. Third, when computing marginals, it is difficult to
enforce deterministic constraints such as A 6= B. It is often easier to
incorporate such constraints with MAP inference. Finally, and as we
discuss below, the decision to perform MAP inference over marginals

60

2.7 lessons and design decisions

enjoys a substantial benefit when it comes to training the corresponding
probabilistic model.

An interesting point is that standard MAP inference algorithms are
computationally expensive when the number of possible properties
is large. Hence, we had to develop new algorithmic variants which
can effectively deal with thousands of possible properties for a given
random variable (e.g. many possible names discussed in Section 2.4.1).

discriminative over generative training An important ques-
tion when dealing with probabilistic models is deciding how the model
should be trained. One approach is to train an undirected model in a
generative way, thus obtaining a joint probability distribution over both
Vx

K and Vx
U (this model is sometimes referred to as Markov Random

Field). While possible in theory, this has a serious practical disadvan-
tage: it requires placing prior probabilities on the known variables Vx

K ,
which can be very difficult in practice. For our applications this would
mean providing probability estimates not only for the names and type
annotations that we predict, but also for the facts we condition on such
as API names, numeric and string constants, etc.

However, recall that our MAP inference query is in fact conditional
on an existing assignment of the known elements Vx

K . This means that
the underlying probabilistic model must only capture the conditional
probability distribution of Vx

U given Vx
K and not the joint distribution. An

undirected graphical model able to capture such conditional distribu-
tions is referred to as a Conditional Random Field (CRF) [79]. The CRF
model admits discriminative training where priors on Vx

K are no longer
necessary, a key reason for why this model is effective and popular in
practice.

training with max-margin over maximum likelihood Af-
ter deciding to use CRFs, we still need to find a scalable method for
training and obtaining such CRF models from available data (e.g. “Big
Code” in our setting). Training these models (say via maximum like-
lihood) is possible but also requires estimating marginal probabilities
and this can be computationally expensive (see Ch.20, [75]).

Recall that we are mainly interested in MAP inference queries where
we do not need the exact probability value for the predicted assignment
of Vx

U . Because of that, we are now able to leverage recent advances
in scalable training methods for CRFs and in particular max-margin

61

discriminative models for predicting program properties

training [102, 127], a method geared towards answering MAP inference
queries on the trained CRF model.

choice of model: summary In summary, based on the above
reasoning, we arrive at using MAP inference queries with Conditional
Random Fields (CRFs), a probabilistic, undirected graphical model
which we learn from the available data via efficient max-margin train-
ing. We do note however that the translation of programs to networks
and the feature functions we provide are directly reusable if one is inter-
ested in performing marginal queries and quantifying the uncertainty
associated with the solutions.

2.7.1 Clustering vs. Probabilistic Models

It is instructive to understand that our approach is fundamentally
not based on clustering. Given a program x, we do not try to find a
similar (for some definition of similarity) program s in the training
corpus and then extract useful information from s and integrate that
information into x. Such an approach would be limiting as often there
is not even a single program in the training corpus which contains
all of the information we need to predict for program x. In contrast,
with the approach presented here, it is possible to build a probabilistic
model from multiple programs and then use that information to predict
properties about a single program x.

2.8 related work

Several works have used graphical models in the context of programs
[13, 54, 77, 78, 82]. All of these works phrase the prediction problem as
computing marginals. As we already discussed in Section 2.7, we find
MAP inference to be the conceptually preferred problem formulation
over marginals. Except for [77], none of these works learn the probabilis-
tic models from data. If one is to pursue learning in their context, then
this would essentially require new features which keep information
common among programs (need some form of “anchors”). Further,
because they frame the problem as computing marginal probabilities,
these approaches do not allow for learning with loss functions, meaning
that one has to model probabilities and compute the partition func-

62

2.8 related work

tion at learning time. This would be prohibitively expensive for large
datasets (such as ours) and does not allow for leveraging advanced
methods for MAP inference based on structured prediction (where one
need not compute the partition function). Indeed, the learning method
of [77] is extremely inefficient and suffers from the need to compute
expectations w.r.t to the model which is generally very expensive and
requires sampling, a less scalable procedure than MAP inference.

In terms of particular applications, [78] aims to infer ownership
values for pointers which range over a very small domain of 4 values:
ro, co, and their negation. In contrast, we efficiently handle variables
with thousands of possible assignments (for names) and even for types,
the size of our domain is much greater. Further, their selection of
feature functions makes the inference process extremely slow. The
reason is that one of the features (called the check factor, critical to
the precision of their approach) requires running program analysis
essentially on every iteration of the inference: this is impractical in an
interactive setting (even with optimizations). Indeed, their follow-up
work (section 3, [77]) mentions that the authors would like to find
a better solution to this problem (unfortunately, pre-computing this
feature is also practically infeasible due to the large numbers of possible
combinations of values/variables). Similarly, [82] focuses on inferring
likely tags for String methods (e.g. source, sink, regular, sanitizer),
where values range over a small domain. The basic idea is to convert
a graph extracted from a program (called the propagation graph) into
a factor graph and to then perform marginal inference on that graph.
This work does a little more than computing marginals: it selects the
best marginals and conditions on them for re-computation of the rest,
meaning that it can potentially encode constraints by conditioning on
what is already computed. This approach is computationally inefficient:
it essentially requires running inference N times for N variables, instead
of once. Further, the approach cannot compute optimal MAP inference.
The paper of Beckman et al.[13] is similar to [82] in the sense that it
infers permission annotations again ranging over a small set of values
and both build factor graphs from programs. However, the inference
algorithm in their paper just computes marginals directly and is simpler
than the one in [82] (as it does not even iterate).

Overall, we believe that the problems these works address may benefit
from considering MAP inference instead of computing marginals. Also,
it seems that even with computing marginals, these works are not using

63

discriminative models for predicting program properties

state of the art inference methods (e.g. variational methods instead of
the basic sum-product belief propagation which has no guarantees on
convergence).

2.9 discussion

In this chapter, we presented a new statistical approach for predict-
ing program properties by learning from massive codebases (aka “Big
Code”). The core idea is to formulate the problem of property infer-
ence as structured prediction with conditional random fields (CRFs),
enabling joint predictions of program properties. As an example of
our approach, we built a system called JSNice which is able to predict
names and type annotations for JavaScript. The JSNice tool became
popular in the JavaScript community.

making the crf model tractable The model we presented
in this chapter is a variant of a log-linear CRF that assigns probabil-
ities proportional to a score that is a weighted sum of feature func-
tions score(y, x) = wTf (y, x). However, the CRF model is too gen-
eral, and thus, to ensure practical applicability, it has to be restricted
in some way. For example, solving MAP inference (i.e. computing
arg maxy score(y, x)) may be undecidable if there are no restrictions
on the predictions y or the feature functions f (e.g. maximizing a
feature function fi may require satisfying predicates from undecidable
theories [24]). In order to transition from an undecidable problem to a
tractable solution, in this chapter, we imposed a number of additional
restrictions:

1. We fixed the predictions y to be a vector of a given size n(x)
known before any predictions are made (in Section 2.2).

2. We introduced feature functions that relate only pairs of program
properties and then defined f over them (in Section 2.2.2).

3. We restricted the pairwise feature function to be (mostly) indicator
functions in order to enable fast inference (in Section 2.3.4).

Relaxing these restrictions is non-trivial and typically comes at sig-
nificant computational cost. For example, with factor graphs [75], re-
striction 2 can be slightly relaxed to feature functions that relate tuples

64

2.9 discussion

a

i

b

c

(a) Initial configuration

a

j

b

c

(b) A possible candidate configuration
in the search space

a

i k

b

c

(c) Configuration outside of the search space

Figure 2.9: Illustration of configurations that are inside or outside the
search space of a MAP inference procedure starting from an
initial configuration (a).

of size n as opposed to pairwise functions. Restriction 3 is dictated by
the need for a fast inference algorithm. If it was not for the need of fast
inference, we could have encoded JSNice into existing frameworks [40,
113] or as a probabilistic program [49]. However, these existing tools do
not come with utilities to search only in a small space of label candidates
(as defined in Section 2.4.2) for the MAP inference algorithm.

Restriction 1 is probably the most challenging to relax. Thanks to
this restriction, our MAP inference procedure first builds a fixed graph
and then performs a search only over labels associated with every node
in that graph. We illustrate the effects on this restriction on a prediction
task with one unknown property initially assigned to i as in Fig. 2.9
(a). In this example, the search procedure may explore configurations
such as Fig. 2.9 (b) that assign different values to nodes associated with
unknown program properties.

However, configurations that involve different graph structures such
as the one in Fig. 2.9 (c) are not included in the search space. Thus,
restriction 1 is important for the decidability and the scalability of the
algorithm, because it avoids exploring the potentially infinite space of
graphs. In practice, this means that the model is directly applicable to
problems such as deobfuscation or type prediction, but pushing this
model to other problems such as synthesis of complex program ex-

65

discriminative models for predicting program properties

pressions (e.g. synthesizing expressions that are defined recursively or
making completions with unbounded number of completed elements)
would also require other MAP inference procedures, which is an open
problem.

improving the model expressiveness CRF is a powerful model
leveraged in multiple fields such as computer vision, natural language
processing and others [60, 79, 101]. In this chapter, we presented an in-
stantiation of CRF that pushed its scalability and enabled new program-
ming applications such as JSNice. That model represents a solution
based on traditional machine learning techniques – a log-linear model
based on feature functions trained with a gradient descent procedure.
It is also a discriminative model, which means that for each program
x in the training data, certain elements y are selected for prediction
and then a model is trained to predict y given x. In probabilistic terms,
this is learning a probability distribution P(y | x). These techniques
are powerful, but they come with their limitations as discussed before.
Further, there is need to manually define a vector of feature functions,
for which the training procedure finds weights.

Next, we present another approach that is based on generative proba-
bilistic models of programs. In contrast to the discriminative models,
these generative models capture probabilities of programs P(x) by mod-
eling them as sequences of events and thus allow us to compare proba-
bilities of programs of different length. In the next chapter, we develop
such state-of-the-art generative models applicable to code completion
and program synthesis.

Later in Chapter 5, we remove the requirement to provide feature
functions. Instead, we directly synthesize a program (i.e. a feature
function) that defines a generative probabilistic model. In a recent
experiment for code completion [20], we has shown that leveraging
such synthesis techniques leads to higher precision than using pure
machine learning techniques such as support vector machines on simple,
manually defined feature functions.

66

3
G E N E R AT I V E M O D E L S F O R A P I C O M P L E T I O N

In this chapter, we present a new approach for creating probabilistic
models of code and use these models for the task of API code com-
pletion. The chapter establishes a link between statistical models for
code and statistical models for natural languages. We show an im-
plementation of our approach in a tool for code completion of Java
programs called Slang and an experimental evaluation on a number
of real world programming scenarios. Our results show that Slang

is fast and effective. Virtually all completions synthesized by Slang

typecheck, and the desired completion appears in the top 3 results in
more than 90% of the cases.

The problem considered here differs from the one discussed in the
previous chapter in multiple ways. First, we solve a problem where
sequences of unknown length (of API calls) may be predicted as op-
posed to a number of elements determined in advance. Second, in
multiple cases we are interested not only in the best completion, but in
a ranked list of solutions. Indeed, with the approach proposed in this
chapter, we can rank solutions and report probability estimates along
with each solution. Finally, we learn from a corpus where the actual
completion positions (holes) are not available at learning time, but only
at query time. This is in contrast to the type and name predictions
whose positions are known both at query and at learning time.

Our approach is based on two ingredients: (i) a powerful static anal-
ysis that extracts sequences of method calls from large codebases, and
(ii) a statistical language model such as N-gram or (RNN) Recurrent
Neural Networks [38] to index the resulting sequences. We show how
to reduce the problem of code completion to a natural-language pro-
cessing problem of predicting probabilities of sentences. We show that
careful design of the static analysis contributes to higher accuracy of the
code completion system. That is, specialized static analysis establishes
the link between statistical models for code and statistical models for
natural languages.

In Table 3.1 we show two dimensions in the design of probabilistic
code completion systems with statistical language models.

67

generative models for api completion

Language model

n-gram RNN [38]

Intermediate
representation

Syntactic (tokens) [61] future

Semantic (Sec. 3.3) this work this work

Table 3.1: Dimensions in encoding the probabilistic code completion
problem into a language model.

In the first dimension, we consider an intermediate representation
(IR) which captures sequences extracted from code. For example, the
work of Hindle et al. [61] proposes to use the n-gram language model,
but on sequences of tokens found in the source code. Their model
only makes syntactic suggestions and according to a number of studies
is very imprecise for API predictions [61, 95]. An evaluation of this
IR in Section 5.3.4 also confirms that such a naı̈ve model is imprecise.
Instead of using a shallow representation of the code as tokens, in this
work we propose program analysis that constructs sequences based on
a semantically meaningful program representation that captures API
call invocations.

Another dimension in designing the code completion system is choos-
ing the right statistical model. In our experiments, we use an n-gram
language model, as well as a deep learning-based language model
called RNN [89]. To the best of our knowledge, this work is the first
to apply deep learning techniques to code synthesis. Finally, we show
that the combination of a suitable intermediate representation with
state-of-the-art statistical language model leads to high accuracy for the
problem of Java API code completion that we consider here.

3.1 motivation

To accomplish many common tasks, programmers increasingly rely
on the rich functionality provided by numerous libraries and frame-
works. Unfortunately, a typical API can involve hundreds of classes
with dozens of methods each, and often requires specific sequences
of operations to be invoked to perform a single task [12, 135, 136].
Even experienced programmers might spend hours trying to under-
stand how to use a simple API [86]. To address this challenge, recent

68

3.1 motivation

years have seen increasing interest in code search, recommendation and
completion systems [5, 56, 63, 86, 90, 99, 111, 117, 128, 140].

Despite significant progress, existing techniques cannot synthesize
usable code beyond simple sequences required for instantiation of
library objects. No existing technique can generate code of the com-
plexity found in real tutorials and code examples. In fact, most existing
approaches to code completion target completion based on shallow
semantic information, and cannot capture the temporal information
required for predicting correct code using a library. Some specification-
mining techniques do capture rich temporal information (see Sec. 3.8),
but do not attempt to synthesize usable code.

our approach : using statistical language models Statis-
tical language models have been successfully used to model regularities
in natural languages and applied to problems such as speech recogni-
tion, optical character recognition, and others [114].

Our main idea is to reduce the problem of code completion to a
natural-language processing problem of predicting probabilities of sen-
tences: we use regularities found in sequences of method invocations
to predict and synthesize a likely method invocation sequence for code
completion. This reduction is in fact building a probability distribu-
tion over method invocation sequences such that method invocation
sequences can be predicted for new programs.

big data , small programs To construct the statistical language
model, we use static analysis to extract a large number of histories of
API method calls from a massive number of code snippets obtained from
GitHub [46] and other repositories. The extracted histories are used as
training sentences for the statistical language model. We show how to
use this statistical model in order to generate completions in code. Then,
we show that the quality of the synthesized completions depends on the
precision of the static analysis and whether we use aliasing information
during the history extraction. This is, the static analysis is used to
extract relevant information for predicting API method calls. Overall,
our synthesizer represents a new combination of statistical language
models with program analysis techniques.

The synthesizer takes as input a partial program with holes and
outputs a program where all of the holes are filled in with (sequences
of) method invocations. Computing the “small program” required for

69

generative models for api completion

Training phase Query phase

Training
dataset

Sentences

Abstraction

Train LM

Statistical Language Model

Partial
program

with holes

Sentences
with holes

Abstraction

Candidate
sentences

Completion

LM lookup

CombineConstraints

Figure 3.1: The architecture of Slang.

code completion, is based on the language model constructed from “big
data”. Specifically, we employ the language model to find the highest
ranked sentences, and use them to synthesize a code completion.

The synthesizer can:

1. discover sequences of invocations across multiple types,

2. complete both invocations and arguments of invocations,

3. complete multiple holes as well as each hole with a sequence of
invocations, and

4. infer fused completions which do not exist in the training set.

3.2 overview

The overall flow of Slang is shown in Fig. 3.1. During the training
phase, we use program analysis to extract sequences of API calls from
the entire code base. Then, a statistical language model is trained on
this extracted data. In this work we use the N-gram model, Recurrent
Neural Networks and a combination of these two. The result of the
training phase is a probability associated with each of the extracted
sequences of method invocations. To interact with Slang, the pro-
grammer provides a partial program with holes. Our program analysis

70

3.2 overview

extracts the sequences from this partial program, and uses the statistical
language model to compute a set of candidate completion sequences.
The final completion for all the holes is selected based on the highest
probability and on whether the completion satisfies the constraints
posed by each hole.

The effectiveness of Slang is due to a careful combination of statistical
models with program analysis. In particular, we use a form of alias and
history analysis to extract sequences of method invocations from the
code base, which are then used to train the language model. Training
on sequences extracted without performing program analysis produces
poor results and fails to produce completions (let alone desired ones) for
many examples. Our combination of program analysis and language
models makes the difference between not obtaining any solution at all
versus obtaining the desired solution at the top of the list.

learning corpus A key enabler for Slang is the availability of
large code repositories to train on. This code, however, is not necessarily
easily executable. First, compiling, resolving dependencies and linking
is a challenge (sometimes compiling instructions are only available in
plain text). Then, many programs do not include inputs that would
make them readily executable. Finally, even if we execute some pro-
grams, it is unclear if these executions will produce interesting traces
to learn from. In contrast, static program analysis does not suffer from
these limitations and is available even for partial programs [33].

example To illustrate our Slang system, consider the Android ex-
ample shown in Fig. 3.2. The Android MediaRecorder API is known to
be quite involved. The official documentation for this API includes a
state-machine with 7 different states1, corresponding to internal states
of the media recorder.

Consider a programmer trying to work with the MediaRecorder API
and interested in combining this API with other APIs from classes
such as Camera and SurfaceHolder. The programmer may have partial
knowledge about MediaRecorder, for instance, she may know that she
needs to set an audio and video source as well as the exact API calls
and parameters for doing so. However, she may still be missing some
of the details.

1 see http://developer.android.com/reference/android/media/MediaRecorder.html

71

http://developer.android.com/reference/android/media/MediaRecorder.html

generative models for api completion

void exampleMediaRecorder () throws IOException {

Camera camera = Camera.open ();

camera.setDisplayOrientation (90);

? // (H1)

SurfaceHolder holder = getHolder ();

holder.addCallback(this);

holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

MediaRecorder rec = new MediaRecorder ();

? // (H2)

rec.setAudioSource(MediaRecorder.AudioSource.MIC);

rec.setVideoSource(MediaRecorder.VideoSource.DEFAULT);

rec.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);

? {rec} // (H3)

rec.setOutputFile("file.mp4");

rec.setPreviewDisplay(holder.getSurface ());

rec.setOrientationHint (90);

rec.prepare ();

? {rec} // (H4)

}

(a)
void exampleMediaRecorder () throws IOException {

Camera camera = Camera.open ();

camera.setDisplayOrientation (90);

camera.unlock(); // (H1)

SurfaceHolder holder = getHolder ();

holder.addCallback(this);

holder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

rec = new MediaRecorder ();

rec.setCamera(camera); // (H2)

rec.setAudioSource(MediaRecorder.AudioSource.MIC);

rec.setVideoSource(MediaRecorder.VideoSource.DEFAULT);

rec.setOutputFormat(MediaRecorder.OutputFormat.MPEG_4);

rec.setAudioEncoder(1); // (H3) - completed with two methods

rec.setVideoEncoder(3);

rec.setOutputFile("file.mp4");

rec.setPreviewDisplay(holder.getSurface ());

rec.setOrientationHint (90);

rec.prepare ();

rec.start(); // (H4)

}

(b)

Figure 3.2: (a) A partial program using MediaRecorder and other APIs,
and (b) its completion as synthesized by Slang.

72

3.2 overview

Using Slang, a programmer can write the partial program of Fig. 3.2(a),
and rely on the synthesizer to complete the missing details. The partial
program uses the statement “?” to denote a “hole”, missing code to be
completed by the synthesizer. The program of Fig. 3.2(a) has four differ-
ent holes, marked with comments (H1)-(H4). Each hole is a query to the
synthesizer asking it to infer a sequence of method invocations using
(some of) the variables that are in scope. The hole can be constrained
to only use certain variables by specifying a set of variable names. In
this example, holes (H1)-(H2) are not bound to specific variables, while
(H3)-(H4) are limited to only infer invocations that use the variable rec

(either passed in as an argument or as the receiver). In Section 3.5, we
describe other forms of queries that can relay additional information
to the synthesizer. Given the partial program of Fig. 3.2(a), Slang

automatically synthesizes completions for the holes using the most
likely sequences of method invocations, shown in bold in Fig. 3.2(b).

key aspects This example highlights four key aspects of Slang:

• Completion across multiple types: the completion of (H1)
as camera.unlock() is an invocation on an object of type
Camera, the completions for (H2-H4) are invocations on an ob-
ject of type MediaRecorder. Further, the completion of (H2) as
rec.setCamera(camera) uses parameter of type Camera in a com-
pleted invocation for MediaRecorder.

• Completion of parameters: the completion of (H3) us-
ing the two invocations rec.setAudioEncoder(1) and
rec.setVideoEncoder(3) includes not only the invocations, but
also the required parameters.

• Holes as sequences: The completion of (H3) uses a sequence
of two invocations to complete a single hole. In general, our
approach can generate a sequence of invocations to complete a
hole (up to some specified length).

• New fused completions: Our system can infer fused sequences
that did not exist before. Neither of the sequences for Camera or
MediaRecorder were in the training set, yet Slang successfully
synthesized an invocation that involves both of these in order to
complete the hole (H2).

73

generative models for api completion

3.3 formal semantics

In this section, we provide basic definitions of an event and a sequence
of events (history) that we use in the rest of the paper. In Section 3.3.1,
we provide a simple instrumented semantics for tracking sequences of
events over objects. Because there is no a priori bound on the number
of dynamically allocated objects, and no a priori bound on the length
of a history, the concrete semantics is generally non-computable. In
Section 3.3.2, we present an abstract semantics that provides a bounded
representation for histories, and tracks a bounded set of bounded
histories for each (abstract) object.

3.3.1 Concrete Semantics

We define an instrumented concrete semantics that tracks the concrete
sequence of events for each concrete object. We refer to the concrete
sequence of events as the concrete history of the concrete object. We start
with a standard concrete semantics for an imperative object-oriented
language, defining a program state and evaluation of an expression in
a program state.

objects and program state Restricting attention to reference
types, the semantic domains are defined as follows:

L\ ∈ P(objects\)
v\ ∈ Val = objects\ ∪ {null}
ρ\ ∈ Env = VarIds→ Val
π\ ∈ Heap = objects\ × FieldId→ Val
state\ = 〈L\, ρ\, π\〉 ∈ States = P(objects\)× Env×Heap

where objects\ is an unbounded set of dynamically allocated objects,
VarIds is a set of local variable identifiers, and FieldId is a set of field
identifiers. A program state tracks the set L\ of allocated objects, an
environment ρ\ mapping local variables to (reference) values, and a heap
π\ mapping fields of allocated objects to values.

instrumented semantics: events and histories In our in-
strumented semantics, each concrete object is mapped to a “concrete
history” that records the sequence of events that has occurred for that

74

3.3 formal semantics

object. That is, we employ a form of per-object cartesian abstraction.
An event for an object o corresponds to an invocation of an API method
involving the object o: o can either be the receiver object (this), the
return value returned by the API invocation, or one of the arguments
to the method invocation.

More formally, an event is a pair 〈m(t1, . . . , tk), p〉, of a method signa-
ture m(t1, . . . , tk), and a position argument p denoting the position of
the object o in the invocation of m. The position p can be 0 denoting
this, or a value denoting one of the positions 1, . . . , k. We also use
a designated position value ret to denote the case where o is a new
object returned from the invocation of m. To simplify presentation, we
assume that an object appears in at most one position of a given method
invocation, and that methods are not invoked with a null argument.
Our implementation deals with the more general case where an object
can appear in multiple positions (by replacing the position argument
p to be a set of positions), and correctly handles invocations with null
arguments.

Given an API A with methods m1, . . . , mn, we use ΣA to denote the
set of all events over the API. When the API is clear from context,
we omit the subscript A. We define the notion of a concrete history
for an API simply as a sequence of events Σ∗. We denote the empty
concrete history by ε and denote the set of all concrete histories by H.
The instrumented semantics is obtained by augmenting every concrete
state 〈L\, ρ\, π\〉 with an additional mapping that maps each allocated
object to its concrete history, that is his\ : L\ ⇀ H. Given a state
〈L\, ρ\, π\, his\〉, the semantics generates a new state 〈L\ ′, ρ\

′, π\ ′, his\ ′〉
when evaluating each statement. We assume a standard interpretation
for statements updating L\, ρ\, and π\. The his\ component changes on
object allocations and method invocations:

• Object Allocation: The statement x = new T() allocates a fresh
object onew ∈ objects\ \ L\ initialized with the empty-sequence
history his\ ′(onew) = ε.

• Method Invocation: For an invocation x0.m (x1, . . . , xn) of a method
with signature m(t1, . . . , tn), the history of every object o = ρ\(xi)

(where 0 ≤ i ≤ n) is extended with an event e = 〈m(t1, . . . , tn), i〉,
that is: his\ ′(o) = his\(o) · e, adding an event to the history to
reflect the invocation of m. If the invocation of m returns an object
r, its history his\(r) is extended with 〈m(t1, . . . , tn), ret〉.

75

generative models for api completion

3.3.2 Abstract Semantics

The instrumented concrete semantics is generally non-computable as
there are no a priori bounds on the number of dynamically allocated
objects, or on the length of histories. We now present an abstract
semantics that provides a bounded representation.

heap abstraction We use a flow-insensitive and field-sensitive
Steensgaard style [123] points-to analysis to partition the objects\ set
into a bounded set of abstract objects called objects.

history abstraction Our goal is to extract a set of sentences that
can be given as input to language models (see Section 3.4). Towards
that end, we bound the number of loop iterations in our analysis to
guarantee that collected histories are of bounded length. We define the
notion of an abstract history as a set of concrete histories of bounded
length, namely an abstract history h ⊆ H. That is, while a concrete
history describes a unique sequence of events, an abstract history
represents potentially many concrete histories capturing the different
control flows through the program.

abstract state The tuple 〈L, ρ, π, his〉 denotes an instrumented
abstract program state consisting of the set of allocated abstract objects,
the local variables which point to abstract objects, the abstract heap
and the abstract history for each abstract object. The definition of the
first three components is computed in a standard way. We next discuss
the definition of his which is now lifted to abstract objects and abstract
histories as follows: his : L ⇀ P(H).

abstract semantics of his The abstract semantics for updating
his follow the structure of the concrete semantics except that it is lifted
to deal with abstract objects, and abstract histories.

• Object Allocation: The statement x = new T() results in an abstract
object anew ∈ objects with a set containing a new empty history:
his(anew) ∪ = {ε}.

• Method Invocation: For an invocation x0.m (x1, . . . , xn) of a method
with signature m(t1, . . . , tn), the abstract history of every abstract
object o = ρ(xi) (0 ≤ i ≤ n) is extended with e = 〈m(t1, . . . , tn), i〉,

76

3.4 statistical language models

that is, his′(o) = {h · e | h ∈ his(o)}, adding an event to each
concrete history of the abstract history. If the invocation re-
turns an object r, the abstract history his(r) is extended with
〈m(t1, . . . , tn), ret〉.

joins Whenever a join of the control-flow occurs, the new history
for each abstract object is computed by combining the histories for that
abstract object arriving from each of the branches (by applying union to
the corresponding sets). As long as the domain of abstract histories is
bounded, the analysis is guaranteed to terminate. However, in practice,
it can suffer from an exponential blowup due to branching control
flow. To mitigate potential exponential blowup, we limit the number
of collected histories by some threshold. Once that threshold has been
met, we randomly evict older histories to make room for new ones. In
our experiments, we used the threshold 16 which was sufficient for
99.5% of the analyzed methods.

3.4 statistical language models

Statistical language models have been used to model the regularities
in natural languages and improve the performance of problems such
as speech recognition, statistical machine translation, optical character
recognition, and others [114]. In this work, we use regularities found
in sequences of method invocations to predict and synthesize a likely
method invocation sequence in the context of code completion. In
this section, we first define the necessary statistical language modeling
background, and then show how language models can be leveraged for
synthesis of code completions.

Statistical language models are based on the concepts of words and
sentences, where each sentence is an ordered sequence of words. Every
word w is taken from a set D also called a dictionary. A language is
informally defined as all sentences used in some particular domain.
The goal of a language model is to build a probabilistic distribution
over all possible sentences in a language. This is, given a sentence
s, the language model estimates its probability Pr(s). For a sentence

77

generative models for api completion

s = w1 · w2 · ... · wm, many language modeling approaches estimate its
probability as follows:

Pr(s) =
m

∏
i=1

Pr(wi | hi−1)

where we refer to the sequence hi = w1 · w2 · ... · wi as a history. That is,
the probability of a sentence can be calculated by generating it word by
word using conditional probabilities on the already generated words.
Furthermore, language models are usually constructed on a finite
amount of training data that is used to estimate the actual probabilities
of sentences. Because not all possible sentences in the language or their
prefixes will be in the training data (also referred to as the problem
of sparse data [114]), the model uses other statistical techniques to
estimate probabilities.

3.4.1 N-gram Language Models

In order to deal with the sparseness of the data, an N-gram data model
estimates the probability of a sentence of m words by modeling a
language as a Markov source of order n− 1:

Pr(s) =
m

∏
i=1

Pr(wi | wi−n+1 · ... · wi−1)

That is, the probability of the next word wi depends only on the
previous n− 1 words. Note that this definition also refers to words
with negative indices wa for a < 0, for example when looking the words
preceding the first word. In this case, the language model uses a special
“start of sentence” word wa = <s> to denote conditional probability on
beginning a sentence. In our work we use the trigram language model
where the probability of a word depends on a pair of previous words.
That is, for the trigram language model, we have that:

Pr(s) =
m

∏
i=1

Pr(wi | wi−2 · wi−1).

Such probabilities are estimated by counting the number of occurrences
of trigrams and bi-grams in the training data.

78

3.4 statistical language models

wi

input: vi

context: ci−1

context: ci

ci - hidden layer

output: yi

yi
wi+1

= Pr(wi+1 | hi)

Figure 3.3: A scheme of a recurrent neural network (RNN). The input
is a word vector for the i-th word in a sentence, the output
is probabilities for different possible words at position i + 1.

smoothing Even for small n, these models can still suffer from the
problem of data sparseness. For example, some n-grams may only
occur once or not at all in the training data and yet their probabilities
must be estimated. To mitigate this problem, practical n-gram language
models use counts for n-grams, (n− 1)-grams and for all lengths down
to unigrams. Further, they smooth the probability by using models of
lower length [72, 73] when sparseness problems in estimating sentence
probabilities occur. In our work, we use Witten-Bell backoff smooth-
ing [137], which is applicable even when we remove rare words from
the training data.

3.4.2 Recurrent Neural Networks (RNNs)

In recent years, the increased availability of computational resources for
training led to wider adoption of neural networks for predicting proba-
bilities of sentences [76]. These approaches are conceptually interesting
in the fact that they do not capture only regularities between a word
and a fixed number of predecessor words, but may also capture longer
distance relations between words. Initially proposed by Elman [38],
recurrent neural networks (RNNs) predict probabilities of the (i + 1)-st
word according to the scheme in Fig. 3.3.

In the schema, vi and yi are vectors of |D| real numbers, where D is
the dictionary such that every possible word x ∈ D has a corresponding
index in vi and yi (referred as vi

x and yi
x). Let ci (for every i) be a vector

79

generative models for api completion

of p real numbers. The number p is also called the size of the hidden
layer and the entire network is referred to as RNN-p. RNN uses two
functions f and g and estimates word probabilities iteratively on a
sentence s = w1 · ... · wm by performing the following actions for every
word wi ∈ s : i) set all positions of vi to zeros, except position vi

wi
to

one; ii) compute ci = f (vi, ci−1) and yi = g(ci). Then the vector yi is
used as an estimator of the probabilities for the next word wi+1:

Pr(wi+1 | w1 · ... · wi) ≈ yi
wi+1

During training, the functions f and g are learned from data to
minimize the error rate of the estimates yi (details are in [76]). What
is essential for RNNs, however, is that they can capture long distance
regularities in the language via the hidden layer ci. Intuitively, the
values in ci act as an internal state of an automaton and at every step i,
the previous internal state ci−1 is used for computing ci.

In Slang, we use RNNME-p – a faster variant of RNN with a hidden
layer size of p that combines RNN-p with a class-based maximum
entropy model [89]. To the best of our knowledge, this work was the
first one to apply deep learning to probabilistic models for programs.

combination models Due to the different nature of the models
based on n-grams and RNNs, it is possible that averaging the probabili-
ties returned by two probabilistic models performs better than using the
probabilities of the individual models separately. In our experiments
in Section 3.7, we show that a combined model between a 3-gram and
a RNNME-40 language model ranks the correct completion as a first
result in more cases than the two base models individually.

future work There is an ongoing effort to develop even more
precise neural language models than recurrent neural networks. One
issue of RNNs is that while they can theoretically express arbitrary
long distance relationships, learning these relationships is hard [14].
To address this problem, Gers et al. [45] proposed variations of RNNs
called Long Short-Term Memory (LSTM) language models. We leave
exploring LSTMs as a future work item, but since our abstraction limits
the length of the sentences to only 16 words, we do not expect LSTMs
alone to bring significant improvements.

80

3.4 statistical language models

3.4.3 Sentence Completion with Language Models

In addition to computing probabilities for single sentences, we can
leverage a language model to complete missing holes in a sentence
(with the most likely completions). As a simple example, consider the
following natural language sentence with a missing word:

The quick brown ? jumped .

If the word ? is replaced with an actual natural language word from
the dictionary of words D, a statistical language model is useful as a
scoring function of the most probable completion. However, certain
language models are also useful to suggest very likely completions of
the holes. For example, a bigram model keeps all pairs of sequential
words that are present in the training data. In our example, these could
be the pairs 〈brown, fox〉, 〈brown, dog〉, etc. Then, if the word preceding
the hole is a (e.g., a = brown), we can suggest filling the hole only
with words x, such that 〈a, x〉 are bigrams in the training data. This
procedure significantly reduces the set of words that are candidate
completions of the sentence holes by producing candidates which a
language model may score high.

Note that in natural languages punctuation signs such as “.” denote
end of a sentence. For the purposes of language models these signs
can be treated as words. They play an important role in giving high
probabilities to complete sentences and giving low probabilities to
incomplete sentences. Consider the following pair of sentences:

The quick .

The quick brown fox jumped .

Despite the fact, that the first sentence is shorter, it likely has low
overall probability because it is highly unlikely that “.” appears
after the words “The quick” somewhere in the training data and
Pr(. | The quick) would be very low. On the other hand, the
second sentence is longer, but may have higher probability, because
every word in the sentence should have reasonable probability to follow
the words preceding it. This distinction of long and complete versus
short and incomplete sentences would not be possible without the “.”
marker. In our language model, to make sure such end-of-sentence
marker is always present, we always append a special </s> word at the

81

generative models for api completion

end every sentence (although we omit it in the presentation to keep
the notation short). Using such a marker is also standard in existing
language implementations such as SRILM [125].

3.4.4 Training on Programs

Recall that in Section 3.3, we presented a history abstraction that maps
every (abstract) object to a set of histories (i.e., sentences). These
sentences can be automatically extracted via program analysis and then
fed to a statical language model which can train on this data.

This abstraction nicely matches the two worlds of program analy-
sis and language models: an event in the semantics corresponds to a
language word and a history sequence h ∈ H corresponds to a lan-
guage sentence. To train a language model on a large set of programs,
we: i) use program analysis to extract the abstract objects and their
corresponding (history) sequences; and ii) discard the abstract objects,
treat the extracted histories as sentences in the language, and train a
statistical language model over this data.

3.5 synthesis

So far we discussed the training phase of Slang. We next discuss
how code completion works. The synthesizer takes as input a partial
program (augmented with holes) and outputs a program where the
holes are filled with (sequences of) method invocations. To enable
programmers to use our approach and specify partial programs, we
introduce the following construct for specifying holes:

? lvars:l:u

where lvars ∈ P(VarIds) is a set of (reference) local variables and l

and u are natural numbers which constrain the length of the sequence
from below and from above. All of these are optional parameters which
are provided as a convenience to the programmer in case she would like
to constrain the possible completions. Informally, this construct directs
the synthesizer to search for a valid replacement of ? lvars:l:u with
a sequence of method invocations where lvars participates in each
invocation and where the length of the sequence is between l and u. For
example, the hole ? directs the synthesizer to look for the most likely

82

3.5 synthesis

sequence of method invocations of any length. A more restrictive hole
would be ?{x} which instructs the synthesizer to find sequences where
variable x participates in the method invocation: either a method on x

was invoked or x is passed in as an argument to some other method.
That is, in the sequence, for each of the method invocations, the variable
x should participate in some form. The meaning of a query such as
?{x,y}:1:1 is that the suggested sequence must consist of exactly 1

method invocation where both x and y participate in that invocation.

code completion : step-by-step We now present the procedure
which takes as input a partial program that may contain multiple holes
and infers the most likely completions for the holes. To avoid clutter,
we describe the case where all of the holes require l and u to be equal to
1, that is, all holes have the shape: ?lvars:1:1. This means that every
hole has to be replaced with exactly one method invocation (there could
be multiple variables constraining the hole). We can translate holes of
the more general shape ?lvars:l:u to u− l+ 1 separate queries: for
every i ∈ [l, u], perform a query with i sequentially placed holes where
each hole has the shape ?lvars:1:1.

Before we explain the steps of our algorithm, let us introduce some
necessary notation. Recall that a concrete history is a sequence of events
where each event (see Section 3.3.1) represents a method invocation.
However, with partial programs, we now have hole statements which
are to be replaced with sequences of events. Therefore, we define
a set of histories with holes H◦ = (Σ ∪ G)∗ where G represents all
possible holes. Next, we explain our algorithm and illustrate each
step on the example in Fig. 3.4. The example is based on a ques-
tion from StackOverflow at http://stackoverflow.com/questions/
14452808/sending-and-receiving-sms-and-mms-in-android. Here,
we have a partial program Fig. 3.4(a), for which Slang must synthe-
size the completion in Fig. 3.4(b). That is, the tool must infer that if
the message was divided into parts, the most likely method to call
is sendMultipartTextMessage, while otherwise it is sendTextMessage.
The first and the second hole are assigned unique identifiers H1 and H2

respectively.

step 1 : extract abstract histories with holes Given a par-
tial program, for each abstract object, we automatically extract its ab-
stract histories with holes (as described in Section 3.3.2, except that we

83

http://stackoverflow.com/questions/14452808/sending-and-receiving-sms-and-mms-in-android
http://stackoverflow.com/questions/14452808/sending-and-receiving-sms-and-mms-in-android

generative models for api completion

SmsManager smsMgr = SmsManager.getDefault ();

int length = message.length ();

if (length > MAX_SMS_MESSAGE_LENGTH) {

ArrayList <String > msgList =

smsMgr.divideMsg(message);

? {smsMgr, msgList} // (H1)

} else {

? {smsMgr, message} // (H2)

}

(a)

SmsManager smsMgr = SmsManager.getDefault ();

int length = message.length ();

if (length > MAX_SMS_MESSAGE_LENGTH) {

ArrayList <String > msgList =

smsMgr.divideMsg(message);

smsMgr.sendMultipartTextMessage(...msgList...); // (H1)

} else {

smsMgr.sendTextMessage(...message...); // (H2)

}

(b)

Figure 3.4: (a) A partial program, and (b) its completion as automat-
ically synthesized by Slang (the full list of parameters is
omitted for clarity). The example is based on a question
from StackOverflow.

84

3.5 synthesis

now also have holes appearing in abstract histories). The output of
this step is a function hispt : L ⇀ P(H◦). For our running example, the
output of this step will be a map hispt defined as follows:

smsMgr 7→ {〈getDefault, ret〉 · 〈H2〉 ,
〈getDefault, ret〉 · 〈divideMsg, 0〉 · 〈H1〉}

message 7→ {〈length, 0〉 ,
〈length, 0〉 · 〈H2〉}

msgList 7→ {〈divideMsg, ret〉 · 〈H1〉}

step 2: compute candidate completions We next compute
the set of candidate completions for all of the abstract histories obtained
from Step 1. For our example, this set of partial histories is shown in the
first column of Fig. 3.5. To aid the subsequent completion, we slightly
overload the notation for holes and to each hole, we also add the abstract
object for which the partial abstract history was built. For instance, if
Slang suggests 〈sendTextMessage, 0〉 for replacing 〈H2, smsMgr〉, then
smsMgr will be placed at position 0, essentially denoting the invocation
smsMgr.sendTextMessage(...).

For each partial abstract history, we compute a sorted list of possible
histories without holes. The way we do that is via a two-step approach.
In the first step, we use the bigram model in order to suggest candi-
date completions to the holes and obtain histories without holes (as
discussed in Section 3.4.3). Then, in the second step, we use an N-gram
language model or an RNN model to rank these completed candidate
histories.

Finally, we end up with a map candidates : H◦ ⇀ H∗ where for a
partial abstract history, the list candidates(h) is sorted by the probability
of the sequence (history without holes). That is, more likely sequences
appear ahead of less likely sequences. For our example, the candidate
completions together with the probability of each sequence are shown
in the last two columns of Fig. 3.5.

85

generative models for api completion

Pa
rt

ia
l

H
is

to
ry

Id
C

an
di

da
te

C
om

pl
et

io
ns

P
r

〈g
e
t
D
e
f
a
u
l
t

,r
e
t
〉·
〈H
2

,s
m
s
M
g
r
〉

1
1
〈g
e
t
D
e
f
a
u
l
t

,r
e
t
〉·
〈s
e
n
d
T
e
x
t
M
e
s
s
a
g
e

,0
〉

0.
00

73
1

2
〈g
e
t
D
e
f
a
u
l
t

,r
e
t
〉·
〈s
e
n
d
M
u
l
t
i
p
a
r
t
T
e
x
t
M
e
s
s
a
g
e

,0
〉

0.
00

10

〈g
e
t
D
e
f
a
u
l
t

,r
e
t
〉·
〈d
i
v
i
d
e
M
s
g

,0
〉·
〈H
1

,s
m
s
M
g
r
〉

2
1
〈g
e
t
D
e
f
a
u
l
t

,r
e
t
〉·
〈d
i
v
i
d
e
M
s
g

,0
〉·
〈s
e
n
d
M
u
l
t
i
p
a
r
t
T
e
x
t
M
e
s
s
a
g
e

,0
〉

0.
00

33
2

2
〈g
e
t
D
e
f
a
u
l
t

,r
e
t
〉·
〈d
i
v
i
d
e
M
s
g

,0
〉·
〈s
e
n
d
T
e
x
t
M
e
s
s
a
g
e

,0
〉

0.
00

16

〈l
e
n
g
t
h

,0
〉·
〈H
2

,m
e
s
s
a
g
e
〉

3
1
〈l
e
n
g
t
h

,0
〉·
〈l
e
n
g
t
h

,0
〉

0.
01

32
3

2
〈l
e
n
g
t
h

,0
〉·
〈s
p
l
i
t

,0
〉

0.
00

80
3

3
〈l
e
n
g
t
h

,0
〉·
〈s
e
n
d
T
e
x
t
M
e
s
s
a
g
e

,3
〉

0.
00

17
3

4
〈l
e
n
g
t
h

,0
〉·
〈s
e
n
d
M
u
l
t
i
p
a
r
t
T
e
x
t
M
e
s
s
a
g
e

,1
〉

0.
00

01
〈d
i
v
i
d
e
M
s
g

,r
e
t
〉·
〈H
1

,m
s
g
L
i
s
t
〉

4
1
〈d
i
v
i
d
e
M
s
g

,r
e
t
〉·
〈s
e
n
d
M
u
l
t
i
p
a
r
t
T
e
x
t
M
e
s
s
a
g
e

,3
〉

0.
08

21

Fi
gu

re
3
.5

:T
he

p
ar

ti
al

se
qu

en
ce

s
ex

tr
ac

te
d

fr
om

th
e

p
ro

gr
am

in
Fi

g.
3

.4
an

d
th

ei
r

ca
nd

id
at

e
co

m
p

le
ti

on
s

(w
it

h
pr

ob
ab

ili
ti

es
).

86

3.5 synthesis

step 3 : compute an optimum and consistent solution Fi-
nally, in step 3 we compute the map completion : H◦ ⇀ H. That is,
for each partial abstract history h ∈ H◦, we need to select a history
from candidates(h) which completes h. However, even though the list
candidates(h) is sorted by probability, we may not always pick the first
sequence in that list. The reason we cannot always pick the first se-
quence is because we need to make a global decision for all suggested
completions, rather than a local per-history choice. In our algorithm,
we iterate over the map candidates (over the sorted lists in candidates),
following the sorted priority order and build a map completion for each
abstract history. In particular, the completion which we return satisfies
two criteria:

• Global optimality: Let T = hispt(L) denote all partial abstract
histories. Then, the returned completion should maximize the
score:

∑h∈T(Pr(completion(h)))
|T|

• Consistency: A proposed completion should also be consistent:
we make sure that the completion satisfies certain constraints
imposed by the programming language and by the constraints
of the hole. First, if a hole appears multiple times (e.g., due to
loop unrolling), then we make sure that the hole is always filled
in with the same completion in every history of completion’s range
(to yield a syntactically valid program). Second, if we have a hole
of type ?{x,y,...}:1:1 which involves more than one variable
(which do not alias), we make sure that the variables x, y,...,
appear as parameters at different positions in the corresponding
suggestion.

Since our completion algorithm starts with the highest scoring com-
pletion and exhaustively generates candidates in reverse score order
until a consistent completion is obtained, our procedure is guaranteed
to always find the best scoring completion. Finally, given a completion,
we extract the methods found for each hole and suggest those to the
developer.

completions for our example Back to our example, if we choose
the completions 11, 21, 31, and 41 in Fig. 3.5, we get the highest proba-
bility according to the Global optimality equation above. However the

87

generative models for api completion

combination of these sentences is inconsistent because completion 11
suggests that we fill the hole H2 with method sendTextMessage while
31 suggests that we use sendTextMessage. This is clearly impossible
when the hole is of size one. Thus, we continue to generate candidate
completions in the order of their probabilities until we find the first
consistent completion – using sentences 11, 21, 33, and 41. According to
this choice of sentences, H1 is filled with sendMultiPartTextMessage,
and H2 is filled with sendTextMessage. This is the completion returned
to the developer, also shown in Fig. 3.4 (b).

3.6 implementation

We implemented Slang as a series of utilities that train statistical
language models on massive codebases and perform completions on
partial programs with holes. Slang is implemented in Java and C++
and depends on a Java compiler for compiling the code, the Soot [131]
framework for obtaining an intermediate representation (we work with
Jimple) useful for program analysis, SRILM [125] for n-gram language
models, and RNNLM 2 for recurrent neural networks. We have de-
signed Slang to be scalable and efficient: it can handle most queries
in few seconds. Next, we discuss the implementation of the different
components of Slang.

3.6.1 Program Analysis: Heap and Sequences

We aimed at a simple, fast and scalable program analysis that can
quickly process massive amounts of data. To abstract the heap, we
implemented an intra-procedural Steensgaard-style alias analysis [123]
due to its near linear time complexity and the fact that it can process
classes and methods independently. At the start of every method, we
assume that all reference arguments in the method do not alias. Gener-
ally, an assumption of this (or similar) kind is required, because at both
training time and query time we do not have the entire context in which
the method will execute. Further, for our problem of suggesting code
completions, we are not limited to only consider over-approximations.

In our implementation of the history abstraction, we bound the
number of loop iterations L in order to avoid exponential blowup in

2 http://www.fit.vutbr.cz/ imikolov/rnnlm/

88

3.6 implementation

space and time (in the number of generated sequences). Further, we do
not consider extracted sequences with more than K words (invocations)
per abstract object. We can easily vary both L and K, though in our
experiments we set those to 2 and 16 respectively.

3.6.2 Language Models: Preprocessing

Once the sentences (histories) from the training data are obtained via
the program analysis, we index them into a language model. As with
natural languages, sentences include some commonly occurring words,
but there is a heavy long tail of very rare words. However, the rarely
occurring words are of little value for our code completion problem.
The reason is that these words are likely to represent events that are
specific to only a few projects in our index. Thus, we have added a
preprocessing step that replaces words that occur less than a certain
number of times in the training corpus with placeholder unknown
words. This replacement has no observable effect on the availability
of results other than for very rare API calls. However, it enables us
to obtain compact n-gram language models and a small dictionary is
essential for RNNs [15].

Once the preprocessing step is complete, Slang invokes a language
modeling system in order to generate an N-gram language model or an
RNN model of the training data and in addition also builds a bigram
model of the training data in order to create candidate completions as
described in Section 3.4.3. These two steps are independent and can be
performed in any order.

3.6.3 Query Processing

To perform a query in Slang, the user provides a partial program
with holes which are to be filled-in by the tool. Given a query, Slang

discovers a mapping from holes to (sequences of) method invocations.
The completions include method names, as well as non-constant param-
eters given to the method call. That is, Slang can infer both method
invocations as well as the reference arguments passed to the invocation.
To infer constants, we train a simple, but effective model that given a
method call and a parameter position, returns the most likely constant
to pass as a parameter.

89

generative models for api completion

constant model We estimate the probability of a constant value
as a parameter of a method m by counting the number of times each
constant was given as a parameter to m in the training data and dividing
it by the total number of calls to m in the training data. This simple
model assumes that the constant values are independent of the context
of the method or other parameters, yet the approach is fast, feasible
and enables our completion to include complete method invocations.

3.7 evaluation

In this section we discuss an experimental evaluation of Slang. Our
main objective was to study how effective the combination of a statisti-
cal language model with a history abstraction is for code completion
purposes. Towards that, we have obtained 3, 090, 194 Android methods
used them as training data. Our training data consists of source code
of Android applications collected from various source repositories. We
compiled these sources using a specially modified version of the par-
tial compiler [33], extended to handle more cases. Then we analyzed
the compiled programs with Soot [131] to convert them into Jimple
bytecode and then fed the bytecode as training data into Slang.

3.7.1 Training Parameters

To evaluate the effect of various parameters on the quality of code
completion, we experimented with three knobs: the size of the data
set, the precision of the program analysis abstraction, and the different
choices for the language models.

For the size of the training data set, we considered three choices. The
first data set includes the entire codebase we have collected. The second
(smaller) data set contains 10% of the files of the codebase. The third
(smallest) data set contains 1% of the files. For the program analysis
abstraction, we experimented with both options: enabling or disabling
the alias analysis. Finally, we experimented with the following options
for training the statistical language model:

1. A 3-gram language model with Witten-Bell backoff smoothing,

2. A RNNME-40 recurrent neural network language model,

3. A combination of the previous two language models.

90

3.7 evaluation

Phase Running time on dataset
1% 10% all data

Training without alias analysis
Sequence extraction 4.682s 54.187s 9m 3s
3-gram language model construction 0.352s 2.366s 10.187s
RNNME-40 model construction 5m 46s 0h 53m 5h 31m

Training with alias analysis
Sequence extraction 3.556s 34.846s 5m 34s
3-gram language model construction 0.442s 3.239s 13.510s
RNNME-40 model construction 8m 42s 2h 16m 9h 34m

Table 3.2: Training phase running times.

3.7.2 Training Phase

We ran our experiments on a standard desktop workstation with a
3.5GHz Core i7 2700K processor, 16GB RAM, a solid state drive storage,
and running 64-bit Ubuntu 12.04 with OpenJDK 1.7. Our system takes
the Jimple input data and produces a language model as an output. Our
system can parallelize some steps of the computation by performing
the analysis on multiple cores, however we report runtimes only using
a single thread.

Running times of our training phase are summarized in Table 3.2.
First, we provide the time to extract the abstract histories (i.e., sequences)
from the training data. Next, we provide running times for constructing
each of the corresponding language models. We provide two pairs of
numbers - without heap abstraction (assuming that no two pointers
alias), and with a Steensgaard style alias analysis. In all cases, the
training phase processes more than 5000 methods per second on average
and the main slowdown occurs when we train the neural network. In
our experiments, performing the alias analysis did not significantly
affect the training time.

Table 3.3 provides statistics for the precomputation phase. As seen,
by using alias analysis, the data size of the produced sentences increases
by around 20%, and average sentence length increases by around 0.45
words. Importantly, the alias analysis enables extraction of more precise
histories. All of this reduces noise in the training data and helps the

91

generative models for api completion

Data statistics Dataset
1% 10% all data

Training without alias analysis
Sequences (file size as text) 7.2MiB 46.5MiB 597.4MB
Number of generated sentences 74979 759434 6989349

Number of generated words 188668 1864402 16430269

Average words per sentence 2.5163 2.4549 2.3508

3-gram language model file size 11.1MiB 50.9MiB 72.2MiB
RNNME-40 language model file size 19.3MiB 41.8MiB 29.7MiB

Training with alias analysis
Sequences (file size as text) 9.3MiB 89.1MiB 761MiB
Number of generated sentences 81477 805578 7435307

Number of generated words 241004 2358302 20751368

Average words per sentence 2.9579 2.9275 2.7909

3-gram language model file size 14.6MiB 69.6MiB 108.1MiB
RNNME-40 language model file size 22.2MiB 51.1MiB 36.0MiB

Table 3.3: Data size statistics used for evaluation of Slang.

language model learn longer and more precise event sequences from
the training data.

In terms of language models, the RNNME-40 language model is
significantly slower to train than the 3-gram model (the reason is that
the time complexity per processed word in 3-gram is constant, while in
RNN, it is linear to the size of the dictionary), but on the other hand
the RNN index with all the data is smaller in size.

3.7.3 Code Completion

We designed three different kinds of code completion tasks for evaluat-
ing our system:

1. Single object single-method completion: this task is characterized
by a single hole of type ?{x}:1:1 placed at the end of a method,
meaning that given a local reference variable x, the task of the
synthesizer is to discover exactly one method invocation which
uses x. That is, the tool predicts the next method call to be
performed involving x.

92

3.7 evaluation

Id Description

1 Registering a event listener to read the accelerometer
2 Add an account
3 Take a picture with the camera
4 Disable the lock screen
5 Get Battery Level
6 Get free memory card space
7 Get the name of the currently running task
8 Get the ringer volume
9 Get the SSID of the current WiFi network
10 Read GPS location
11 Record a video using MediaRecorder

12 Create a notification
13 Set display brightness
14 Change the current wallpaper
15 Display the onscreen keyboard
16 Register an SMS receiver
17 Send SMS
18 Load a sound resource to play in SoundPool

19 Display a web page in a WebView control
20 Toggle WiFi enabled/disabled

Table 3.4: Description on the examples from task 1 on which we perform
prediction.

93

generative models for api completion

2. General completion: this task is characterized by multiple holes and
includes examples like Fig. 3.2 and Fig. 3.4.

3. Random completion: this task completes methods from large pro-
grams where one or more holes were introduced at random.

The first task is similar to functionality provided by many IDEs where
when dot is pressed, the IDE displays a complete list of all methods
associated with the object on the left of the dot. In our case however,
we only display a partial list of methods for which we have confidence
given the training data.

evaluation data To evaluate task 1, we came up with 20 tasks that
a programmer may want to accomplish. Solving these tasks requires
usage of various Android APIs. We then inspected some of the popular
solutions available on the Web, typically provided in the form of a code
snippet. We summarized this set of examples in Table 3.4. To evaluate
task 2, we selected 14 code snippets from task 1 where we believed
it makes sense to extend the snippet to contain more than one hole
and with more complex constraints. For both tasks, we introduced
holes in the code snippets accordingly. We made sure to not include
the evaluation data into the training data in order to avoid statistical
problems such as overfitting.

For task 3, we took code from open source projects and randomly
introduced holes in 50 methods with objects interacting with multiple
Android APIs. For 23 of the random tests, multiple holes need to
be completed. We ensured that the projects we evaluate on were not
included in the training data.

94

3.7 evaluation

C
ol

um
n

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

A
na

ly
si

s
N

o
al

ia
s

an
al

ys
is

W
it

h
al

ia
s

an
al

ys
is

W
it

h
al

ia
s

an
al

ys
is

La
ng

ua
ge

m
od

el
ty

pe
3-

gr
am

3-
gr

am
R

N
N

M
E-

40
C

om
bi

na
ti

on
Tr

ai
ni

ng
da

ta
se

t
1%

10
%

al
ld

at
a

1%
10

%
al

ld
at

a
al

ld
at

a
al

ld
at

a
Ta

sk
1

(2
0

ex
am

pl
es

)
D

es
ir

ed
co

m
pl

et
io

n
in

to
p

1
6

1
1

1
6

1
8

1
2

1
8

20
20

20
D

es
ir

ed
co

m
pl

et
io

n
in

to
p

3
1
0

1
2

1
6

1
1

1
5

18
18

18
D

es
ir

ed
co

m
pl

et
io

n
at

po
si

ti
on

1
7

8
1
2

7
1
0

15
14

15
Ta

sk
2

(1
4

ex
am

pl
es

)
D

es
ir

ed
co

m
pl

et
io

n
in

to
p

1
6

3
5

7
1
0

1
0

13
13

13
D

es
ir

ed
co

m
pl

et
io

n
in

to
p

3
3

4
6

8
8

13
12

13
D

es
ir

ed
co

m
pl

et
io

n
at

po
si

ti
on

1
3

3
5

6
6

11
11

12
Ta

sk
3

(5
0

ra
nd

om
ex

am
pl

es
)

D
es

ir
ed

co
m

pl
et

io
n

in
to

p
1
6

1
3

2
7

3
6

2
1

4
3

48
48

48
D

es
ir

ed
co

m
pl

et
io

n
in

to
p

3
1
3

2
3

3
2

1
8

3
4

44
40

45
D

es
ir

ed
co

m
pl

et
io

n
at

po
si

ti
on

1
1
3

1
6

2
5

1
4

2
5

31
27

31

Ta
bl

e
3
.5

:A
cc

ur
ac

y
of

Sl
a

n
g

on
th

e
te

st
d

at
as

et
s

d
ep

en
d

in
g

on
th

e
am

ou
nt

of
tr

ai
ni

ng
d

at
a,

th
e

an
al

ys
is

an
d

th
e

la
ng

ua
ge

m
od

el
.

95

generative models for api completion

experiments We studied how the different knobs in our system
affect the quality of code completion. We considered three accuracy
metrics, based on the number of examples for which the:

1. desired method invocation is found in the list of results (we limit
the size of the list to 16),

2. desired method invocation was found in the top 3 results, and

3. desired method invocation was ranked first in the suggested
candidates list.

We evaluated a number of parameter choices and summarized the
results in Table 3.5. Columns 2-7 contain the effect of the abstraction
and the training data size. The system trained on the complete dataset
with alias analysis is able to predict all examples in our first task, and
the correct completion is in the first 3 results for 90% of the examples.
Without alias analysis and with decrease of the training data, the
accuracy significantly decreases and we can roughly quantify that using
a better program analysis component has the same effect as adding an
order of magnitude more data.

For our second task, one example could not be solved even by our
best system, because Slang was unable to collect sufficient informa-
tion for the Notification.Builder class during training. The rea-
son for this is that developers may use the class via a chain of calls
builder.setSmallIcon().setAutoCancel() that make it difficult for
an intra-procedural analysis to discover calls on the same object. We
believe that adding a more advanced (inter-procedural) analysis could
lead to further improvements of Slang.

Two tests from the random tests task could not be solved by our best
system. We believe one of them is due to a limitation of the partial
compiler that prevented us to collect data for a class at training time,
while the other is a completion that scores below the top 16 results.

language model types Columns 7, 8 and 9 of Table 3.5 summa-
rize the effect of the language models (we compare the models with
the full data size and with alias analysis). As discussed in Section 3.4,
n-gram and RNN differ significantly in the way they express histories
of sequences. While n-gram discover regularities between the last n− 1
method calls, RNN is capable of discovering longer distance relations.

96

3.7 evaluation

In our experiments, the two models differ in how they rank the
completions for some tests: while RNNME-40 is better in examples
with long distance relations similar to the one in Fig. 3.2, it occasionally
misses some short distance relations. On the other hand, the 3-gram
language model consistently finds all short distance relations. Because
most histories per object are short, the 3-gram model outperforms the
RNNME-40 model. The highest precision, however, is achieved with a
combination model that averages the probabilities of these two models.

type checking accuracy To evaluate how many completions
typechecked, we took our best combined system and manually in-
spected all of the 1032 possible completions that Slang returned (for
all of our examples). In this experiment, we found only 5 completions
which did not typecheck and they were always among the worst ranked
completions for the examples. We believe one of the reasons for such
outlier completions to appear in the results is imprecision of the alias
analysis at training time, which leads to impossible sequences in the
model. To guarantee no type errors, one can add a typechecker on the
results of Slang that discards the bad solutions.

Part of the reason for the high typechecking accuracy is in the words
of the model itself. The words in our language model are pairs of API
names and positions. The API names for Java classes are in fact fully
qualified names (i.e. include a package name, class name and a method
name). Since our training data consists of sequences that typecheck
and the words in the language model also include class names, our
completions are heavily biased towards APIs that make the completions
typecheck.

constant model Our constant model worked reasonably well.
Out of the 41 constants that needed to be inferred in the first two tasks,
25 were produced by Slang as the first result and 3 as the second
result. However, the prediction of certain constants is very difficult
with statistical techniques: e.g., guessing URLs, passwords, etc.

completion speed Our query time was dominated by the time
necessary to load the language model files. For our best system which
combines the two language models, we observed average time per
example of 2.78 seconds. To allow for interactive completions within
an IDE, we plan to load language models only once at startup.

97

generative models for api completion

summary We have shown that Slang is effective in completing
partial programs with holes. Our experiments show that using alias
analysis is important and has the effect of an order of magnitude more
training data. Combining language models has positive effect on the
ranking of the completions in our tests and with our best system, we
return the correct completion as a first result in 58 out of 84 test cases.

3.8 related work

Our work investigates the potential of techniques from natural language
processing (n-gram language model and recurrent neural networks) in
the context of programming tasks such as code completion of API calls.
We show that language models alone are sub-optimal for consistently
producing quality sequences of completions and show how to combine
these ideas with classic programming languages concepts such as alias
analysis. This combination significantly improves the quality of the
result. We believe that such combinations of statistical methods with
programming language techniques hold a great promise and are worth
further exploration.

The work of Hindle et al. [61] is prior to ours and uses natural lan-
guage techniques for code completion, but without using a static analy-
sis component to capture semantic information in their model. While
showing interesting experimental results, their evaluation confirms
that a probabilistic model on a purely syntactic program representa-
tion as tokens is interesting, but insufficient to perform high accuracy
predictions for programming tasks.

code completion and synthesis The last few years have seen
a renewed interest in various synthesis techniques which promise to
simplify various software development tasks. Many of these techniques
deal with some form of program “completion”, typically by combining
a predefined set of building blocks (e.g., expressions of some kind).
For a broader survey in recent program synthesis techniques, see Gul-
wani [52]. Below, we briefly discuss the approaches that deal with
completion of general user-level code. Prospector [86] is an approach
which automatically discovers a sequence of API calls that transform
an object of a given input type into an object of a given output type.
PARSEWeb [128] also suggests a sequence of API calls but this time the
search for the sequence is guided by the source code available on the

98

3.8 related work

Web, thus helping to eliminate many otherwise undesirable sequences.
Other works [56, 57, 99] focus on code completion by (statically) synthe-
sizing expressions of a given type at a particular program point (these
works examine the program context around that point). To find the
most likely expressions desired by the programmer, these approaches
also rely on ranking algorithms to handle the large numbers of potential
candidates. As opposed to these (static) approaches, MatchMaker [139]
synthesizes code based on observed API usage in dynamic executions
of real-world programs.

code search and specification mining There has been a lot
of work on dynamic specification mining (e.g., [7, 31, 138]), most of it
for extracting various forms of temporal specifications. As always with
dynamic analyses, the barrier to wide application of these approaches
is the ability to execute code samples, and to obtain workloads that
provide reasonable coverage. However, when they are applicable, our
approach can benefit from such dynamic methods as an additional
source of sentences provided to the training phase.

MAPO [140] uses static analysis to extract common API usage pat-
terns. MAPO employs a simple static analysis followed by an algorithm
for finding common sequences, which are later used for recommending
code snippets to users. In contrast, our goal is to synthesize code com-
pletions, and we do so directly based on probability of sequences. The
Strathcona [62] code recommendation system matches the structure of
the code under development to the code in the examples. The query
in this case is implicit and consists of the prefix of the currently writ-
ten code. The search is performed over a sample repository (e.g., the
existing project). Temporal information such as the order of method
invocations is not considered.

Recently, [90] presented a typestate-based code search technique
that is able to perform limited code completion. Their approach is
based on an inherently expensive and limited abstract representation
of automata. For instance, on 1% of the training data, it took [90] about
3 hours to complete (our system takes 5 seconds with a 3-gram model
and 9 minutes with RNN). Further, Slang can complete parameters of
method calls whereas [90] can only produce completions of method
names. Upon manual inspection of the resulting automata mined by
[90], 10 of the 20 examples in our set 1 were not even accepted by their
automata, let alone ranked.

99

generative models for api completion

Technically, a key shortcoming of these clustering approaches is
their limited ability to generalize to sequences that did not exist in the
training data.

synthesis with partial programs The concept of a partial
program has proven effective in various synthesis contexts. Partial
programs allow users to naturally express the parts about the pro-
gram that they know, while leaving parts they are not sure about,
empty. The synthesizer then automatically figures out how to com-
plete the holes in a way that some property of the resulting program
holds. Examples where partial programs are used heavily include the
sketching approach [120] to program synthesis. In this line of work,
the partial program is referred to as a “sketch”, where typically, the
programmer specifies a space of possible expressions which can be
used to fill in the holes. The synthesizer then searches for completions
that satisfy a given property. Partial programs, or templates, have
also been effectively used for synthesis of various problems including
classic sequential algorithms [122], bit-ciphers [121], and concurrent
algorithms [132].

In this work, we also leverage partial programs as we believe they are
an effective mechanism for capturing programmer’s intent. However,
fundamentally, unlike all of these works, we learn the candidate com-
pletions of a hole in the partial program by examining and leveraging
the vast amount of data available on the Web (in our case, in the form of
API usage). In the future, we believe that it will be fruitful to combine
these two approaches: for instance, by leveraging the power of SMT
solvers to infer fine-grained numerical expressions with our approach
which can predict likely API completions and their parameters.

100

4
P R O G R A M S Y N T H E S I S W I T H N O I S E

So far, we described several intermediate representations used for
probabilistic models (e.g. graphs and sequences). These representations
were manually designed based on knowledge about program analysis,
intuition and experimental evidence. A key problem, however, is
to determine if a representation is optimal and if it satisfies some
desired properties such as high precision of the predictions. Later
in Chapter 5, we will show an approach that synthesizes the best
intermediate representation for a probabilistic model with respect to an
entropy metric – a metric that is correlated with the amount of errors
that a model will make. However, before we dive into the concrete
problem for probabilistic models, we present a general framework for
program synthesis with noise. This framework was motivated by our
investigation in the “Big Code” space, but is applicable beyond that
domain. For example, the framework can be used to enable existing
program synthesizers such as [68] to handle noise.

programming by example The main idea of programming by ex-
ample (PBE) is that instead of directly providing a program, the user
provides a number of examples (e.g. by demonstrating the desired
output for a given input). A key assumption of PBE is that the provided
examples are sufficient to properly determine the desired program.
One common way to satisfy this assumption is by letting the user
interactively provide examples until the desired program is produced.

Indeed, in recent years there has been substantial interest in learning
programs from examples (e.g., [6, 68, 80, 121]) with a vast amount of
interesting new applications such as completing spreadsheet data [51],
structuring data [11], generating bit manipulating programs [68], and
others. These applications were successful as they give the power
of a specialized programming language to users that only need to
demonstrate the desired outputs of a program on a number of inputs.

However, many of these PBE techniques cannot adequately deal with
incorrect examples as they attempt to satisfy all given examples, thus
overfitting to the data. This means that when the user makes a mistake

101

program synthesis with noise

Dataset D
with noise

Dataset
sampler

Program
generator

sample di ⊆ D

candidate program pi

Program pk confidence or error bound ε

representative sample dk

Figure 4.1: General approach of program synthesis with noise.

while providing the examples, they either fail to return a program
or produce the wrong program. Post-mortem ranking techniques do
not help as they simply end up ranking incorrect solutions. Some
synthesizers [51] have limited support to discover incorrect examples,
but only if synthesis on all examples fails and with solutions specific to
a particular domain of programs. Handling noise in the general case
improves both existing PBE systems and enables synthesizing a model
from a “Big Code” dataset that may contain errors.

this chapter In this chapter, we propose a new approach for cre-
ating synthesizers that deal with noise, which also generalizes counter-
example guided inductive synthesis (CEGIS) [121]. In the standard setting
of noise-free synthesis, one is given a dataset D of examples that is very
large (or even infinite) and the synthesizer selects a small set d ⊆ D
such that synthesizing on d generates the desired program that could
have been produced if it synthesized directly on D. The dataset d
is gradually built generating candidate programs pi and by adding
examples d that are not satisfied by the last generated program pi. This
procedure terminates when it generates a program that satisfies all
input/output examples in D.

As opposed to the standard setting, where all examples in D must
be satisfied, our approach can handle incorrect input/output examples.
Our technique is based on a loop that consists of: i) dataset sampler that
carefully selects a small number of examples with specific properties
from D; ii) program generator that produces a program given the selected

102

program synthesis with noise

sample in a way which controls the complexity of the solution and
avoids over-fitting. These two components are linked together in a
feedback loop as shown in Fig. 4.1, iterating until the desired solution pk
is found. We show how this approach serves as a basis for constructing
prediction engines given a noisy dataset D.

In this chapter, we develop the general technique that extends the ca-
pabilities of PBE systems. This technique will then enable the synthesis
of intermediate representation for “Big Code” where the input/output
examples are a large corpus of partial programs and their completions
(discussed later in Chapter 5).

quantifying noise To systematically instantiate our approach, we
consider both cases for quantifying the noise in the dataset: the case
where we have a bound on the noise and the case where the noise is
arbitrary. In the first case, we also provide optimality guarantees on
the learned program. In the second case, we approach the learning
problem with a fast, scalable algorithm for performing approximate
empirical risk minimization (ERM) [84], bridging the fields of applied
program synthesis and machine learning. Our setting in fact raises
new challenges from a machine learning perspective as here, ERM is
performed not on the whole data at once as in traditional ML, but on
carefully selected (small) samples of it.

synthesis with noise We illustrate how our concepts apply with
synthesizers targeting the different noise settings. First, we present
a synthesizer for bit-stream programs, called BitSyn, where we dy-
namically add examples, possibly with some errors, until we produce
the desired program. This synthesizer shows that the approach is
applicable outside of area of “Big Code” and shows a recipe to add
noise handling to other existing PBE systems. Second, in Chapter 5,
we present DeepSyn, a statistical synthesizer that learns probabilis-
tic models from a dataset of programs and makes predictions (i.e.,
code completion) based on this model. Our engine generalizes sev-
eral existing efforts (e.g., [61, 110] and Chapter 3) and is able to make
predictions beyond the capability of these systems. Importantly, as
our predictions are conditioned on program elements, they are easy to
understand and justify to a programmer using DeepSyn, a capability
missing in approaches where the prediction is based on weights and
feature functions, and is not human understandable.

103

program synthesis with noise

detecting noise While not the primary goal, this work represents
a new way for performing anomaly detection: besides the learned pro-
gram, our approach can return the set of examples dk the program does
not satisfy (these represent the potential anomalies). Our approach
is unlike prior works which either assume the program is already
provided [10] or make statistical assumptions on the data [29].

4.1 problem formulation

Let D be a dataset consisting of a set of examples and P be the set
of all possible programs. The objective is to discover a program in P

which satisfies the examples in D. In practice however, the dataset D
may be imperfect and contain errors, that is, contain examples which
the program should not attempt to satisfy. These errors can arise
for various reasons, for instance, the user inadvertently provided an
incorrect example in the dataset D, or the dataset already came with
noise (of which the user may be unaware of).

Because we are not dealing with the binary case of correct/incorrect
programs and need to deal with errors, we introduce a form of a cost
(risk) function associated with the program to be learned from the noisy
dataset. Let r : P(D)×P→ R be a cost function that given a dataset
and a program, returns a non-negative real value that determines the
inferiority of the program on the dataset. In machine learning terms,
we can think of this function as a generalized form of empirical risk
(e.g., error rate) associated with the data and the function. In the special
case typically addressed by PBE systems (e.g., [68, 80]), the function
returns either 0 or 1, that is, the program either produces the desired
output for all inputs in the given dataset, or it does not. Later in the
thesis, we discuss several possibilities for the r function depending on
the particular application.

problem statement The synthesis problem is the following:

find a program pbest = arg min
p∈P

r(D, p)

That is, the goal is to find a program whose cost on the entire dataset
is lowest (e.g., makes the least number of errors, or minimizes empirical
risk as in Section 5.1). We note that while in general there could be
many programs with an equal (lowest) cost, for our purposes it suffices

104

4.2 iterative synthesis algorithm

to find one of these. It is easy to instantiate this problem formulation
to the specific binary case of synthesis from examples, where r returns
1 if some example in D is not satisfied and 0 otherwise. A challenge
which occurs in solving the above problem is that the dataset D may
be prohibitively large, or simply infinite (e.g., may need to continually
ask a user for samples of the dataset) and thus, trying to directly learn
the optimal program pbest that satisfies the dataset D may be infeasible.

Another issue in comparison to the traditional PBE formulation
is that we may not be able to show that a candidate program p′ is
optimal, unless we can rank it with respect to all possible programs in
P, which could be prohibitively expensive. To mitigate this problem,
we work with a more relaxed program statement where we search for a
satisfactory program P≈best that has a cost close to the cost of the best
program pbest or is better (has lower cost) than a given noise bound.

4.2 iterative synthesis algorithm

The key idea of our solution is to start with a small sample of the dataset
D and to iteratively and carefully modify this sample in a way which
allows finding a good solution with a few and small-sized samples. Our
solution consists of two separate components: a program generator and a
dataset sampler. We continually iterate between these two components
until we reach a fixed point and the desired program is found.

program generator For a finite dataset d ⊆ D, a program gener-
ator is a function gen : P(D)→ P defined as follows:

gen(d) = arg min
p∈P

r(d, p)

We assume that invocations to gen(d) are expensive and in our pre-
diction algorithm we aim for a size of the dataset d that is as small as
possible.

dataset sampler The second component of our approach is what
we refer to as the dataset sampler ds : P(P)×N→ P(D):

ds(progs, n) = d′ with |d′| ≥ n

That is, a dataset sampler takes as input a set of programs (and a
bound on the minimum size of the returned sample) and produces a

105

program synthesis with noise

Input: Dataset D, initial (e.g. random) dataset ∅ ⊂ d1 ⊆ D
Output: Program p

1 begin
2 progs← ∅
3 i← 0
4 repeat
5 i← i + 1
6 // Dataset sampling step
7 if i > 1 then
8 di ← ds(progs, |di−1|+ 1)
9 end

10 // Program generation step
11 pi ← gen(di)

12 if found program(pi) then
13 return pi
14 end
15 progs← progs∪ {pi}
16 until di = D;
17 return ”No such program exists”
18 end

Algorithm 2: Program Synthesis with Noise

set of examples which are then fed back into the generator. We will see
several instantiations of the data sampler later in the thesis.

iterative sampling We connect the program generator and data
sampler components in an iterative loop. The resulting algorithm is
shown in Algorithm 2. At every iteration of the loop, the algorithm
checks if the current program pi is a satisfactory solution and can be
returned (in later sections, we discuss instantiations of found program).
If the current program pi is not the right one, we sample from the
dataset D using the current set of explored programs progs, obtaining
the next dataset di. Note that while the size of the sample di is greater
than the size of the previous sample di−1, there is no requirement that
di is a superset of di−1 (i.e., the sets may be non-comparable). Once
we have obtained our new sample di, we use it to generate the new
candidate program pi. In case the program pi is not the desired one, the
algorithm continues and adds pi to the progs set and continues iterating.

106

4.2 iterative synthesis algorithm

search space

pbest
cut by p1

cut by p2
cut by p3

p1

p2

p3

(a) (b)

search space

pbest

cut by p1

cut by p2

cut by p3

p1

p2

p3

Figure 4.2: Trimming the space of programs (a) for noise-free synthesis
and (b) for synthesis with noise.

Technically, CEGIS [121] is an instantiation of Algorithm 2 where
the program generator gen(di) invocation on line 11 always returns
a program that satisfies all examples in di and the dataset sampler
invocation on line 8 is such that the dataset di ← di−1 ∪ {x} where x is
an example not satisfied by the last generated program pi−1.

4.2.1 Reduction of Search Space

First, note that Algorithm 2 always terminates if the dataset D is finite.
This is because the size of the dataset di increases at every step until
it eventually reaches the full dataset. However, our goal is to discover
a good program using only a small dataset di. To achieve this, we
leverage the dataset sampler to carefully pick small datasets that trim
the space of possible programs as illustrated in Fig. 4.2.

noise-free search space pruning Consider an initial dataset
d1. Since this dataset may be random, let us assume that any possible
program p1 can be returned as a result. If p1 was not the desired
program, we would like to select the next dataset d2 to be such that p1

cannot be returned at the next step by gen(d2). In general, we would
like that at step i, gen(di) /∈ {pj}i−1

j=1. This is, the program generated
at step i is different from the previously generated programs (pj for
j ∈ 1 · · · i − 1). We illustrate this scenario in Fig. 4.2 (a). Here, we
have three explored programs p1, p2 and p3 which are pruned away
by the current dataset. The figure also shows the space of remaining

107

program synthesis with noise

candidate programs (in) that can possibly be generated by gen. This
space excludes all three generated programs as well as any programs
removed as a result of pruning these three. Indeed, existing synthesis
approaches that do not deal with noise (e.g., [68, 121]) typically prune
the search space as shown in Fig. 4.2(a).

pruning search space with noise Unlike the noise-free set-
ting where a binary criteria for pruning a generated program p exists,
when the data contains noise, we cannot immediately decide whether
to prune p. The reason is that even though p may make a mistake on
a given example, at an intermediate point in the algorithm we may
not know whether another, even better program on D exists. What
this uncertainty means is that we may need to keep p in the candidate
program space for longer than a single algorithmic iteration. This raises
the following question: which programs are kept and which ones are
removed from the candidate set?

To address this question, at every iteration of the synthesis algorithm,
we aim to prune some of the generated programs (and conversely, keep
the remaining ones). In particular, we introduce a margin ε and we
keep a generated program p if it is within ε distance of pbest. This is:

r(D, p) ≤ r(D, pbest) + ε . (4.1)

In Fig. 4.2(b), the area shaded with around pbest denotes the set of
programs within distance ε of pbest. The space reduction process is
illustrated in Fig. 4.2(b). Here, the first two explored programs p1 and
p2 fall outside the accepted area and are thus permanently pruned
from the candidate space. The score of the latest generated program p3,
however, is within ε of pbest and is thus kept as a viable candidate to be
returned. At this point, the algorithm can return p3 or keep searching
further, hoping to find better scoring programs than p3. We also require
that ε ≥ 0 ensuring completeness: we always keep the best program
pbest in the candidate space of programs.

In what follows, we describe dataset samplers which enable pruning
of the search space in the manner described above.

4.2.2 Hard Dataset Sampler (dsH)

We introduce an instance of the dataset sampler ds used in Algorithm 2

as follows:

108

4.2 iterative synthesis algorithm

Definition 4.1 (Hard dataset sampler). A hard dataset sampler is a
function dsH such that for Q ⊆ P, d′ = dsH(Q, min size), it holds that
∀p ∈ Q. r(D, p) ≤ r(d′, p) and |d′| ≥ min size.

Note that the hard dataset sampler always exists as we can trivially set
d′ = D. In Algorithm 2, we always invoke the hard dataset sampler
with Q = progs (the current set of generated programs). The meaning
of the hard dataset sampler is that for all programs in Q, the cost on
the returned dataset d is higher or equal than on the full dataset D.

There are two ways in which this definition generalizes the concept
of providing more examples in CEGIS. This means that selecting a
dataset in CEGIS is a hard dataset sampler. First, since CEGIS does
not handle noise, r(d, p) simply returns 0 if the program p satisfies
all examples in d and 1 if p does not satisfy some example in d. The
hard dataset sampler in the noise-free case generates (e.g., by asking
questions to the user) a dataset d′ such that for all explored programs
progs, an unsatisfied example is in d′ if an unsatisfied example exists in
D. Second, CEGIS works by building datasets di ← di−1 ∪ {x} where x
is one input/output example not satisfied by the last generated program
pi−1. In contrast, Definition 4.1 is more permissive allowing any dataset
di to be returned by calling di ← dsH(progs, min size), not necessarily a
superset of the dataset di−1 from the previous iteration of Algorithm 2.

Using the hard dataset sampler, we now state a theorem which
ensures that the generated program pi at step i does not appear in a
subset of the explored programs outside certain range beyond pbest.
That is, pi cannot be the same as any previously generated pj that is
outside of the area in Fig. 4.2(b).

Theorem 4.2. Let Q = {p1, . . . , pi−1} be the set of programs generated up to
iteration i of Algorithm 2, where the dataset sampler ds satisfies Definition 4.1.
If ε ≥ r(di, pbest)− r(D, pbest), then pi = gen(di) /∈ Q′ where:

Q′ = { p ∈ Q | r(D, p) > r(D, pbest) + ε }

Proof. First note that the set Q′ includes all generated programs in Q
that are outside the area in Fig. 4.2(b), because the condition for a
program from Q to remain in Q′ is the inverse of (4.1).

Let p ∈ Q′. Then r(D, p) > r(D, pbest) + ε.
From the definition of ε : ε + r(D, pbest) ≥ r(di, pbest),
Then r(D, p) > r(di, pbest).

109

program synthesis with noise

Because di = ds(Q,) and ds satisfies Definition 4.1, r(di, p) ≥ r(D, p).
From the last two statement follows that r(di, p) > r(di, pbest).
Because pi = gen(di) and gen(di) = arg minp′∈P r(di, p′), it follows

that pi 6= p. Thus, we prove that pi /∈ Q′.

The above theorem is useful if we know the bound ε on the best
program pbest for any dataset d ⊆ D as required in the theorem precon-
dition. The smaller the value of ε that we can show, the smaller the
areas marked in and around pbest will be. Furthermore, from this
theorem follows that if we stop the synthesis algorithm as soon as we
generate a program pi that is already in the explored set, the program
pi will be within a distance of at most ε from pbest.

In Section 4.3 we consider a scenario with ε = 0. Then, Theorem 4.2
provides even stronger guarantees at every step of Algorithm 2: all pre-
viously generated candidate programs that are not pbest are eliminated
from future consideration. For cases where we cannot obtain bounds
on the best program pbest, we next define a different dataset sampler.

4.2.3 Representative Dataset Sampler (dsR)

First, we define a measure of representativeness for dataset d with
respect to the full dataset D on a set of programs Q ⊆ P.

Definition 4.3 (Representativeness measure).

repr(Q,D, d) = max
p∈Q
|r(D, p)− r(d, p)|

The measure of representativeness says how close are the costs of the
programs in Q on the dataset d with respect to their costs on the full
dataset D. The metric is set to the maximum difference in costs since
our goal for the dataset d is to be a representative of D for all programs.
Then, we define a dataset sampler as follows:

Definition 4.4 (Representative dataset sampler).

dsR(Q, size) = arg min
d⊆D,|d|=size

repr(Q,D, d)

We have defined the representative dataset sampler to return a dataset
of exactly the size given by the size parameter, which for step i of
Algorithm 2 is |di−1|+ 1. Also, in Algorithm 2, a dataset sampler is
always used with a set of programs Q = progs.

110

4.2 iterative synthesis algorithm

analysis Note that the repr measure is a non-negative function that
is minimized by dsR. If d′ = dsR(Q, size) is such that repr(Q,D, d′) = 0
then the produced dataset is perfectly representative. In this case dsR is
also a hard dataset sampler, because ∀p ∈ Q. r(D, p) = r(d′, p).

The question then is: why do we attempt to achieve r(D, p) = r(d′, p)
instead of r(D, p) ≤ r(d′, p) as in Definition 4.1? If we perform our
analysis using Theorem 4.2, then we must find as small as possible
value ε ≥ 0 such that ε ≥ r(di, pbest) − r(D, pbest). In dsR, instead of
minimizing r(di, pbest) − r(D, pbest), we minimize |r(di, pj) − r(D, pj)|
for programs pj already explored up to step i (i.e. j ∈ 1..i− 1).

The intuition of this requirement is that if an example is incorrect,
it will likely behave similarly on all programs (e.g. it will be more
difficult to satisfy and most programs will fail to satisfy it). Thus, if we
find a small ε on several already explored programs, a similar bound
may be true for all programs and for pbest. Next, we also give a formal
argument about eliminating some, but not all of the already explored
programs in the search process.

Theorem 4.5. Let Q = {p1, . . . , pi−1} be the set of programs generated up
to iteration i of Algorithm 2. Let pk = arg minp′∈Q r(D, p′) be the best
program explored so far. By definition, pk ∈ Q. Let δ = repr(Q,D, di) be
the representativeness measure of di and di is obtained from a representative
dataset sampler as di ← dsR(Q, size). Then pi = gen(di) /∈ Q′ where:

Q′ = { p ∈ Q | r(D, p) > r(D, pk) + 2δ }

Proof. Let p ∈ Q′. Because Q′ ⊆ Q, p ∈ Q. Then, from Definition 4.3
because δ = repr(Q,D, di) follows that |r(di, p)− r(D, p)| ≤ δ. Then:

r(D, p) ≤ r(di, p) + δ (4.2)

Similarly, pk ∈ Q. From Definition 4.3, |r(di, pk)− r(D, pk)| ≤ δ. Then:

r(di, pk) ≤ r(D, pk) + δ (4.3)

Because pk = arg minp′∈Q r(D, p′) and p ∈ Q, then

r(D, pk) < r(D, p) (4.4)

Then, we obtain that:

r(di, pk)
from (4.3)
≤ r(D, pk) + δ

from (4.4)
< r(D, p) + δ

from (4.2)
≤ r(di, p) + 2δ

Finally, from r(di, pk) < r(di, p) follows that p 6= arg minp′∈P r(di, p′)
and as a result p 6= pi = gen(di).

111

program synthesis with noise

Note that the set Q′ has the same shape as in Theorem 4.2 except that
here we consider pk (best program so far) instead of pbest (best program
globally), and instead of ε we have 2δ.

What this theorem says is that the programs Q′ ⊆ Q that were
already generated and are worse than pk ∈ Q by more than twice the
representativeness measure δ of the dataset di cannot be generated at
step i of Algorithm 2.

We can also instantiate the condition for cutting the space discussed
earlier: r(D, p) ≤ r(D, pbest) + ε and visualize Theorem 4.5 in Fig. 4.2(b)
as follows: take p3 = pk and let x = r(p3,D)− r(pbest,D) be the distance
between pk and pbest. Then take ε = x + 2δ. Thus, programs p1 and p2

are worse than pbest by more than ε and are permanently removed from
the program search space.

In case δ = 0, we can see that all programs in Q worse than the
(locally) best program pk ∈ Q will be eliminated. Still, this is a weaker
guarantee than for the case where ε = 0 in Theorem 4.2. Later we will
show that dsR works well in practice, but in general it is theoretically
possible that Algorithm 2 with dsR makes no progress until a dataset of
a certain size is accumulated.

4.2.4 Cost Functions and Regularization

So far, we have placed few restrictions on the cost function r and we
defined the synthesis problem to minimize the cost of a program p on
a dataset d. We now list concrete cost functions that we consider later
in the thesis:

• num errors(d, p) returns the number of errors a program p does
on a dataset of examples d.

• error rate(d, p) = num errors(d,p)
|d| is the fraction of the examples with

an error. A related metric used in machine learning is the accuracy,
which is 1− error rate.

• Other measures weight the errors done by the program p on the
dataset d according to their kind (e.g., entropy is one possible
such measure).

The choice of cost metric is key for the usefulness of the theorems
stated before. For example, if the metric is num errors and the dataset

112

4.3 the case of bounded noise

D includes n incorrect examples, a representative (or hard) dataset
sampler that returns up to n elements may simply return a set with
only incorrect examples. A sample of size n + 1 is required to ensure
that at least one correct example is returned. In contrast, metrics
like error rate may not suffer from this problem with a representative
dataset sampler, because the ratio of errors in the small dataset should
be approximately the same as the ratio of errors on the full dataset.

regularization We also use a class of cost functions known as
regularized cost metrics. If r is a cost metric, its regularized version
is rreg(d, p) = r(d, p) + λ · Ω(p). Here, λ is a real-valued constant
and Ω(p) is a function referred to as a regularizer. The goal of the
regularizer is to penalize programs which are too complex and prevent
overfitting to the data. Note that the regularizer does not have access
to the dataset d, but only to the given program p. In practice, using
regularization means we may not necessarily return the program with
the least number of errors if a much simpler program with slightly more
errors exists. In Section 5.1.1, we justify the use of regularization in the
context of empirical risk minimization. To the best of our knowledge,
this is the first work that uses regularization for program synthesis.

4.3 the case of bounded noise

In this section, we show how to instantiate Algorithm 2 for the case
where we can define a bound on the noise that the best program pbest
exhibits.

Definition 4.6 (Noise Bound). We say that εk is a noise bound for
samples of size k if for the program pbest:

∀d ⊆ D.|d| = k =⇒ εk ≥ r(d, pbest)− r(D, pbest)

For example, if r , error rate and D contains at most one incorrect
example, then ε10 = 0.1 is a noise bound, because for any sample
d ⊆ D of size |d| = 10, the error rate is at most 0.1. Note that the
error rate on the entire dataset D or on larger datasets is lower than
0.1. Another interesting case is if r , num errors and pbest has at most
K errors on the examples in D. Then a noise bound for any k is εk = 0
because no dataset d ⊆ D has more errors than the full dataset D. Note
that using regularization is an orthogonal issue and does not affect

113

program synthesis with noise

the noise bound, because the regularizer Ω(pbest) cancels out in the
inequality of Definition 4.6.

We can easily instantiate Theorem 4.2 when a noise bound εk is avail-
able by setting ε = εk in the theorem’s precondition ε ≥ r(di, pbest)−
r(D, pbest) (here, k = |di|).

derived termination criterion Using Theorem 4.2 and the
hard dataset sampler allows us to derive a possible termination criterion
for Algorithm 2. In particular, if a satisfactory program is such that
r(D, psatisfactory) ≤ r(D, pbest) + εsatisfactory (i.e., it is worse than the best
program by at most εsatisfactory), then the following stopping criterion:

found program(pi) , (pi ∈ progs) ∧ ε|di | ≤ εsatisfactory

in Algorithm 2 will produce a satisfactory program. Here ε|di | is a bound
known according to Definition 4.6 for the dataset di at the i-th iteration
of the algorithm. This criterion follows from Theorem 4.2 because if a
program pi ∈ progs (i.e., it was already explored previously), then pi
was not excluded from the search space and thus it must be that:

r(D, pi) ≤ r(D, pbest) + ε|di | (i.e., pi ∈).

Then, the returned program pi is satisfactory because ε|di | < εsatisfactory.

bound on the number of errors We next consider an interest-
ing special case where we know that for the best program pbest, there
are at most K incorrect examples in D that it does not satisfy. Note
that we only need to know a bound, not the exact number of errors the
best program makes. In this case, we propose to use the following cost
function:

rK(d, p) = min(num errors(d, p), K + 1)

That is, we count the number of unsatisfied examples and cap the
cost at K + 1, thus we do not distinguish programs or datasets with
more than K errors. Since we know that the best program has at most
K errors, in Definition 4.6, we can show that εk = 0 (for any k) is a
valid bound. In this case, we can also obtain a stopping criterion with
εsatisfactory = 0 by using:

found program(pi) , pi ∈ progs

Thus, we get the stronger guarantees as in Fig. 4.2 (a) and ensure that
upon termination the algorithm produces the program pbest.

114

4.4 bitsyn: bitstream programs from noisy data

discussion We note the meaning of the hard dataset sampler when
r , num errors. According to Definition 4.1, r(d, p) ≥ r(D, p) holds for
all p generated up to iteration i of Algorithm 2. This means that the
sample di must contain all errors in D – naturally, this may lead to a
dataset that is too big. If we know an upper bound K on the number of
errors of the best program pbest and use a cost function r , rK, then the
sampler will need to include exactly K + 1 unsatisfied examples in order
to eliminate pi as a candidate for the next step. In this setting, knowing
a bound K of pbest in advance enables a cost metric that makes the
procedure of the algorithm with hard dataset sampler more efficient.

Next, we illustrate the concepts by showing how existing synthesizers
can be extended to deal with noise. We present a synthesizer for
bitstream programs with a bound on the number of errors.

4.4 bitsyn: bitstream programs from noisy data

In this section we instantiate the approach presented earlier to the
problem of building a programming-by-example (PBE) engine able
to deal with up to K incorrect input/output examples in its input
data set for the best program pbest. To illustrate the process, we chose
the domain of bitstream programs as they are well understood and
easy to implement, allowing us to focus on studying the behavior of
Algorithm 2 in a clean manner. We believe many synthesis engines are
good candidates for being extended to deal with noise (e.g., synthesis
of floating point functions [98] or data extraction [81]).

the setting We consider two scenarios: (1) the dataset D is ob-
tained dynamically and the noise is bounded (i.e., up to K errors), and
(2) the dataset D is present in advance and may contain an unknown
number of errors. Interestingly, the second scenario is useful beyond
synthesizing programs, in this case, for anomaly detection.

We created a synthesizer called BitSyn that generates loop-free bit
manipulating code from input/output examples. The programs gener-
ated by BitSyn are similar to those produced in Jha et al [68]. We use a
library of instructions for addition, bitwise logical operations, equality,
less than comparison and combine them into a program that takes 32-
bit integers as input and outputs one 32-bit integer. The program may
use registers to store intermediate values. The goal of the synthesizer is
to take a number of input/output examples and generate a program.

115

program synthesis with noise

N
u

m
b

er
of

N
u

m
b

er
o

f
er

ro
rs

(K
)

in
st

ru
ct

io
n

s
0

1
2

3
4

5
6

7
8

9
0

1
2

3
4

5
9

P
ro

g
ra

m
N

u
m

b
er

of
in

p
u

t/
ou

tp
u

t
ex

am
p

le
s

n
ee

d
ed

S
yn

th
es

is
ti

m
e

(s
ec

on
d

s)

P
1

2
4

4
10

7
9

11
14

16
17

22
1.

11
1.

17
1.

98
1.

51
1.

80
7.

33
10

2.
76

P
2

2
5

6
6

7
11

12
15

19
20

22
1.

21
1.

48
1.

79
2.

70
2.

45
12

.9
6

72
.3

7
P

3
3

4
4

9
10

8
13

15
16

17
21

1.
75

1.
81

4.
42

8.
63

9.
20

40
.6

2
15

6.
09

P
4

2
2

4
7

8
9

10
13

15
17

19
1.

05
1.

19
1.

56
3.

07
4.

01
11

.3
4

12
.3

0
P

5
2

3
3

9
9

10
10

14
16

20
22

1.
08

1.
10

1.
84

3.
45

9.
38

11
.6

4
13

9.
75

P
6

2
4

5
10

9
10

11
13

17
20

22
1.

18
1.

51
2.

70
3.

50
10

.6
0

12
.4

4
91

.4
9

P
7

3
5

5
7

9
11

12
15

19
20

22
1.

80
2.

20
2.

77
5.

15
12

.6
5

21
.6

2
11

7.
16

P
8

3
5

5
10

10
8

12
13

16
20

19
1.

90
2.

44
4.

41
4.

47
5.

15
26

.6
2

41
.4

6
P

9
3

3
ti

m
eo

u
t

2.
58

ti
m

eo
u

t
ti

m
eo

u
t

ti
m

eo
u

t
ti

m
eo

u
t

ti
m

eo
u

t
ti

m
eo

u
t

Ta
bl

e
4
.1

:N
um

be
r

of
in

pu
t/

ou
tp

ut
ex

am
pl

es
ne

ed
ed

by
Bi

t
Sy

n
to

sy
nt

he
si

ze
th

e
co

rr
ec

t
pr

og
ra

m
(p

ro
gr

am
ta

ke
n

fr
om

[6
8
,1

3
4

])
de

pe
nd

in
g

on
th

e
nu

m
be

r
of

er
ro

rs
in

th
e

ex
am

pl
es

as
w

el
la

s
th

e
sy

nt
he

si
s

ti
m

e
w

it
h

th
e

re
sp

ec
ti

ve
nu

m
be

r
of

er
ro

rs
.

116

4.4 bitsyn: bitstream programs from noisy data

4.4.1 Program Generator with Errors

A key quality of BitSyn is that it includes a program generator that
may not satisfy all provided input/output examples. This may serve
multiple purposes as we discuss later. Let us consider the following
example input/output pairs:

d1 = {{2→ 3}, {5→ 6}, {10→ 11}, {15→ 16}, {−2→ −2}}

All examples except for {−2→ −2} describe a function that increments
its input. A problem with existing PBE engines in this case is that they
succeed in generating a program even if it was not the desired one, e.g.
by producing the following code:

pa = return input + 1 + (input >> 8)

Note that providing more examples would not necessarily help dis-
cover or solve this problem. The user may in fact get lucky by getting
into a situation where the synthesizer fails to produce a program, how-
ever if the hypothesis space of programs (e.g., which operators is the
engine allowed to use) is not very constrained, this program can overfit
to the incorrect examples. Later we quantify this problem. The problem
of overfitting to the data (i.e., input/output examples) occurs in multi-
ple mathematical and machine learning problems where the provided
specification does not permit exactly one solution, for example when
dealing with noise.

We combat overfitting by introducing regularization to the cost. We
define a function Ω : P→ R+ that punishes overly complex programs
p by returning the number of instructions used. For our example,
Ω(pa) = 3 since pa has three instructions (two + and one >>). Then, we
create a program generator that minimizes:

rreg(d, p) = error rate(d, p) + λ ·Ω(p).

The value λ ∈ R is a regularization constant that we choose in evaluation.
The higher the regularization constant is, the more importance we place
on producing small programs. In our example, if λ > 0.1, the cost rreg

of the following pb program will be lower than the cost of pa on the
dataset d1:

pb = return input + 1

117

program synthesis with noise

implementation of bitsyn We implemented BitSyn using the
Z3 SMT solver [35]. At each query to the SMT solver, we encode the
set of input/output examples d = {xi}n

i=1 in a formula based on the
techniques described in [68]. In each formula given to the SMT solver,
we encode the length of the output program and we additionally encode
a constraint for the number of allowed errors. Let χi be a formula that
is true iff example xi ∈ d is satisfied. Then, to encode a constraint that
allows up to T errors, we must satisfy the following formula:

Υ ≡ T ≥
n

∑
i=1

if χi then 0 else 1

To find the best scoring solution, we make multiple calls to the
SMT solver to satisfy Υ by iterating over the lengths of programs and
the number of allowed incorrect input/output examples T ordered
according to the cost of the solution and then return the first obtained
satisfiable assignment of instructions.

4.4.2 Case 1: Examples in D are provided dynamically

A common scenario for programming-by-example engines (and for
CEGIS) is when the input/output examples are obtained dynamically,
either by interactively asking the user or by querying an automated
reasoning engine (e.g. oracle-guided [68]). Ultimately, this means that
the entire dataset D is not directly observable by the program generator
(in fact, the dataset may be infinite). In this case, the synthesizer
starts with a space of candidate programs and narrows that space by
dynamically obtaining more examples.

For this setting, we designed a hard dataset sampler using the cost
function rK as described in Section 4.3. Our dataset sampler attempts to
create a dataset di+1 with K + 1 unsatisfied examples for each program
in the set of candidate programs explored so far progs = {pj}i−1

j=1. Gen-
erally, incorrect examples can be readily obtained automatically from
an SMT solver (or another tool). When the tool is used interactively, the
user needs to answer questions until the desired number of errors is
reached (that is, here, the user takes an active part in the work of the
dataset sampler).

evaluation Our goal was to check if BitSyn can synthesize the cor-
rect program in the presence of errors. Towards this, we implemented

118

4.4 bitsyn: bitstream programs from noisy data

a simulated user that provides examples using a hard dataset sampler
with a known bound on the incorrect examples. We aimed to answer
the following research questions:

• Up to how many errors does BitSyn scale for synthesizing solu-
tions?

• How many (more) examples does BitSyn need in order to com-
pensate for the incorrect examples?

For our evaluation, we took a number of programs from [68], on which
an existing synthesizer without noise could generate solutions within a
few seconds. These are the programs P1-P9 from the Hacker’s Delight
book [134], also evaluated in previous works [53, 68].

We summarize our results in Table 4.1. For each program, we tried
settings with different numbers of incorrect examples. We first supplied
the incorrect examples and then started supplying correct examples.
In each cell in the left part of Table 4.1, we list the total number of
input/output examples needed to obtain the correct result. In the right
part of Table 4.1, we list the time needed to complete each synthesis
task. Our results can be summarized in two areas: (1) overall, adding
incorrect input/output examples complicates the program synthesis
task. For tasks P1 − P8, each synthesis task completes within our
timeout of 300 seconds. Task P9 did not scale since it needs bit-shift
operations and their presence leads to difficult formulas for the Z3

solver, and (2) the number of necessary input/output examples overall
increases with an increased number of errors, but only slightly. Further,
in some cases, the number of needed examples stays constant when
introducing more errors. This motivated us to ask the question explored
next, which is whether the tool is useful beyond synthesis, but also for
detecting incorrect examples (i.e., anomaly detection).

4.4.3 Case 2: All examples in D are given in advance

As a side question not directly related to Algorithm 2, we wanted to un-
derstand how well the regularized program generator in BitSyn detects
incorrect examples in the setting where the dataset D is fully available.
Here, we provide all our examples to a regularized generator and ask if
the unsatisfied examples are exactly the incorrect ones. Such a setting
of finding a model that describes data and then detects outliers in the

119

program synthesis with noise

No example removed (overfitting to incorrect example)

Some correct examples removed (too simple program)

Noisy example correctly detected

0.04

0.1

0.16

0.22

1 4 7 10 13 16 19 22 25 28
Total number of input/output examples

λ

Figure 4.3: Ability of BitSyn to detect an incorrect example for pro-
grams (P1-P9) depending on total number of examples and
regularization constant λ.

model is called anomaly detection [29]. Note that our approach is
very different from recent work [10] which considers a more restricted
case where the program is already fully available before the process of
anomaly detection starts.

evaluation We evaluate the anomaly detection capability of Bit-
Syn depending on the regularization constant λ and the number of
samples present in D. For this experiment, we created data sets D
of various sizes and introduced an incorrect example in each of them.
Then, we looked at how often the synthesized program did not satisfy
exactly the incorrect examples. We summarize the results in Fig. 4.3.
The figure visualizes the conditions under which the anomaly detection
is effective on our test programs (P1-P9). Every cell in the diagram of
Fig. 4.3 says how often a given output occurs. The cells with denote
that the synthesizer successfully satisfied the provided examples, in-
cluding the incorrect one. This case typically occurs with no or low
regularization. This means that synthesizers that fail to take noise into
account will easily overfit to the incorrect example and return valid,
but incorrect programs.

On the other hand, using too much regularization may bias BitSyn to-
wards producing too simple programs that do not satisfy even some of
the correct examples. We denote this with the pattern . The darker a

120

4.5 related work

pattern, the more often the corresponding issue occurs. In the white
areas of the graph, BitSyn reliably discovers the incorrect input/output
example. For this to happen reliably, our results show that we need a
dataset with more than 10 examples and a regularization constant λ

between 0.05 and 0.1.

4.5 related work

Below, we survey works related to ours.

boolean program synthesis Over the last few years, there has
been an increased interest in various forms of synthesis. Examples of
recent techniques include synthesis from examples [68], partial pro-
grams [121] and synchronization [133]. A more detailed survey of the
various approaches can be found here [52]. Generally, however, these
are approaches which attempt to satisfy all provided examples and
constraints. Thus, they typically overfit to the data, and as a result,
incorrect examples in the data set will lead to incorrectly learned pro-
grams (or no programs at all). Some approaches come with various
fine-tuned ranking functions which assign preference to the (potentially
many) synthesized programs. However, regardless of how good the
ranking function is, if the data set contains even one wrong example,
then the ranking function will be of little use, as it will simply rank
incorrect programs. In contrast, our approach deals with noise and is
able to synthesize desirable programs even in the presence of incorrect
examples. It achieves that via both, the usage of regularizers which com-
bat over-fitting, and smart, iterative sampling of the entire data set. As
we showed in Chapter 4, a standard all-or-nothing synthesis approach
can be extended to incorporate and benefit from our techniques.

The work of Menon et al. [88] proposes to speed-up the synthesis
process by using machine learning features that guide the search over
candidate programs. This approach enables a faster decision procedure
for synthesizing a program, but requires all provided input/examples
to be satisfied.

quantitative program synthesis Another line of work is that
of synthesis with quantitative objectives [28, 30]. Here, it is possible to
specify a quantitative specification (e.g., a probabilistic assertion) and
to synthesize a program that satisfies that weaker specification while

121

program synthesis with noise

maximizing some quantitative objective. In our setting, one can think
of the dataset D as being the specification, however, we essentially
learn how to relax the spec, and do not require the user to provide it
(which can be difficult). Further, our entire setting is very different,
from the iterative sampling loop, to the fact that even if the specification
can be fully satisfied, our approach need not satisfy it (e.g., due to
regularization constraints). In the future, it may be useful to think of
ways to bridge these directions.

4.6 summary

In this chapter, we introduced a program synthesis approach that can
deal with incorrect examples. This approach is based on a feedback
loop between a dataset sampler and a program generator. We have
shown an instantiation of the program generator that deals with noise
using a regularization function. We introduced two variations of the
dataset sampler and analyzed the case where there is a known bound
on the errors of the best program. In this case, we have shown that our
algorithm terminates early and always returns an optimal solution.

Our approach is applicable not only for counting incorrect input/out-
put examples, but also for other metrics (e.g. error rate, entropy, metrics
where the examples are weighted, etc.). In this case, we provide opti-
mality guarantees, if we know a bound on the cost function for the best
program (Definition 4.6). Finally, in the most general case where there
are no error bounds, we do not provide an early termination condition
for the algorithm, but we have shown that some suboptimal candidate
programs are removed from the search space (Theorem 4.5).

We believe this is the first comprehensive work that deals with the
problem of learning programs from noisy datasets, and represents an
important step in understanding the trade-offs arising when trying
to build program synthesis engines that deal with incorrect examples.
Based on the techniques presented here, one can also investigate how to
adapt and extend many of the existing programming-by-example and
synthesis engines to deal with noise. We provide additional resources
such as source code and test data online at

http://www.srl.inf.ethz.ch/noise.

122

http://www.srl.inf.ethz.ch/noise

5
L E A R N I N G A S Y N T H E S I Z E R W I T H “ B I G C O D E ”

In previous chapters, we manually designed intermediate represen-
tations tailored to specific tasks and programming languages. When
developing a name or type annotation predictors, we motivated the
need to use conditional random fields and factor graphs. However,
the specifics of the factor graphs such as their edges and feature func-
tions were empirically designed as described in Section 2.3. There, we
listed a number of features that relate program elements according
to their distance in the program abstract syntax trees. Similarly, for
code completion we proposed a statistical n-gram language model
that parametrizes a predicted method call on the n− 1 method calls
preceding the predicted position. There, we defined program analysis
(Section 3.3) to determine and extract those sequences using program
analysis. Since there was no requirement for soundness or precision
on the program analysis, the space of possible analyses was essentially
unrestricted and we picked the best model empirically. We could not
know that our choice of intermediate representation for these problems
was optimal for the given task. In fact, a number of recent works
keep proposing new intermediate representations without asking this
question [55, 61, 83, 85, 94, 95, 110].

In this chapter, we address the problem of choosing an intermediate
representation for a ”Big Code” system and formulate it as a program
synthesis problem. To solve the synthesis problem, we apply the
concepts developed in Chapter 4 to:

• handle noise in the training data (e.g. some programs from the
“Big Code” contain bugs or are badly written and should be
ignored), and

• perform fast and scalable search for the best intermediate repre-
sentation.

We then combine these concepts with the probabilistic models defined
in the previous chapters.

Previously, the training procedure with hard-coded intermediate
representations followed the procedure shown in Fig. 5.1 (a). There, a

123

learning a synthesizer with “big code”

”Big Code”
repositories

Training data

Intermediate

representation

Probabilistic

model

Manually provided program analysis

(a)

”Big Code”
repositories

Training data

Intermediate

representation

Probabilistic

model

Representation

synthesis

Synthesized analysis

(b)

Figure 5.1: Architecture variants of tools learning tools from “Big Code”.
(a) Learning with a manually designed analysis. (b) Learn-
ing with synthesized analysis.

124

learning a synthesizer with “big code”

manually provided analysis determines the actual intermediate repre-
sentation that is then fed to a machine learning model. In this chapter
we propose to add a component that would synthesize the best inter-
mediate representation such that the overall precision of the model is
maximized. Overall, we show the high-level architecture of a system
with such a component in Fig. 5.1 (b). Typically, the space of possible
intermediate representations is very large in order to capture interest-
ing insights that help improve the precision of the systems, and not
just tuning parameters. As a result, we define each such intermediate
representation by a program p drawn from a domain-specific language,
which defines a set of programs P. Essentially, p is the program that per-
forms program analysis on the “Big Code” and then on each prediction
query.

In this chapter, we instantiate this idea to the same code completion
problem as in Chapter 3. For that application, the Slang API code
completion system is essentially described by one possible pSlang ∈ P.
As a result, we find even better intermediate representation p≈best and
show it to be far more precise than pSlang and other models for the
challenging task of JavaScript code completion. This is a particularly
hard task since existing approached based on types, or other static
analyses fail to produce results due to the dynamic nature of the
language (which makes static analyses unsound and intractable).

To estimate the precision of an intermediate representation and a
model, we take part of the training data, build a model and then
evaluate on the rest of the training data. Ideally, we want to find an
intermediate representation p ∈ P such that the predictions done in our
evaluation are correct. That is, finding an intermediate representations
p ∈ P now becomes a program synthesis problem.

terminology Throughout this chapter, we will synthesize inter-
mediate representations about programs from a “Big Code” corpus in
order to statistically solve a programming problem. Since the word
program is highly overloaded, in the context of code completion we use
the terminology illustrated in Fig. 5.2. When we refer to the “Big Code”
repository, we say it consists of input/output examples as illustrated
in Fig. 5.2 (b). Every input of these examples is a tree (since we use
an abstract syntax tree representation of the code). When we refer to
a program p, this is a program that analyzes trees and computes an
intermediate representation used for a probabilistic model. Then, the

125

learning a synthesizer with “big code”

(a) Code completion query

console.

(b) Input/output example in the training data

tree =

GetProp

PropertyObject

Var

console

logp(tree)

(c) Synthesized program p
analyzes the tree tree

for example pSlang returns
the last n− 1 APIs on the

console object.

(d) Synthesis goal: find p such that for a probabilistic model mp : mp(tree) = log.

Figure 5.2: Terminology for “Big Code” systems based on program
synthesis.

model mp based on that intermediate representation for the training
data can answer code completions queries such as Fig. 5.2 (a) as shown
in Fig. 5.2 (d). Note that the program p operates on trees, but does not
directly return the completion for the query in Fig. 5.2 (b). Instead, it
parametrizes a probabilistic model that returns the actual completion.

We next proceed with defining the program synthesis problem and
then in Section 5.2 we discuss the full code completion solution called
DeepSyn. In Section 5.3 we evaluate DeepSyn on a large corpus of
JavaScript code.

5.1 inductive synthesis for empirical risk minimization

In this section, we show how to leverage Algorithm 2 from Chapter 4

to perform fast approximate empirical risk minimization.
Let D be the set of input/output examples from the “Big Code” as

previously defined for our application. Recall that P is the set of pro-
grams that describe intermediate representations for our probabilistic
model. Our key idea is to view the problem of learning a program
p ∈ P from a noisy dataset D as an empirical risk minimization (ERM)
task over a discrete search space of programs. Then, we will perform
approximate ERM by formulating it as a program synthesis problem.

Next, we first review the concept of ERM and the guarantees provided
by statistical learning theory. In this case, we restrict D to be a finite
set obtained from a probability distribution S over examples X , that

126

5.1 inductive synthesis for empirical risk minimization

is, D ⊆ X . Intuitively, X is the full specification of a problem as a
possibly infinite set of input/output examples and D is a finite set that
we use to observe X . In what follows, our cost function r is set to be
the empirical risk function (discussed below). Then, in Section 5.1.2, we
present our (novel) approach to performing approximate ERM.

5.1.1 Empirical Risk Minimization

Let ` : P× X → R≥0 be a function, such that `(p, x) quantifies the
loss (amount of inaccuracy) when applying program p to example x.
Later in Section 5.2.4 we show an example of a loss function. Our
task is to synthesize a program p∗ ∈ P that minimizes the expected
loss on example x drawn i.i.d. from distribution S (we assume w.l.o.g.
S(x) > 0 for all x ∈ X). I.e., we seek to minimize the risk (defined in
terms of the expectation of the function):

R(p) = Ex∼S [`(p, x)],

i.e. find the program:

p∗ = arg min
p∈P

R(p)

As a concrete example, `(p, x) could be 0 if p produces the “correct”
output for x and 1 if it is incorrect. In this setting, R(p) corresponds to
the expected number of mistakes that p makes on random example x.
Moreover, R(p) = 0 iff it is “correct” (i.e., produces the correct behavior
on all examples in S). As another example, p could produce real-
valued outputs, and `(p, x) could measure the squared error between
the correct output and the actual output.

There are two problems with computing p∗ using the above approach.
First, since S is unknown, the risk R(p) cannot even be evaluated. Sec-
ond, even if we could evaluate it, finding the best program is generally
intractable. To address these concerns, we make two assumptions. First,
we assume we are given a dataset D of examples drawn i.i.d. from S .
We can approximate the risk R(p) by the empirical risk, i.e.,

remp(D, p) =
1
|D| ∑x∈d

`(D, x)

127

learning a synthesizer with “big code”

Then, we assume (for now) that we have an “oracle”, an algorithm that
can solve the empirical risk minimization (ERM) problem

pbest = arg min
p∈P

remp(D, p).

The above equation is in fact an instance of the problem stated in
Section 4.1.

guarantees Standard arguments from statistical learning theory
[84] now guarantee that, for any ε, δ > 0, if our dataset of examples D is
big enough with respect to the space of programs ([91, Chapters 7.3,7.4]),
then it holds for the solution pbest that R(pbest) ≤ R(p∗) + ε, with
probability at least 1− δ (over the random sampling of the dataset) [91].
Hence, the best-performing program on the dataset is close (in risk)
to the best program over all of S . This is because under the above
conditions, the empirical risk approximates the true risk uniformly well,
i.e., for all p ∈ P it holds that |R(p)− remp(D, p)| ≤ ε.

regularization ERM solution can overfit if the dataset D is not
large enough [84]. Overfitting means that R(p∗) � R(pbest), i.e., the
ERM solution has much higher risk than the optimal program. This
often happens when the space of programs P under consideration
is very complex, i.e., the solution could overfit by “memorizing” the
training data and fail on other examples. As a remedy, a common
approach is to apply regularization: i.e., instead of minimizing the
empirical risk, one modifies the objective function by:

rreg(D, p) = remp(D, p) + λΩ(p)

Hereby, Ω : P → R≥0 is a function (called regularizer), which prefers
“simple” programs. For example, Ω(p) could count the number of
instructions in p, i.e., a program is “simpler” if it contains fewer instruc-
tions. Note that the regularizer does not depend on the data set, it only
depends on the program. The regularization parameter λ, which controls
the strength of our simplicity bias, is usually optimized over using a
process called cross-validation. In the following, we use the notation remp

and refer to minimizing it as ERM, whether or not we are applying
regularization.

128

5.2 deepsyn: learning statistical code completion systems

5.1.2 Using Representative Dataset Sampler

The complexity of solving ERM is heavily dependent on the size of the
dataset D. This is due to the fact that evaluating remp or rreg gets more
expensive (since we need to sum over more examples).

To enable ERM on the large dataset D, we use Algorithm 2 with
a representative dataset sampler dsR and a program generator that
solves ERM on small datasets. Our goal here is to sample subsets
d1, d2, . . . dm ⊆ D, with the property that solving ERM on these subsets
leads to good solutions in terms of the (intractably large) dataset D. Our
goal upon termination of the synthesis procedure from Algorithm 2 is
to obtain a program pm for which:

remp(D, pm) ∈ [remp(D, pbest), remp(D, pbest) + ε′]

Obtaining such a bound ε′ of the produced solution pm with respect to
pbest is what we investigated in Chapter 4. Then, recall that R(pbest) ≤
R(p∗) + ε to obtain that the resulting solution pm will have risk at
most ε + ε′ more than p∗. On the other hand, by exploiting the fact
that we can solve ERM much faster on small datasets di, we can find
such a solution much more efficiently than solving the ERM problem
on the full dataset D (which can also be practically infeasible). This
instantiation is a new approach of performing approximate ERM over
discrete search spaces.

5.2 deepsyn: learning statistical code completion systems

In this section we present a new approach for constructing statistical
code completion systems. Such statistical code completion systems
are typically trained on a large corpus of programs and are used to
generate a (probabilistically) likely completion of a given input pro-
gram. Currently, the predictions made by existing systems (e.g., [61,
94] or Slang from Chapter 3) are “hard-wired” (see Section 5.4 for
further discussion) with certain insight that determines their expressive-
ness and precision. Improving the precision of these systems requires
changes to this hard-wired intermediate representation for different
kinds of predictions. The ideas presented here for automatically synthe-
sizing an intermediate representation cleanly generalize these existing
approaches.

129

learning a synthesizer with “big code”

While not obvious, we show that the problem of synthesizing a
program from noisy data appears in this setting as well, and thus the
general framework of synthesis with noise (Chapter 4) applies here.
However, unlike the first-order setting described in Section 4.4 where
the data is simply a set of input/output examples and the learned
program tries to explain these examples and predict new examples, the
learned program in this section is second-order. This means that the
learned program does not predict its output directly from the input,
but instead is used as part of a probabilistic model that performs the
final prediction seen by the developer.

5.2.1 Preliminaries

Recall that we will refer to the program that is to be completed as a tree
(a shortcut for Abstract Syntax Trees). The reason we choose trees as
a representation of the program is because trees provide a reasonable
way to navigate over the program elements. We begin with a standard
definition of context-free grammars (CFGs), trees and parse trees.

Definition 5.1 (CFG). A context-free grammar (CFG) is the quadruple
(N, Σ, s, R) where N is a set of non-terminal symbols, Σ is a set of
terminal symbols, s ∈ N is a start symbol, R is a finite set of production
rules of the form α→ β1...βn with α ∈ N and βi ∈ N ∪ Σ for i ∈ [1..n].

In the whole exposition, we will assume that we are given a fixed CFG:
G = (N, Σ, s, R).

Definition 5.2 (Tree). A tree T is a tuple (X, x0, ξ) where X is a finite
set of nodes, x0 ∈ X is the root node and ξ : X → X∗ is a function
that given a node returns a list of its children. A tree is acyclic and
connected: every node except the root appears exactly once in all the
lists of children. This means that there is a path from the root to every
node. Finally, no node has the root as a child.

Definition 5.3 (Partial parse tree). A partial parse tree is a triple
(T, G, σ) where T = (X, x0, ξ) is a tree, G = (N, Σ, s, R) is a CFG,
and σ : X → Σ ∪ N attaches a terminal or non-terminal symbol to
every node of the tree such that: if ξ(x) = xa1 ...xan (n > 1), then
∃(α→ β1...βn) ∈ R with σ(x) = α and ∀i ∈ 1..n.σ(xai) = βi.

Note that the condition for a partial parse tree requires that the tree
follows the grammar production rules, but does not require all leaves

130

5.2 deepsyn: learning statistical code completion systems

to be terminal symbols (if σ attaches terminal symbols to all leaves, the
tree will not be partial). Let the set of all partial parse trees be PT. Next,
we define tree completion queries.

Definition 5.4 (Tree completion query). A tree completion query is a
triple (ptree, xcomp, rules) where ptree = (T, G, σ) is a partial parse tree
with T = (X, x0, ξ), xcomp ∈ X is a node labeled with a non-terminal
symbol (σ(xcomp) ∈ N) where a completion will be performed, and
rules = {σ(xcomp) → βi}n

i=1 is the set of available rules that one can
apply at the node xcomp.

Using the above definitions, we can now state the precise problem
that is solved by this section.

problem statement The code completion problem we are solving
can now be stated as follows:

Given a tree completion query, select the most likely rule from the set of
available rules and complete the partial parse tree with it.

For the completions we consider, the right hand side β of each rule
is a terminal symbol (e.g., a single API). In principle, one can make
longer completions by iteratively chaining smaller ones. Our follow-up
work defines a grammar called PHOG [20] using these rules.

example : field/api completion Consider the following partial
JavaScript code ”console.” which the user is interested in completing.
The goal of a completion system is to predict the API call log, which is
probably the most likely one for console. Now consider a simplified
CFG that can parse such programs (to avoid clutter, we only list the
grammar rules):

GetProp → Object Property
Object → Var | GetProp

Var → console | document | ... (other variables)
Property → info | log | ... (other properties incl. APIs)

The tree completion query for this example is illustrated in Fig. 5.3.

5.2.2 Our Method: Second-order learning

The key idea of our solution is to synthesize a program which conditions
the prediction. That is, rather than statically hard-wiring the context

131

learning a synthesizer with “big code”

ptree = GetProp

PropertyObject

Var

console

xcomp

rules:

Property→ x

Property→ y

Property→ log

Property→ info

...

Figure 5.3: A tree completion query (ptree, xcomp, rules) corresponding
to completion for the code: ”console”.

on which the prediction depends on as in prior work, we use the
program to dynamically determine the context for the particular query.
For our example, given a partial parse tree ptree and a position xcomp,
the program determines that the prediction of the API call should
depend on the context console. Note that the node that holds the value
console is not parent of the completion node and thus the completion
does not only depend on the rules in the CFG.

In our setting, a context c ∈ Context is a sequence ranging over
terminal and non-terminal symbols seen in the tree, as well as integers.
That is, Context = (N ∪ Σ ∪N)∗. We next describe our method in a
step-by-step manner following the learning architecture from Fig. 5.1
(b) and then elaborate on some of the steps in more detail.

step 1: representation synthesis The goal of the first step is
to learn a conditioning program p≈best ∈ P. In this step, we will apply
the techniques for approximate empirical risk minimization discussed
in Section 5.1.2.

Let D = {Xi, Yi}n
i=1 be a training dataset of tree completions queries

Xi = (ptreei, xi
comp, rules) along with their corresponding completions

Yi ∈ rules. We assume that all examples in D solve the same task
(e.g., API completion) and thus they share the CFG production rules.
The goal of this step is to synthesize the (approximately) best con-
ditioning program p≈best ∈ PT × X → Context that given a query
returns the context on which to condition the prediction. For in-
stance, for the example in Fig. 5.3, a possible program p could produce
p(ptree, xcomp) = [console]. In Section 5.2.3, we present a domain-

132

5.2 deepsyn: learning statistical code completion systems

specific language from which the conditioning program is drawn while
in Section 5.2.4 we elaborate on this step in detail.

step 2 : learn a probabilistic model p(rule | ctx) Once the
conditioning program p≈best is learned, we use that program to train a
probabilistic model. Given our training dataset D as described above,
we next apply p≈best to every query in the training data, obtaining a
new data set:

H(D, p≈best) = {(p≈best(Qi), Yi) | ((Qi, rules), Yi) ∈ D}

where Qi = (ptreei, xi
comp). The derived data set consists of a number

of pairs where each pair {(ci, ri)} indicates that rule ri is triggered by
context ci ∈ Context. Based on this derived set, we can now train a prob-
abilistic model using MLE training (maximum likelihood estimation)
which estimates the true probability P(r | c). The MLE estimation is
standard and is computed as follows:

PH
MLE(r | c) =

|{i | (ci, ri) ∈ H, ci = c, ri = r}|
|{i | (ci, ri) ∈ H, ci = c}|

The MLE simply counts the number of times rule r appears in context
c and divides it by the number of times context c appears. As we will
see later in Section 5.2.4, MLE learning as described above is also used
in step 1.

step 3: perform predictions Once we have learned the con-
ditioning program p≈best and the probabilistic model P(rule | ctx),
we use both components to perform prediction. That is, given a query
(ptree, xcomp, rules), we first compute the context ctx = p≈best(ptree, xcomp).
Once the context is obtained, we can use the trained probabilistic model
to select the best completion (i.e., the most likely rule) from the set of
available rules:

rule = arg max
r∈rules

PH
MLE(r | ctx)

To illustrate the prediction on an example, consider the query shown
in Fig. 5.4 (a) (this is the same query as in Fig. 5.3, repeated for conve-
nience). In this example, the program p≈best consists of two instructions:
one moves left in the tree and the other one writes the element at the
current position (we will see exact semantics of these instructions in
Section 5.2.3). When applied to the given query, the program produces

133

learning a synthesizer with “big code”

GetProp

PropertyObject

Var

console

Complete

PH
MLE(rule|console)

Rule PH
MLE

Property→ log 0.5

Property→ info 0.4

1.Left
2.WriteValue

GetProp

Property

log

Object

Var

console

(a)

(b)

(c)

Figure 5.4: (a) TCond program pa = Left WriteValue executed on a
partial tree producing [console], (b) rules with their proba-
bilities conditioned on [console], (c) the final completion.

Ops ::= ε | Op Ops

Op ::= WriteOp | MoveOp

WriteOp ::= WriteValue | WritePos | WriteAction

MoveOp ::= Up | Left | DownFirst | DownLast | PrevDFS |

PrevLeaf | PrevNodeType | PrevActor

Figure 5.5: The TCond language for extracting context from trees.

the context ctx consisting of the sole symbol console. Once the context
is obtained, we can simply look up the probabilistic model PH

MLE to
find the most likely rule given the context (we list some of the rules
and their probability in Fig. 5.4 (b)). Finally, we complete the query as
shown in Fig. 5.4 (c).

5.2.3 TCond: Domain Specific Language for Tree Contexts

We now present a domain specific language, called TCond, for ex-
pressing the conditioning function p. The language is loop-free and
is summarized in Fig. 5.5. We next provide an informal introduc-
tion to TCond. Every statement of the language transforms a state
υ ∈ PT× X×Context. The state contains a partial tree, a position in the
partial tree and the (currently) accumulated context. The partial tree is

134

5.2 deepsyn: learning statistical code completion systems

not modified during program execution but position and the context
may be.

The language has two types of instructions: movement (MoveOp) and
write instructions (WriteOp). The program is executed until the last
instruction and the accumulated context is returned as the result of the
program.

Move instructions change the node in a state as follows:

(ptree, node, ctx)
MoveOp−−−→ (ptree, node′, ctx)

Depending on the operation, node′ is set to either the node on the left of
node (for Left), to the parent of node (for Up), to the first child of node
(for DownFirst), to the last child of node (for DownLast), to the last leaf
node in the tree on the left of node (for PrevLeaf), to the previous node
in depth-first search traversal order of the tree (for PrevDFS). When
node is a non-terminal symbol, the PrevNodeType instruction moves to
the previous non-terminal symbol of the same type that is left of node.

Write instructions update the context of a state as follows:

(ptree, node, ctx)
WriteOp−−−−→ (ptree, node, ctx · x)

Depending on the instruction, different value x is appended to the
context. For the WriteValue instruction, the value of the terminal
symbol below node is written (if there is one, otherwise x = −1). For
the WritePos instruction, if parent is the parent node of node, then x is
set to the index of node in the list of the children of parent.

The PrevActor and WriteAction instructions use a simple lightweight
static analysis. If node denotes a memory location (field, local or global
variable, that we call actor), PrevActor moves to the previous men-
tion of the same memory location in the tree. Our static analysis
ignores loops, branches and function calls thus previous here refers
to the occurrence of the memory location on the left of node in the
tree. WriteAction writes the name of the operation performed on the
object referred by node. In case the object referred by node is used for a
field access, WriteAction will write the field name being read from the
object. In case the object node is used with another operation (e.g., +),
the operation will be recorded in the context. An example of a program
execution was already discussed for the example in shown in Fig. 5.4
(more examples can be seen in Fig. 5.8 (c), discussed later).

For a program p ∈ Ops, we write p(ptree, xcomp) = ctx to denote that

(ptree, xcomp, ε)
p−→ (ptree, node′, ctx).

135

learning a synthesizer with “big code”

5.2.4 Learning p≈best

We next describe step 1 of our method in greater detail. The key
objective of this step is to synthesize a conditioning program p≈best. Our
DSL P is general enough such that several existing code completion
systems [61, 110] can be seen as hard-wired programs p ∈ P for specific
tasks. In order to pick a best program, we first define what it means for a
synthesized program p to perform well (i.e. we define our cost function
r). Then we describe the program generator and the representative
dataset sampler dsR that we use for Algorithm 2.

building a probabilistic model As described earlier, we are
given a dataset D = {Xi, Yi}n

i=1 of queries Xi = (ptreei, xi
comp, rules),

along with their corresponding completions Yi ∈ rules. For a program
p and a dataset D we can then derive a new data set by applying
the program to every query in D, obtaining the resulting context, and
storing that context and the given prediction together as a tuple, i.e.,
Qi = (ptreei, xi

comp):

H(D, p) = {(p(Qi), Yi) | ((Qi, rules), Yi) ∈ D}

Let us partition the given dataset D into two non-overlapping parts –
Dtrain and Deval . We then obtain the derived (training) set Ht(D, p) =
H(Dtrain, p) from which we build a probability distribution PHt(D,p)

MLE as
outlined earlier.

scoring a probabilistic model To evaluate a probabilistic model,
we use an entropy measure of the derived (evaluation) set He(D, p) =
H(Deval , p) on the learned model PHt(D,p)

MLE . The cross-entropy is a mea-
sure of how many bits we need to encode the evaluation data with the
model build from the training data and provides insight not only on the
error rate, but also how often a result is at a high rank and is produced
with high confidence. In an empirical risk minimization setting, we
use the cross-entropy to define the loss function on a single example
(ctx, rule):

`ent(p, (ctx, rule)) = − log2 PHt(D,p)
MLE (rule | ctx)

136

5.2 deepsyn: learning statistical code completion systems

Based on this loss function, we now define regularized empirical risk
rregent as in Section 5.1.1:

rregent(D, p) =
1

|He(D, p)| ∑
x∈He(D,p)

`ent(p, x) + λ ·Ω(p),

where Ω is a regularizer function that returns the number of instructions
in p. For all our experiments, we use λ = 0.05.

program generators and dataset samplers Using the cost
function rregent(d, p), we can now define the rest of the components and
plug them into Algorithm 2. For our implementation, we use approx-
imate versions of a program generator and a representative dataset
sampler realized with random mutations and genetic programming.

An approximate program generator gen≈ takes a dataset di and an
initial program pi−1. Then, the program generator keeps a list L of
candidate programs and iteratively updates the list in the following
manner. First, gen≈ takes one candidate program, then performs ran-
dom mutations on the instructions of the program, scores the modified
program on the given dataset di according to the rregent measure and
then it adds it to the list L. Our mutations are chosen randomly
among: (i) replacing one random instruction from the candidate pro-
gram with a random instruction from the TCond language, (ii) re-
moving a random instruction from the candidate program, and (iii)
inserting an instruction from the TCond language at a random lo-
cation of the candidate program. Using a genetic-programming like
procedure, gen≈ randomly removes from the list candidate some of
the programs that score worse than another candidate program. This
is done to keep the list of candidate programs L small. After a fixed
number of iterations, gen≈ returns the best scoring program from the
list pi = arg minp∈L rregent(di, p) ≈ arg minp∈P rregent(di, p).

Our approximate dataset sampler dsR
≈ keeps tracks of the costs on the

full dataset D for all programs {pj}i−1
j=1 generated by gen≈. Once a

new program pj is generated, dsR
≈ computes rregent(D, pj). Then, using

a genetic-programming like procedure dsR
≈ keeps a list of candidate

dataset samples and iteratively updates the list. At each iteration,
dsR
≈ takes a dataset and randomly resamples its elements (such that

the mutated dataset is ⊆ D), scores the dataset and adds it to the
list. Then dsR

≈ randomly removes from the list candidate datasets

137

learning a synthesizer with “big code”

Training data D
sample di ⊆ D

candidate program pi

dsR
≈ gen≈

Train full system

D

p≈best

D

Algorithm 2

Figure 5.6: Overall diagram of learning a statistical code completion
system using DeepSyn.

that are less representative (according to the repr measure defined in
Definition 4.3) than another candidate dataset. After a fixed number of
iterations dsR

≈ returns the dataset di ⊆ D which is approximately the
most representative for progs = {pj}i−1

j=1 according to Definition 4.4.

termination condition We have chosen a time-based termina-
tion condition. After some fixed time limit for training expires, we
return the (approximately) best learned program p≈best obtained up to
that moment. This is, from the programs p1, ..., pm produced up to the
time limit by Algorithm 2, we return as p≈best the one that has the best
cost on the full dataset D.

smoothing An important detail for increasing the precision of the
system is using smoothing when computing the maximum likelihood
estimate at any stage of the system. In our implementation, we use
Witten-Bell interpolation smoothing [137]. Smoothing ensures our
system performs well even in cases when a context was not seen in
the training data. Consider for example looking for the probability of
PMLE(rule | c1c2c3) which is a complex context of three observations
in the tree. If such a context was not seen in the training data, to
estimate reasonable probabilities we backoff to a simpler context with
only c1c2 in it. Then, we expect to see more dense data in estimating
PMLE(rule | c1c2). To enable such backoff in PMLE(rule | c1c2), at
training time PMLE counts the events conditioned on the full context
and conditioned on all the prefixes of the full context.

138

5.2 deepsyn: learning statistical code completion systems

5.2.5 Summary of Approach

Our learning procedure consists of two steps shown in Fig. 5.6. In
the first step, we learn the conditioning program p≈best. That is, given
a dataset D, we first use Algorithm 2, gen≈ and dsR

≈ to find a program
p≈best for which the cost rregent(D, p) is minimized. Then, in the second

step, we a learn a probabilistic model PH(D,p≈best)
MLE over the full dataset D

and the program p≈best (discussed earlier).
This model, together with p≈best can then be used to answer field/API

completion queries from the programmer. We show in Section 5.3.1
that using Algorithm 2 equipped with a representative dataset sampler
leads to high accuracy of the resulting statistical synthesizer.

discussion At its core, DeepSyn includes a probabilistic model for
predicting program elements that is parametrized by a program from
a DSL. Each program from that DSL takes as an input a code snippet
and traverses it in order to define this probabilistic model.

In our implementation of DeepSyn, a program in the TCond DSL
takes its input represented as an AST (abstract syntax tree) and exe-
cutes instructions that are easily described as tree movements. This
representation, however, is not a conceptual limitation of our approach.
For example, a future more advanced version of the DSL may include
instructions that use other representations of the code such as program
traces, control-flow graphs, value dependence graphs, call graphs and
others [92]. Alternatively, the DSL may remain simple, but the program
generator can be improved in order to synthesize more complex pro-
grams such that some lightweight program analysis is learned as part
of the synthesized program [103]. It is important to note that as the
synthesized program (or the DSL) complexity increases, so does the
necessary work per data sample in the training dataset. This makes the
program synthesis procedure directly on the entire training set even
more prohibitive. In contrast, we propose to use small representative
samples which enable scalable program synthesis.

Once the synthesis is complete, the final probabilistic model is trained
on the entire dataset and thus, there is no loss of precision of the model
due to the sampling. In this work, we illustrate such a model on all
samples for one type of program elements (APIs/fields). However, a
model can be learned for each program element and these models can
then be combined into one [20].

139

learning a synthesizer with “big code”

5.3 evaluation of deepsyn

Based on Section 5.2, we created a statistical code completion system
for JavaScript programs. This is a particularly hard setting for code
completion systems as unlike in other languages (e.g., Java) where type
information is easily available (e.g., as in Slang), in JavaScript, obtain-
ing precise aliasing and type information is a difficult task (stressing
the prediction capabilities of the system in the presence of noise, even
further). The concrete task we consider is “dot” completion: given a
receiver object, the completion should predict the field name or the
API name that should be used on the object. All our experiments were
performed on a 2.13 GHz Intel Xeon E7-4830 32-core machine with 256

GB of RAM, running 64-bit Ubuntu 14.04. To benefit from the amount
of cores, we implemented the gen≈ and dsR

≈ procedures to evaluate
multiple candidate programs and datasets in parallel.

To train and evaluate our system, we collected JavaScript programs
from GitHub [46], removed duplicate files or project forks (copy of
another existing repository) and kept only programs that parse and are
not obfuscated. As a result, we obtained 150, 000 JavaScript files (trees).
We used two thirds of the data for learning, and the last one third only
for evaluation. Our dataset, split into training and evaluation portion,
is available at http://www.srl.inf.ethz.ch/js150.php.

5.3.1 Learning p≈best

We now discuss our training procedure. The first question we may ask
is if using Algorithm 2 with a representative dataset sampler (dsR

≈) is
of any benefit to the speed or precision of the system. To answer this
question, we designed a number of system variants:

• DeepSyn (gen≈ with dsR
≈) is our system as described Fig. 5.6. For

this system, we start with a random sample of 100 trees from the
training dataset and then through the loop of Algorithm 2, we
modify the sample to be more representative.

• gen≈ on full dataset is a system that directly optimizes the pro-
gram on the full training dataset D. Because evaluating each
candidate programs takes a long time, this system can only try a
smaller number of candidate programs and results in an imprecise
probabilistic model.

140

http://www.srl.inf.ethz.ch/js150.php

5.3 evaluation of deepsyn

• gen≈ on fixed sample is a system that starts with a random sam-
ple of 100 trees from the training dataset and optimizes the pro-
gram only on this small sample. This policy has the time budget
to explore a large number of candidate programs, but is unable
to provide reasonable score estimates for them. It quickly reaches
a cap on what can be learned on the small dataset.

• gen≈ with randomly increasing sample is a system that starts with
a small random sample of trees from the training dataset and
iteratively increases the size of the sample. It performs no op-
timization of the sample for representativeness, just adds more
elements to it.

The results summarized in Fig. 5.7 illustrate the effectiveness of
each of the four approaches. Each plot gives the rregent of the best
candidate program p≈best found by a system at a given time. Note that
the lower values of cross-entropy, the better. In fact a small decrease
in cross-entropy typically leads to a significantly better model, because
entropy is measured in bits (with equally likely choices, reduction of
one bit means there are 2 times less possible choices to make). The
graph shows that our full DeepSyn system initially spends time to find
the best sample, but then reaches the best program of all systems. If
provided with infinite time, gen≈ on full data will approach the optimal
program, but in practice it is prohibitively slow and has far worse
performance.

We note that the synthesizer with randomly increasing sample ap-
pears to find a reasonable program faster than when using dsR

≈. The
reason for this is that this procedure did not evaluate its result on the
full dataset dataset (we evaluated the programs after the procedure
completed). If we include the time to evaluate the candidate programs,
this setting would not be as fast as it appears.

Next, we take the best program obtained after one hour of computa-
tion by DeepSyn and analyze it in detail.

5.3.2 Precision of DeepSyn

Once we obtain the best TCond program, we create a completion
system based on it, train it on our learning dataset and evaluate it
on the evaluation dataset. For each file in the evaluation dataset we

141

learning a synthesizer with “big code”

0 10 20 30 40 50 60
5.3

6.6

8.2

10.3

12.8

16

rregent: Cross-Entropy + Regularization

Time in minutes

DeepSyn(gen≈ with dsR
≈)

gen≈ on full data

gen≈ on fixed sample

gen≈ with randomly increasing sample

Figure 5.7: Effect of various data sampling policies used to find TCond

programs.

randomly selected 100 method calls and queried our system to predict
the correct completion one at a time. Given the evaluation dataset of
50, 000 programs, this resulted in invoking the prediction of 2, 537, 415
methods for any API and 48, 390 methods when predicting method
calls on DOM document object.

The accuracy results are summarized in Table 5.1. The columns of
the table represent systems trained on different amounts of training
data. The right-most column trains on all 100, 000 JavaScript programs
in the training set and the columns on the left use a subset of this data.
Different rows on Table 5.1 include information for different tasks. On
the task of predicting DOM APIs on the document object, the APIs
are shared across all projects and the accuracy is higher – the correct
completion is the first suggestion in 77% of the cases. When we extend
the completion to any APIs, including APIs local to each project that
the model may not know about, the accuracy drops to 50.4%. When
used on non-API property completions, our completion system predicts
the correct field name as a first suggestion in 38.9% of the cases.

142

5.3 evaluation of deepsyn

Size of training data (files)

Task 1K 10K 100K

DOM APIs on document object

correct completion at position 1 63.2% 69.2% 77.0%

correct completion in top 3 90.1% 84.6% 89.9%

correct completion in top 8 83.5% 88.6% 92.9%

Unrestricted API completion

correct completion at position 1 22.6% 34.2% 50.4%

correct completion in top 3 30.8% 44.5% 61.9%

correct completion in top 8 33.6% 47.7% 64.9%

Field (non-API) completion

correct completion at position 1 21.0% 29.7% 38.9%

correct completion in top 3 26.3% 37.0% 48.9%

correct completion in top 8 28.0% 38.8% 51.4%

Table 5.1: Accuracy of API method and object field completion depend-
ing on the task and the amount of training data.

5.3.3 Interpreting p≈best

A useful aspect of TCond programs is that they are easily readable by
a human. The best program is listed with its instructions in Fig. 5.8
(a). Let us illustrate what this program does on a JavaScript code
completion query from Fig. 5.8 (b). Going instruction by instruction,
Fig. 5.8 (c) shows the execution. First, the program moves to the left
of the completion position in the tree (i.e., to the receiver object of the
completion). Then, it moves to the previous usage of the same object
(PrevActor), writes the action being done on the project (i.e., the name
of the field of API invoked). Next, it writes the name of the variable (if
any) and moves to the previous usage of the same object, etc. Finally,
at instruction 9, it cannot move anymore and the program stops and
returns the accumulated sequence so far. For our example, the program
accumulates the following context:

querySelectorAll document querySelectorAll show

143

learning a synthesizer with “big code”

p≈best = Left PrevActor WriteAction WriteValue

PrevActor WriteAction PrevLeaf

WriteValue PrevLeaf WriteValue

(a) TCond program

if (show) {
var cws = document.querySelectorAll(...);

for (var i = 0, slide; slide = cws[i]; i++) {
slide.classList.add("hidden");

}
var iap = document.querySelectorAll(...);

for (var i = 0, slide; slide = iap[i]; i++) {
slide.classList.add("hidden");

}
var dart = document.

... Completion position
}

(b) JavaScript code snippet

(c) Execution of p≈best on the AST representation of the code snippet from (b)

I f

Var
show

8.WriteValue BlockStatement

CallExpression

GetProp

PropertyObject

Var

document

CallExpression

GetProp

Property

querySelectorAll

Object

Var

document

CallExpression

GetProp

Property

querySelectorAll

Object

Var

document

1.Left

2.PrevActor

4.WriteValue

3.WriteAction

5.PrevActor

6.WriteAction

7.PrevLeaf

9.PrevLeaf

Figure 5.8: The (a) p≈best TCond program describing which parts of the
code to condition on for an API method completion task, (b)
a JavaScript code snippet on which we want to perform API
completion, and (c) a relevant part of the AST representation
of (b) where the execution of the TCond program from (a)
is illustrated.

144

5.3 evaluation of deepsyn

5.3.4 Comparison to Existing Systems

We note that previous works essentially use a hard-coded tree condi-
tioning program. In some of the works immediate context is used – the
non-terminals directly preceding the completion location [3, 61]. The
conditioning of the Slang system described in Chapter 3 can also be
described by a TCond program.

Note that for Slang, our statistical code completion systems targeted
Java which makes it easier to perform static program analysis (e.g., type
analysis, getting fully qualified names, alias analysis) which explains
why the Slang program performs far worse in the case of JavaScript
API completions. Next, we review these programs and compare their
accuracy to DeepSyn using the best program p≈best in Fig. 5.8 (a). As
previously shown in Table 5.1, the accuracy on the task of predicting
JavaScript APIs for this program is 50.4%.

• The work of Hindle at al. [61] uses an 3-gram language model on
the tokenized program without performing any semantic analysis.
This results in a predictor for JavaScript APIs with accuracy of
22.2%. The program that corresponds to this model is:

PrevDFS WriteValue PrevDFS WriteValue

• The language model of Slang performs a conditioning that de-
pends on the previous APIs of the same object as well as whether
the object was used as a receiver or as a method parameter. This
conditioning is captured in the following program:

Left PrevActor WriteAction WritePos

PrevActor WriteAction WritePos

The accuracy of this program for JavaScript APIs is 30.4%.

In addition to the best possible program p≈best, we include the pro-
grams generated by our tool with different data sampling procedures.

• gen≈ on full data operates on the full data and within one hour
it could not learn to condition on previous APIs. The program
learned by this synthesis procedure is

Left DownLast WriteValue PrevNodeType DownLast

PrevDFS PrevLeaf WriteValue DownLast PrevLeaf

Left WriteAction PrevNodeType WriteValue

and results in 46.3% accuracy.

145

learning a synthesizer with “big code”

• gen≈ on fixed sample only learns a program from a small sample
of 100 programs and results in a simple conditioning that only
depends on a single previous API. The resulting accuracy for
JavaScript API completion is 18.8% with the program

PrevDFS PrevActor WriteAction

• gen≈ with randomly increasing sample iteratively increases the
sample and results in a program that has accuracy of 47.5% which
is lower than our best accuracy of 50.4%. The program gener-
ated by randomly increasing the sample size conditions on one
previous API, but the rest of the program is not optimal

Left PrevActor WriteAction

DownLast PrevActor PrevNodeType WriteAction

WriteValue Left PrevLeaf WriteValue

summary Overall, we have shown that our approach of learning
a tree conditioning program in a domain specific language (TCond)
exceeds the accuracy of systems where an expert hard-wired the pre-
diction, as used in previous systems. At the same time, our approach
includes a domain specific language that is flexible and extensible to
further increase the accuracy and the capabilities of the system. The
high accuracy of this work is achieved thanks to our general approach
– a program generator that predicts a program from a small dataset
(gen≈) and a representative dataset sampler that makes the small set
behave similarly to the large training data (dsR

≈).

5.4 related work

As our work touches on several areas, below we survey some of the
existing results that are most closely related to ours.

core sets A core set is a concept in machine learning used to
summarize a large data set into a smaller data set that preserves its
properties. Core sets were successfully applied in the context of clus-
tering such as k-means [58]. Obtaining core sets from a data set is a
procedure that is manually tailored to the particular problem at hand
(e.g., k-means), that is, there are currently no universal techniques for
constructing core sets for arbitrary programs. In contrast, our work is
not based on a specific algorithm or property such as k-means. In fact,

146

5.4 related work

an ideal outcome of our sampling step is to compute or approximate a
core set of the training data. An interesting question for future work is
to explore the connection between core sets and our iterative sampling
algorithm.

dataset cleaning A different method for dealing with large
noisy data is to clean up the data beforehand either with a statisti-
cal model [29], or with an already given program [10]. These ap-
proaches, however, need additional statistical assumptions about the
data or specification of another program. In contrast, in this chapter,
we simultaneously build the cleaned dataset and the program.

Another promising direction has been proposed in the context of
debugging probabilistic models [36]. The idea is to detect outlier
examples by observing if flipping a label in the training data leads to
higher accuracy of the model. Similar to our work, their approach may
discover a sample that is representative for the learned task. However,
they do not attempt to reduce the size of the sample, to speed-up
learning or to use this sample to discover deeper models or features.

genetic algorithms Genetic programming has been proposed
as a general approach to explore a large set of candidates in order to
discover a solution that maximizes an objective function [9, 119]. The
work or Cramer [32] discusses the language design decisions to encode
a program synthesis problem from input/output examples into genetic
programming. Some of the problems studied here in terms of selecting
subset of the evaluation data to score instances were considered in
the context of genetic programming. A technique known as stochastic
sampling [8] reduces the number of evaluations by only considering
random subsets of the training data. In our experiments, however, we
show that using our strategy of representative sampling is superior
than using random sampling.

probabilistic programs A recent synthesizer PSketch [96] per-
forms synthesis of probabilistic programs by approximating the pro-
gram via a mixture of Gaussians. Fundamentally, probabilistic pro-
grams interpret program executions as distributions and the synthesis
task fits parameters to these distributions. Instead, with our approach
we learn deterministic programs that approximate a dataset well. In
general, our idea of a dataset sampler should be applicable also to

147

learning a synthesizer with “big code”

learning probabilistic programs from data, but we leave this as a future
work item.

automatic configuration of algorithms ParamILS [65] picks
a configuration of an algorithm based on its performance on a dataset.
Similar to our approach, ParamILS attempts to speed-up the evaluation
of a configuration by running on a small subset of the full dataset, but
only does so by selecting a random sample.

summary In this chapter, we presented a new procedure for learning
synthesizers with “Big Code”. An interesting future direction is to
explore other domain-specific languages with richer instruction sets
(e.g. containing branches and/or loops). Such languages could enable
even higher expressivity and better precision.

148

6
C O N C L U S I O N A N D F U T U R E W O R K

In this dissertation, we demonstrated a new approach for building
probabilistic systems aimed at solving programming tasks. The core
idea is to use program analysis to transform the problem into a suitable
intermediate representation and to then learn a probabilistic model over
this intermediate representation in order to make predictions. We dis-
cussed two kinds of probabilistic models – a discriminative conditional
random field model with queries represented as graphs and a generative
model with queries represented as sequences. Both of these models
were shown to be scalable to train and efficient to query. We discussed
several manually designed program analyses to transform a problem
into one of these intermediate representations. We also presented a
general approach that uses a domain-specific language to automatically
synthesize code completion systems. Using this approach, we built a
state-of-the-art code completion system for JavaScript.

probabilistic systems We described three scalable systems trained
on a large corpus of code. The JSNice system predicts names and
type annotations for JavaScript. JSNice is practically useful: it has
become a popular tool in the JavaScript developer community and it
has been used by more than 100′000 developers. The Slang system
provides state-of-the-art accuracy for Java Android API completion and
an Eclipse plug-in that displays Slang predictions is in development.
The DeepSyn system provides JavaScript code completion with far
higher accuracy than that of previous works.

6.1 future work

We foresee a number of directions for extending these tools and for
applying the techniques in this dissertation to new applications. Next,
we discuss some possible extensions.

149

conclusion and future work

6.1.1 Creating Probabilistic Tools on Top of Our Models

The success of the JSNice tool in the JavaScript developer community
led us to separate its probabilistic model and open source it as a separate
project called Nice2Predict available at http://nice2predict.org/.
Nice2Predict should be applicable to a range of applications for which
there is a need to make joint predictions of multiple program properties
that satisfy a given set of constraints.

reverse engineering tools Code transformation tools such as
compilers take a human-readable representation of a program and
convert it into a representation that is less human readable, but often
more efficient for machine processing. In the process, these tools
may remove information from the original program description such
as names, type annotations, coding style, comments and others. We
foresee a range of tools that reverse such transformations by using
“Big Code” to reconstruct the removed information. These tools could
benefit from the models developed by JSNice and many of them can be
directly encoded in our Nice2Predict framework. Next, we give two
examples of such tools.

Similar to JavaScript code, it is common for Android developers to
reduce the size of their applications by performing minification. The
most common tool for Android minification is called ProGuard [118]
and ProGuard renames application class, method and field names to
meaningless, but shorter names. To reverse the obfuscation, a “Big
Code” tool may build a probabilistic model akin to the model of JSNice

such that the shortened names in an Android application are predicted
based on other non-shortened names such as Android APIs. We have
recently started investigating this direction [17].

The work of Katz et al. [71] is another instance of this direction and
focuses on recovering types in compiled binaries. Their solution is also
similar to the one we propose in Chapter 3, but with differences in
the selected program analysis component that computes the features.
Unfortunately, their approach predicts each type in isolation and as a
result the predictions cannot be guaranteed to satisfy type-checking
rules. A possible way to address this limitation is by framing the
problem as a MAP inference query as in our work and using our
learning procedure from Section 2.5.

150

http://nice2predict.org/

6.1 future work

improving the accuracy of predictions Our current solu-
tion for name prediction in JSNice only predicts identifier names that
were seen in the training data. However, many identifier names are not
shared across projects. Yet, some names are a concatenation of several
common English words. Using a model that performs prediction of
each word in a name separately will enable a name predictor that can
suggest names not seen in the training data (a promising work in this
direction is [2]). Similar arguments may be made about predictions of
other program properties such as template types or invariants – while
the entire type may be project-specific, it can be split into components
that range from a set of types shared among projects in the training
data.

6.1.2 Universal Model for Code

In natural language processing tasks, modeling probabilities of (arbi-
trary) text enables a range of applications including statistical machine
translation, speech recognition and others [114]. Similarly, a universal
probabilistic model that assigns probabilities to all program elements
enables new statistical programming tools. So far, these statistical pro-
gramming tools model the probability of code using a probabilistic
context-free grammar [55] or a language model on code tokens [4].
While these models are universal, they are a poor fit for code seman-
tics [61, 95]. With the techniques from Chapter 5, we have shown
how to accurately predict code and how to assign probabilities to our
predictions. Based on this idea, we can build a new probabilistic model
for code that assigns high probabilities to correct programs and low
probabilities to incorrect programs, i.e. a good probabilistic model for
code. We have recently started exploring this direction in [20].

A universal probabilistic model for code would not only improve
on existing applications, but may enable new applications. Automatic
generation of refactorings has been an active research area in recent
years [106, 124]. For example, the ReSynth tool [106] asks the user to
demonstrate a code modification on part of a program and then the tool
performs refactorings on the entire program that include the desired
modifications. To handle the case in which the user demonstration is
ambiguous, we suggest to return the solution that is scored highest by
the probabilistic model. In an interesting use case of such a tool, the
user is not even required to provide a demonstration, yet the tool can

151

conclusion and future work

automatically suggest a refactoring that improves the overall likelihood
of a program according to a probabilistic model.

Another area of interest is automatic bug location and bug fixing.
Similar to the refactoring setting [106], a tool may search through a space
of programs by performing modifications on a given input program.
In contrast to the refactoring setting, however, these modifications are
not semantic-preserving and an attempt to fix a defect in the input
program. Using a probabilistic model, we foresee a tool that can
localize and fix defects in programs. This enables improvements on
top of current techniques [83] which only find a fix once the defective
line has already been localized. More generally, probabilistic models
for code can be used in a number of other applications such as fuzzing,
program synthesis and others.

6.1.3 Statistical Program Synthesis

In this thesis, we investigated the problem of program synthesis from
two perspectives. First, we introduced statistical synthesizers that
complete partial programs based on probabilistic models and subject to
semantic constraints. Second, we formulated the problem of program
synthesis with noise such that incorrect input/output examples are
handled by the synthesizer. Future work items in this area include
combining these ideas into one common synthesizer that takes into
account both: (possibly noisy) input/output examples and likelihood
measures from a probabilistic model.

combining probabilistic search with reasoning Another
interesting future research direction is to combine probabilistic synthe-
sis with other synthesis techniques such as deductive synthesis, version
spaces and others [52]. One possible approach here is that part of
the program is synthesized with probabilistic models and the rest is
completed with other techniques.

152

B I B L I O G R A P H Y

[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles
Sutton. ”Learning Natural Coding Conventions.“ In: Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. FSE 2014. Hong Kong, China: ACM, 2014,
pp. 281–293. url: http://doi.acm.org/10.1145/2635868.
2635883 (cit. on p. 4).

[2] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles
Sutton. ”Suggesting Accurate Method and Class Names.“ In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2015. Bergamo, Italy: ACM, 2015, pp. 38–
49. url: http://doi.acm.org/10.1145/2786805.2786849
(cit. on p. 151).

[3] Miltiadis Allamanis and Charles Sutton. ”Mining Source Code
Repositories at Massive Scale Using Language Modeling.“ In:
Proceedings of the 10th Working Conference on Mining Software
Repositories. MSR ’13. San Francisco, CA, USA: IEEE Press, 2013,
pp. 207–216. url: http://dl.acm.org/citation.cfm?id=
2487085.2487127 (cit. on p. 145).

[4] Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gordon, and
Yi Wei. ”Bimodal Modelling of Source Code and Natural Lan-
guage.“ In: Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015. 2015,
pp. 2123–2132. url: http://jmlr.org/proceedings/papers/
v37/allamanis15.html (cit. on p. 151).

[5] A. Alnusair, Tian Zhao, and E. Bodden. ”Effective API navigation
and reuse.“ In: 2010 IEEE International Conference on Information
Reuse and Integration (IRI). Aug. 2010, pp. 7–12. url: http://dx.
doi.org/10.1109/IRI.2010.5558972 (cit. on p. 69).

[6] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Mar-
tin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.

”Syntax-Guided Synthesis.“ In: Proceedings of the IEEE Interna-

153

http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2635868.2635883
http://doi.acm.org/10.1145/2786805.2786849
http://dl.acm.org/citation.cfm?id=2487085.2487127
http://dl.acm.org/citation.cfm?id=2487085.2487127
http://jmlr.org/proceedings/papers/v37/allamanis15.html
http://jmlr.org/proceedings/papers/v37/allamanis15.html
http://dx.doi.org/10.1109/IRI.2010.5558972
http://dx.doi.org/10.1109/IRI.2010.5558972

Bibliography

tional Conference on Formal Methods in Computer-Aided Design
(FMCAD). Oct. 2013, pp. 1–17 (cit. on pp. 1, 101).

[7] Glenn Ammons, Rastislav Bodı́k, and James R. Larus. ”Min-
ing Specifications.“ In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL
’02. Portland, Oregon: ACM, 2002, pp. 4–16. url: http://doi.
acm.org/10.1145/503272.503275 (cit. on p. 99).

[8] James E. Baker. ”Reducing Bias and Inefficiency in the Selection
Algorithm.“ In: Proceedings of the Second International Conference
on Genetic Algorithms on Genetic Algorithms and Their Application.
Cambridge, Massachusetts, USA: L. Erlbaum Associates Inc.,
1987, pp. 14–21. url: http://dl.acm.org/citation.cfm?id=
42512.42515 (cit. on p. 147).

[9] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and
Peter Nordin. Genetic Programming: An Introduction: on the Au-
tomatic Evolution of Computer Programs and Its Applications. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998

(cit. on p. 147).

[10] Daniel W. Barowy, Dimitar Gochev, and Emery D. Berger. ”Check-
Cell: Data Debugging for Spreadsheets.“ In: Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications. OOPSLA ’14. Portland,
Oregon, USA: ACM, 2014, pp. 507–523. url: http://doi.acm.
org/10.1145/2660193.2660207 (cit. on pp. 1, 104, 120, 147).

[11] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin
G. Zorn. ”FlashRelate: extracting relational data from semi-
structured spreadsheets using examples.“ In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015. 2015,
pp. 218–228. url: http://doi.acm.org/10.1145/2737924.
2737952 (cit. on p. 101).

[12] Nels E. Beckman, Duri Kim, and Jonathan Aldrich. ”An Em-
pirical Study of Object Protocols in the Wild.“ In: Proceedings
of the 25th European Conference on Object-oriented Programming.
ECOOP’11. Springer-Verlag, 2011, pp. 2–26. url: http://dl.
acm.org/citation.cfm?id=2032497.2032501 (cit. on p. 68).

154

http://doi.acm.org/10.1145/503272.503275
http://doi.acm.org/10.1145/503272.503275
http://dl.acm.org/citation.cfm?id=42512.42515
http://dl.acm.org/citation.cfm?id=42512.42515
http://doi.acm.org/10.1145/2660193.2660207
http://doi.acm.org/10.1145/2660193.2660207
http://doi.acm.org/10.1145/2737924.2737952
http://doi.acm.org/10.1145/2737924.2737952
http://dl.acm.org/citation.cfm?id=2032497.2032501
http://dl.acm.org/citation.cfm?id=2032497.2032501

Bibliography

[13] Nels E. Beckman and Aditya V. Nori. ”Probabilistic, Modular
and Scalable Inference of Typestate Specifications.“ In: Proceed-
ings of the 32Nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’11. San Jose, California,
USA: ACM, 2011, pp. 211–221. url: http://doi.acm.org/10.
1145/1993498.1993524 (cit. on pp. 62, 63).

[14] Y. Bengio, P. Simard, and P. Frasconi. ”Learning Long-term
Dependencies with Gradient Descent is Difficult.“ In: Trans.
Neur. Netw. 5.2 (Mar. 1994), pp. 157–166. url: http://dx.doi.
org/10.1109/72.279181 (cit. on p. 80).

[15] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian
Janvin. ”A Neural Probabilistic Language Model.“ In: Journal
of Machine Learning Research 3 (Mar. 2003), pp. 1137–1155. url:
http://dl.acm.org/citation.cfm?id=944919.944966 (cit. on
p. 89).

[16] Julian Besag. ”On the Statistical Analysis of Dirty Pictures.“
In: Journal of the Royal Statistical Society. Series B (Methodol.) 48.3
(1986), pp. 259–302. url: http://dx.doi.org/10.2307/2345426
(cit. on pp. 15, 39, 58).

[17] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin
Vechev. ”Statistical Deobfuscation of Android Applications.“ In:
CCS 2016. to appear, 2016 (cit. on pp. vii, 17, 150).

[18] Pavol Bielik, Veselin Raychev, and Martin Vechev. ”Program-
ming with ”Big Code”: Lessons, Techniques and Applications.“
In: 1st Summit on Advances in Programming Languages, SNAPL
2015, May 3-6, 2015, Asilomar, California, USA. 2015, pp. 41–50.
url: http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.41
(cit. on p. vii).

[19] Pavol Bielik, Veselin Raychev, and Martin Vechev. ”Scalable
Race Detection for Android Applications.“ In: Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA 2015.
ACM, 2015, pp. 332–348. url: http://doi.acm.org/10.1145/
2814270.2814303 (cit. on p. viii).

[20] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. ”PHOG:
Probabilistic Model for Code.“ In: Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City,

155

http://doi.acm.org/10.1145/1993498.1993524
http://doi.acm.org/10.1145/1993498.1993524
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
http://dl.acm.org/citation.cfm?id=944919.944966
http://dx.doi.org/10.2307/2345426
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.41
http://doi.acm.org/10.1145/2814270.2814303
http://doi.acm.org/10.1145/2814270.2814303

Bibliography

NY, USA, June 19-24, 2016. 2016, pp. 2933–2942 (cit. on pp. vii,
66, 131, 139, 151).

[21] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2006 (cit. on p. 49).

[22] BitBucket. https://bitbucket.org/ (cit. on pp. 1, 52).

[23] James Bornholt and Emina Torlak. ”Scaling program synthesis by
exploiting existing code.“ In: Machine Learning for Programming
Languages (ML4PL). 2015 (cit. on p. 12).

[24] Aaron R. Bradley and Zohar Manna. The Calculus of Computation:
Decision Procedures with Applications to Verification. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2007 (cit. on p. 64).

[25] Thorsten Brants and Alex Franz. ”Web 1T 5-gram, Version 1.“ In:
Linguistic Data Consortium (2006). url: http://www.ldc.upenn.
edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13 (cit.
on p. 1).

[26] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp.

”Exploring the Influence of Identifier Names on Code Quality:
An Empirical Study.“ In: Proceedings of the 2010 14th European
Conference on Software Maintenance and Reengineering. CSMR ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 156–
165. url: http://dx.doi.org/10.1109/CSMR.2010.27 (cit. on
p. 4).

[27] Bruno Caprile and Paolo Tonella. ”Restructuring Program Iden-
tifier Names.“ In: Proceedings of the International Conference on
Software Maintenance (ICSM’00). ICSM ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 97–. url: http://dl.acm.org/
citation.cfm?id=850948.853439 (cit. on p. 4).

[28] Pavol Černý and Thomas A. Henzinger. ”From Boolean to Quan-
titative Synthesis.“ In: Proceedings of the Ninth ACM International
Conference on Embedded Software. EMSOFT ’11. Taipei, Taiwan:
ACM, 2011, pp. 149–154. url: http://doi.acm.org/10.1145/
2038642.2038666 (cit. on p. 121).

[29] Varun Chandola, Arindam Banerjee, and Vipin Kumar. ”Anomaly
Detection: A Survey.“ In: ACM Comput. Surv. 41.3 (July 2009),
15:1–15:58. url: http : / / doi . acm . org / 10 . 1145 / 1541880 .
1541882 (cit. on pp. 104, 120, 147).

156

https://bitbucket.org/
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://dx.doi.org/10.1109/CSMR.2010.27
http://dl.acm.org/citation.cfm?id=850948.853439
http://dl.acm.org/citation.cfm?id=850948.853439
http://doi.acm.org/10.1145/2038642.2038666
http://doi.acm.org/10.1145/2038642.2038666
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882

Bibliography

[30] Swarat Chaudhuri, Martin Clochard, and Armando Solar-Lezama.

”Bridging Boolean and Quantitative Synthesis Using Smoothed
Proof Search.“ In: Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’14. San
Diego, California, USA: ACM, 2014, pp. 207–220. url: http:
//doi.acm.org/10.1145/2535838.2535859 (cit. on p. 121).

[31] Jonathan E. Cook and Alexander L. Wolf. ”Discovering Models
of Software Processes from Event-based Data.“ In: ACM Trans-
actions on Software Engineering and Methodology 7.3 (July 1998),
pp. 215–249. url: http://doi.acm.org/10.1145/287000.
287001 (cit. on p. 99).

[32] Nichael Lynn Cramer. ”A Representation for the Adaptive Gen-
eration of Simple Sequential Programs.“ In: Proceedings of the
1st International Conference on Genetic Algorithms. Hillsdale, NJ,
USA: L. Erlbaum Associates Inc., 1985, pp. 183–187. url: http:
//dl.acm.org/citation.cfm?id=645511.657085 (cit. on
p. 147).

[33] Barthélémy Dagenais and Laurie Hendren. ”Enabling Static
Analysis for Partial Java Programs.“ In: Proceedings of the 23rd
ACM SIGPLAN Conference on Object-oriented Programming Systems
Languages and Applications. OOPSLA ’08. Nashville, TN, USA:
ACM, 2008, pp. 313–328. url: http://doi.acm.org/10.1145/
1449764.1449790 (cit. on pp. 71, 90).

[34] DARPA. Mining and Understanding Software Enclaves (MUSE).
http://www.darpa.mil/news- events/2014- 03- 06a. 2014

(cit. on p. 1).

[35] Leonardo De Moura and Nikolaj Bjørner. ”Z3: An Efficient
SMT Solver.“ In: Proceedings of the Theory and Practice of Soft-
ware, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. TACAS’08/ETAPS’08. Bu-
dapest, Hungary: Springer-Verlag, 2008, pp. 337–340. url: http:
//dl.acm.org/citation.cfm?id=1792734.1792766 (cit. on
p. 118).

[36] ”Debugging machine learning models.“ In: ICML Workshop on
Reliable Machine Learning in the Wild. 2016 (cit. on p. 147).

157

http://doi.acm.org/10.1145/2535838.2535859
http://doi.acm.org/10.1145/2535838.2535859
http://doi.acm.org/10.1145/287000.287001
http://doi.acm.org/10.1145/287000.287001
http://dl.acm.org/citation.cfm?id=645511.657085
http://dl.acm.org/citation.cfm?id=645511.657085
http://doi.acm.org/10.1145/1449764.1449790
http://doi.acm.org/10.1145/1449764.1449790
http://www.darpa.mil/news-events/2014-03-06a
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766

Bibliography

[37] Dimitar Dimitrov, Veselin Raychev, Martin Vechev, and Eric
Koskinen. ”Commutativity Race Detection.“ In: Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’14. ACM, 2014, pp. 305–315.
url: http://doi.acm.org/10.1145/2594291.2594322 (cit. on
p. viii).

[38] Jeffrey L. Elman. ”Finding structure in time.“ In: Cognitive Science
14.2 (1990), pp. 179–211. url: http://groups.lis.illinois.
edu/amag/langev/paper/elman90findingStructure.html (cit.
on pp. 67, 68, 79).

[39] Facebook. http://facebook.com/ (cit. on p. 1).

[40] Factorie. https://github.com/factorie/factorie (cit. on
p. 65).

[41] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and
Emmanuel Geay. ”Effective Typestate Verification in the Presence
of Aliasing.“ In: ACM Trans. Softw. Eng. Methodol. 17.2 (May 2008),
9:1–9:34. url: http://doi.acm.org/10.1145/1348250.1348255
(cit. on p. 6).

[42] Thomas Finley and Thorsten Joachims. ”Training Structural
SVMs when Exact Inference is Intractable.“ In: Proceedings of
the 25th International Conference on Machine Learning. ICML ’08.
Helsinki, Finland: ACM, 2008, pp. 304–311. url: http://doi.
acm.org/10.1145/1390156.1390195 (cit. on p. 39).

[43] Cormac Flanagan and Patrice Godefroid. ”Dynamic Partial-order
Reduction for Model Checking Software.“ In: Proceedings of the
32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’05. Long Beach, California, USA:
ACM, 2005, pp. 110–121. url: http://doi.acm.org/10.1145/
1040305.1040315 (cit. on p. 1).

[44] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth.

”Learning Invariants Using Decision Trees and Implication Coun-
terexamples.“ In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL
2016. St. Petersburg, FL, USA: ACM, 2016, pp. 499–512. url:
http://doi.acm.org/10.1145/2837614.2837664 (cit. on pp. 1,
12).

158

http://doi.acm.org/10.1145/2594291.2594322
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html
http://groups.lis.illinois.edu/amag/langev/paper/elman90findingStructure.html
http://facebook.com/
https://github.com/factorie/factorie
http://doi.acm.org/10.1145/1348250.1348255
http://doi.acm.org/10.1145/1390156.1390195
http://doi.acm.org/10.1145/1390156.1390195
http://doi.acm.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/1040305.1040315
http://doi.acm.org/10.1145/2837614.2837664

Bibliography

[45] Felix A. Gers, Jürgen A. Schmidhuber, and Fred A. Cummins.

”Learning to Forget: Continual Prediction with LSTM.“ In: Neural
Computation 12.10 (Oct. 2000), pp. 2451–2471. url: http://dx.
doi.org/10.1162/089976600300015015 (cit. on p. 80).

[46] GitHub. http://github.com/ (cit. on pp. 1, 16, 52, 69, 140).

[47] Google Closure Compiler. https://developers.google.com/
closure/compiler/ (cit. on pp. 5, 17, 51).

[48] Google Translate. http://translate.google.com/ (cit. on p. 1).

[49] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and
Sriram K. Rajamani. ”Probabilistic Programming.“ In: Proceedings
of the on Future of Software Engineering. FOSE 2014. Hyderabad,
India: ACM, 2014, pp. 167–181. url: http://doi.acm.org/10.
1145/2593882.2593900 (cit. on p. 65).

[50] Radu Grigore and Hongseok Yang. ”Abstraction Refinement
Guided by a Learnt Probabilistic Model.“ In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL 2016. St. Petersburg, FL, USA:
ACM, 2016, pp. 485–498. url: http://doi.acm.org/10.1145/
2837614.2837663 (cit. on p. 12).

[51] Sumit Gulwani. ”Automating String Processing in Spreadsheets
Using Input-output Examples.“ In: Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’11. Austin, Texas, USA: ACM, 2011, pp. 317–
330. url: http://doi.acm.org/10.1145/1926385.1926423
(cit. on pp. 1, 101, 102).

[52] Sumit Gulwani. ”Dimensions in Program Synthesis.“ In: Pro-
ceedings of the 12th International ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming. PPDP ’10. Ha-
genberg, Austria: ACM, 2010, pp. 13–24. url: http://doi.acm.
org/10.1145/1836089.1836091 (cit. on pp. 1, 98, 121, 152).

[53] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam
Venkatesan. ”Synthesis of Loop-free Programs.“ In: Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’11. San Jose, California, USA:
ACM, 2011, pp. 62–73. url: http://doi.acm.org/10.1145/
1993498.1993506 (cit. on p. 119).

159

http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://github.com/
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
http://translate.google.com/
http://doi.acm.org/10.1145/2593882.2593900
http://doi.acm.org/10.1145/2593882.2593900
http://doi.acm.org/10.1145/2837614.2837663
http://doi.acm.org/10.1145/2837614.2837663
http://doi.acm.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1836089.1836091
http://doi.acm.org/10.1145/1836089.1836091
http://doi.acm.org/10.1145/1993498.1993506
http://doi.acm.org/10.1145/1993498.1993506

Bibliography

[54] Sumit Gulwani and Nebojsa Jojic. ”Program Verification As
Probabilistic Inference.“ In: Proceedings of the 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’07. Nice, France: ACM, 2007, pp. 277–289. url:
http://doi.acm.org/10.1145/1190216.1190258 (cit. on
p. 62).

[55] Tihomir Gvero and Viktor Kuncak. ”Synthesizing Java Expres-
sions from Free-form Queries.“ In: Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. OOPSLA 2015. Pittsburgh,
PA, USA: ACM, 2015, pp. 416–432. url: http://doi.acm.org/
10.1145/2814270.2814295 (cit. on pp. 123, 151).

[56] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac.

”Complete Completion Using Types and Weights.“ In: Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’13. ACM, 2013, pp. 27–38.
url: http://doi.acm.org/10.1145/2491956.2462192 (cit. on
pp. 69, 99).

[57] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. ”Interactive
Synthesis of Code Snippets.“ In: Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings. 2011, pp. 418–423. url: http://dx.doi.
org/10.1007/978-3-642-22110-1_33 (cit. on p. 99).

[58] Sariel Har-Peled and Soham Mazumdar. ”On Coresets for K-
means and K-median Clustering.“ In: Proceedings of the Thirty-
sixth Annual ACM Symposium on Theory of Computing. STOC ’04.
Chicago, IL, USA: ACM, 2004, pp. 291–300. url: http://doi.
acm.org/10.1145/1007352.1007400 (cit. on p. 146).

[59] F. Maxwell Harper and Joseph A. Konstan. ”The MovieLens
Datasets: History and Context.“ In: ACM Trans. Interact. Intell.
Syst. 5.4 (Dec. 2015), 19:1–19:19. url: http://doi.acm.org/10.
1145/2827872 (cit. on p. 1).

[60] Xuming He, Richard S. Zemel, and Miguel Á. Carreira-Perpiñán.

”Multiscale Conditional Random Fields for Image Labeling.“ In:
CVPR ’04. Washington, D.C., USA. url: http://dl.acm.org/
citation.cfm?id=1896300.1896400 (cit. on pp. 15, 66).

160

http://doi.acm.org/10.1145/1190216.1190258
http://doi.acm.org/10.1145/2814270.2814295
http://doi.acm.org/10.1145/2814270.2814295
http://doi.acm.org/10.1145/2491956.2462192
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://doi.acm.org/10.1145/1007352.1007400
http://doi.acm.org/10.1145/1007352.1007400
http://doi.acm.org/10.1145/2827872
http://doi.acm.org/10.1145/2827872
http://dl.acm.org/citation.cfm?id=1896300.1896400
http://dl.acm.org/citation.cfm?id=1896300.1896400

Bibliography

[61] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and
Premkumar Devanbu. ”On the naturalness of software.“ In:
ICSE 2012. 2012. url: http://dl.acm.org/citation.cfm?id=
2337223.2337322 (cit. on pp. 2, 13, 68, 98, 103, 123, 129, 136, 145,
151).

[62] Reid Holmes and Gail C. Murphy. ”Using Structural Context
to Recommend Source Code Examples.“ In: Proceedings of the
27th International Conference on Software Engineering. ICSE ’05. St.
Louis, MO, USA: ACM, 2005, pp. 117–125. url: http://doi.
acm.org/10.1145/1062455.1062491 (cit. on p. 99).

[63] Reid Holmes, Robert J. Walker, and Gail C. Murphy. ”Strath-
cona Example Recommendation Tool.“ In: Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering. ESEC/FSE-13. ACM, 2005, pp. 237–240. url:
http://doi.acm.org/10.1145/1081706.1081744 (cit. on
p. 69).

[64] Einar W. Høst and Bjarte M. Østvold. ”Debugging Method
Names.“ In: Proceedings of the 23rd European Conference on ECOOP
2009 — Object-Oriented Programming. Genoa. Italy: Springer-
Verlag, 2009, pp. 294–317. url: http://dx.doi.org/10.1007/
978-3-642-03013-0_14 (cit. on p. 4).

[65] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas
Stützle. ”ParamILS: An Automatic Algorithm Configuration
Framework.“ In: J. Artif. Int. Res. 36.1 (Sept. 2009), pp. 267–306.
url: http://dl.acm.org/citation.cfm?id=1734953.1734959
(cit. on p. 148).

[66] Casper S. Jensen, Anders Møller, Veselin Raychev, Dimitar Dim-
itrov, and Martin Vechev. ”Stateless Model Checking of Event-
driven Applications.“ In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. OOPSLA 2015. ACM, 2015, pp. 57–73.
url: http://doi.acm.org/10.1145/2814270.2814282 (cit. on
pp. viii, 1).

[67] Simon Holm Jensen, Anders Møller, and Peter Thiemann. ”Type
Analysis for JavaScript.“ In: Proceedings of the 16th International
Symposium on Static Analysis. SAS ’09. Los Angeles, CA: Springer-

161

http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://doi.acm.org/10.1145/1062455.1062491
http://doi.acm.org/10.1145/1062455.1062491
http://doi.acm.org/10.1145/1081706.1081744
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dx.doi.org/10.1007/978-3-642-03013-0_14
http://dl.acm.org/citation.cfm?id=1734953.1734959
http://doi.acm.org/10.1145/2814270.2814282

Bibliography

Verlag, 2009, pp. 238–255. url: http://dx.doi.org/10.1007/
978-3-642-03237-0_17 (cit. on pp. 1, 17, 32).

[68] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Ti-
wari. ”Oracle-guided Component-based Program Synthesis.“
In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1. ICSE ’10. Cape Town, South
Africa: ACM, 2010, pp. 215–224. url: http://doi.acm.org/
10.1145/1806799.1806833 (cit. on pp. 1, 101, 104, 108, 115, 116,
118, 119, 121).

[69] Jorg H. Kappes, Bjoern Andres, Fred A. Hamprecht, Christoph
Schnorr, Sebastian Nowozin, Dhruv Batra, Sungwoong Kim,
Bernhard X. Kausler, Jan Lellmann, Nikos Komodakis, and
Carsten Rother. ”A Comparative Study of Modern Inference
Techniques for Discrete Energy Minimization Problems.“ In: Pro-
ceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition. CVPR ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 1328–1335. url: http://dx.doi.org/10.
1109/CVPR.2013.175 (cit. on p. 39).

[70] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. ”Phrase-
Based Statistical Translation of Programming Languages.“ In:
Onward! ’14. ACM, 2014. url: http://doi.acm.org/10.1145/
2661136.2661148 (cit. on p. viii).

[71] Omer Katz, Ran El-Yaniv, and Eran Yahav. ”Estimating Types
in Binaries Using Predictive Modeling.“ In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL 2016. St. Petersburg, FL, USA:
ACM, 2016, pp. 313–326. url: http://doi.acm.org/10.1145/
2837614.2837674 (cit. on pp. 12, 150).

[72] Slava M. Katz. ”Estimation of probabilities from sparse data
for the language model component of a speech recognizer.“
In: IEEE Transactions on Acoustics, Speech and Singal processing.
Vol. ASSP-35. 3. Mar. 1987 (cit. on p. 79).

[73] Reinhard Kneser and Hermann Ney. ”Improved backing-off
for m-gram language modeling.“ In: Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing.
Vol. I. May 1995 (cit. on p. 79).

162

http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://doi.acm.org/10.1145/1806799.1806833
http://doi.acm.org/10.1145/1806799.1806833
http://dx.doi.org/10.1109/CVPR.2013.175
http://dx.doi.org/10.1109/CVPR.2013.175
http://doi.acm.org/10.1145/2661136.2661148
http://doi.acm.org/10.1145/2661136.2661148
http://doi.acm.org/10.1145/2837614.2837674
http://doi.acm.org/10.1145/2837614.2837674

Bibliography

[74] Philipp Koehn. ”Europarl: A Parallel Corpus for Statistical Ma-
chine Translation.“ In: Conference Proceedings: the tenth Machine
Translation Summit. AAMT. Phuket, Thailand: AAMT, 2005,
pp. 79–86. url: http://mt-archive.info/MTS-2005-Koehn.
pdf (cit. on p. 1).

[75] D. Koller and N. Friedman. Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, 2009 (cit. on pp. 15, 20, 28–30, 39,
44, 60, 61, 64).

[76] Stefan Kombrink, Tomas Mikolov, Martin Karafiát, and Lukás
Burget. ”Recurrent Neural Network Based Language Modeling
in Meeting Recognition.“ In: INTERSPEECH. 2011, pp. 2877–
2880 (cit. on pp. 79, 80).

[77] Ted Kremenek, Andrew Y. Ng, and Dawson Engler. ”A Fac-
tor Graph Model for Software Bug Finding.“ In: Proceedings of
the 20th International Joint Conference on Artifical Intelligence. IJ-
CAI’07. Hyderabad, India: Morgan Kaufmann Publishers Inc.,
2007, pp. 2510–2516. url: http://dl.acm.org/citation.cfm?
id=1625275.1625680 (cit. on pp. 62, 63).

[78] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and
Dawson Engler. ”From Uncertainty to Belief: Inferring the Speci-
fication Within.“ In: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation. OSDI ’06. Seattle, Washington:
USENIX Association, 2006, pp. 161–176. url: http://dl.acm.
org/citation.cfm?id=1298455.1298471 (cit. on pp. 62, 63).

[79] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.

”Conditional Random Fields: Probabilistic Models for Segment-
ing and Labeling Sequence Data.“ In: ICML ’01. San Fran-
cisco, CA, USA, 2001, pp. 282–289. url: http://dl.acm.org/
citation.cfm?id=645530.655813 (cit. on pp. 9, 13, 15, 24, 29,
61, 66).

[80] Tessa Ann Lau. ”Programming by Demonstration: A Machine
Learning Approach.“ AAI3013992. PhD thesis. 2001 (cit. on
pp. 101, 104).

[81] Vu Le and Sumit Gulwani. ”FlashExtract: A Framework for Data
Extraction by Examples.“ In: Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. PLDI ’14. Edinburgh, United Kingdom: ACM, 2014, pp. 542–

163

http://mt-archive.info/MTS-2005-Koehn.pdf
http://mt-archive.info/MTS-2005-Koehn.pdf
http://dl.acm.org/citation.cfm?id=1625275.1625680
http://dl.acm.org/citation.cfm?id=1625275.1625680
http://dl.acm.org/citation.cfm?id=1298455.1298471
http://dl.acm.org/citation.cfm?id=1298455.1298471
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813

Bibliography

553. url: http://doi.acm.org/10.1145/2594291.2594333 (cit.
on pp. 1, 115).

[82] Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and
Anindya Banerjee. ”Merlin: Specification Inference for Explicit
Information Flow Problems.“ In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation. PLDI ’09. Dublin, Ireland: ACM, 2009, pp. 75–86.
url: http://doi.acm.org/10.1145/1542476.1542485 (cit. on
pp. 62, 63).

[83] Fan Long and Martin Rinard. ”Automatic Patch Generation
by Learning Correct Code.“ In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL 2016. St. Petersburg, FL, USA: ACM, 2016,
pp. 298–312. url: http://doi.acm.org/10.1145/2837614.
2837617 (cit. on pp. 12, 123, 152).

[84] Ulrike von Luxburg and Bernhard Schoelkopf. Statistical Learning
Theory: Models, Concepts, and Results. Version 1. Oct. 27, 2008.
arXiv: 0810.4752 [stat]. url: http://arxiv.org/abs/0810.
4752 (cit. on pp. 2, 53, 103, 128).

[85] Chris J. Maddison and Daniel Tarlow. ”Structured Generative
Models of Natural Source Code.“ In: Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014. 2014, pp. 649–657 (cit. on p. 123).

[86] David Mandelin, Lin Xu, Rastislav Bodı́k, and Doug Kimelman.

”Jungloid Mining: Helping to Navigate the API Jungle.“ In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’05. ACM, 2005, pp. 48–
61. url: http://doi.acm.org/10.1145/1065010.1065018 (cit.
on pp. 1, 68, 69, 98).

[87] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. ”A
User-guided Approach to Program Analysis.“ In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE 2015. Bergamo, Italy: ACM, 2015, pp. 462–473. url:
http://doi.acm.org/10.1145/2786805.2786851 (cit. on
p. 12).

164

http://doi.acm.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/1542476.1542485
http://doi.acm.org/10.1145/2837614.2837617
http://doi.acm.org/10.1145/2837614.2837617
http://arxiv.org/abs/0810.4752
http://arxiv.org/abs/0810.4752
http://arxiv.org/abs/0810.4752
http://doi.acm.org/10.1145/1065010.1065018
http://doi.acm.org/10.1145/2786805.2786851

Bibliography

[88] Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W.
Lampson, and Adam Kalai. ”A Machine Learning Framework
for Programming by Example.“ In: Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML 2013, Atlanta, GA,
USA, 16-21 June 2013. 2013, pp. 187–195. url: http://jmlr.org/
proceedings/papers/v28/menon13.html (cit. on p. 121).

[89] Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukás Burget,
and Jan Cernocký. ”Strategies for training large scale neural
network language models.“ In: 2011 IEEE Workshop on Automatic
Speech Recognition & Understanding, ASRU 2011, Waikoloa, HI,
USA, December 11-15, 2011. 2011, pp. 196–201. url: http://dx.
doi.org/10.1109/ASRU.2011.6163930 (cit. on pp. 7, 13, 68, 80).

[90] Alon Mishne, Sharon Shoham, and Eran Yahav. ”Typestate-based
Semantic Code Search over Partial Programs.“ In: Proceedings of
the ACM International Conference on Object Oriented Programming
Systems Languages and Applications. OOPSLA ’12. ACM, 2012,
pp. 997–1016. url: http://doi.acm.org/10.1145/2384616.
2384689 (cit. on pp. 69, 99).

[91] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY,
USA: McGraw-Hill, Inc., 1997 (cit. on p. 128).

[92] Steven S. Muchnick. Advanced Compiler Design and Implementation.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997

(cit. on p. 139).

[93] Kevin P Murphy. Machine learning: a probabilistic perspective. Cam-
bridge, MA, 2012 (cit. on pp. 11, 53).

[94] Anh Tuan Nguyen and Tien N. Nguyen. ”Graph-based Sta-
tistical Language Model for Code.“ In: Proceedings of the 37th
International Conference on Software Engineering - Volume 1. ICSE
’15. Florence, Italy: IEEE Press, 2015, pp. 858–868. url: http:
//dl.acm.org/citation.cfm?id=2818754.2818858 (cit. on
pp. 13, 123, 129).

[95] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen,
and Tien N. Nguyen. ”A Statistical Semantic Language Model
for Source Code.“ In: Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ESEC/FSE 2013. Saint
Petersburg, Russia: ACM, 2013, pp. 532–542. url: http://doi.

165

http://jmlr.org/proceedings/papers/v28/menon13.html
http://jmlr.org/proceedings/papers/v28/menon13.html
http://dx.doi.org/10.1109/ASRU.2011.6163930
http://dx.doi.org/10.1109/ASRU.2011.6163930
http://doi.acm.org/10.1145/2384616.2384689
http://doi.acm.org/10.1145/2384616.2384689
http://dl.acm.org/citation.cfm?id=2818754.2818858
http://dl.acm.org/citation.cfm?id=2818754.2818858
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458

Bibliography

acm.org/10.1145/2491411.2491458 (cit. on pp. 13, 68, 123,
151).

[96] Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak
Vijaykeerthy. ”Efficient Synthesis of Probabilistic Programs.“ In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2015. Portland, OR,
USA: ACM, 2015, pp. 208–217. url: http://doi.acm.org/10.
1145/2737924.2737982 (cit. on p. 147).

[97] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. ”Learning a
Strategy for Adapting a Program Analysis via Bayesian Optimi-
sation.“ In: Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications. OOPSLA 2015. Pittsburgh, PA, USA: ACM, 2015,
pp. 572–588. url: http://doi.acm.org/10.1145/2814270.
2814309 (cit. on p. 12).

[98] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and
Zachary Tatlock. ”Automatically improving accuracy for floating
point expressions.“ In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015. 2015, pp. 1–11. url: http:
//doi.acm.org/10.1145/2737924.2737959 (cit. on pp. 1, 115).

[99] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Gross-
man. ”Type-directed Completion of Partial Expressions.“ In: Pro-
ceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation. PLDI ’12. ACM, 2012, pp. 275–
286. url: http://doi.acm.org/10.1145/2254064.2254098
(cit. on pp. 1, 69, 99).

[100] David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft.

”Table Extraction Using Conditional Random Fields.“ In: SIGIR
’03. Toronto, Canada, 2003, pp. 235–242. url: http://doi.acm.
org/10.1145/860435.860479 (cit. on p. 15).

[101] Ariadna Quattoni, Michael Collins, and Trevor Darrell. ”Con-
ditional random fields for object recognition.“ In: NIPS. 2004,
pp. 1097–1104 (cit. on pp. 15, 66).

[102] Nathan D. Ratliff, J. Andrew Bagnell, and Martin Zinkevich.

”(Approximate) Subgradient Methods for Structured Predic-

166

http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2491411.2491458
http://doi.acm.org/10.1145/2737924.2737982
http://doi.acm.org/10.1145/2737924.2737982
http://doi.acm.org/10.1145/2814270.2814309
http://doi.acm.org/10.1145/2814270.2814309
http://doi.acm.org/10.1145/2737924.2737959
http://doi.acm.org/10.1145/2737924.2737959
http://doi.acm.org/10.1145/2254064.2254098
http://doi.acm.org/10.1145/860435.860479
http://doi.acm.org/10.1145/860435.860479

Bibliography

tion.“ In: AISTATS. 2007, pp. 380–387 (cit. on pp. 11, 44, 45,
62).

[103] Veselin Raychev, Pavol Bielik, and Martin Vechev. ”Probabilistic
Model for Code with Decision Trees.“ In: OOPSLA 2016. to
appear, 2016 (cit. on pp. vii, 139).

[104] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas
Krause. ”Learning Programs from Noisy Data.“ In: Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL 2016. St. Petersburg, FL, USA:
ACM, 2016, pp. 761–774. url: http://doi.acm.org/10.1145/
2837614.2837671 (cit. on p. vii).

[105] Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz.

”Parallelizing User-defined Aggregations Using Symbolic Exe-
cution.“ In: Proceedings of the 25th Symposium on Operating Sys-
tems Principles. SOSP ’15. ACM, 2015, pp. 153–167. url: http:
//doi.acm.org/10.1145/2815400.2815418 (cit. on p. viii).

[106] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin
Vechev. ”Refactoring with Synthesis.“ In: Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications. OOPSLA ’13. ACM,
2013, pp. 339–354. url: http : / / doi . acm . org / 10 . 1145 /

2509136.2509544 (cit. on pp. viii, 151, 152).

[107] Veselin Raychev, Martin Vechev, and Andreas Krause. ”Predict-
ing Program Properties from ”Big Code”.“ In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’15. ACM, 2015, pp. 111–124.
url: http://doi.acm.org/10.1145/2676726.2677009 (cit. on
p. vii).

[108] Veselin Raychev, Martin Vechev, and Manu Sridharan. ”Effective
Race Detection for Event-driven Programs.“ In: Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’13.
ACM, 2013, pp. 151–166. url: http://doi.acm.org/10.1145/
2509136.2509538 (cit. on pp. viii, 1).

[109] Veselin Raychev, Martin Vechev, and Eran Yahav. ”Automatic
Synthesis of Deterministic Concurrency.“ In: Static Analysis.
Vol. 7935. Lecture Notes in Computer Science. Springer Berlin

167

http://doi.acm.org/10.1145/2837614.2837671
http://doi.acm.org/10.1145/2837614.2837671
http://doi.acm.org/10.1145/2815400.2815418
http://doi.acm.org/10.1145/2815400.2815418
http://doi.acm.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2676726.2677009
http://doi.acm.org/10.1145/2509136.2509538
http://doi.acm.org/10.1145/2509136.2509538

Bibliography

Heidelberg, 2013, pp. 283–303. url: http://dx.doi.org/10.
1007/978-3-642-38856-9_16 (cit. on p. viii).

[110] Veselin Raychev, Martin Vechev, and Eran Yahav. ”Code Com-
pletion with Statistical Language Models.“ In: Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’14. ACM, 2014, pp. 419–428.
url: http://doi.acm.org/10.1145/2594291.2594321 (cit. on
pp. vii, 13, 103, 123, 136).

[111] Steven P. Reiss. ”Semantics-based Code Search.“ In: Proceedings
of the 31st International Conference on Software Engineering. ICSE
’09. IEEE Computer Society, 2009, pp. 243–253. url: http://dx.
doi.org/10.1109/ICSE.2009.5070525 (cit. on p. 69).

[112] Phillip A. Relf. ”Tool assisted identifier naming for improved
software readability: an empirical study.“ In: 2005 International
Symposium on Empirical Software Engineering (ISESE 2005), 17-
18 November 2005, Noosa Heads, Australia. 2005, pp. 53–62. url:
http://dx.doi.org/10.1109/ISESE.2005.1541814 (cit. on
p. 4).

[113] Matthew Richardson and Pedro M. Domingos. ”Markov logic
networks.“ In: Machine Learning 62.1-2 (2006), pp. 107–136. url:
http://dx.doi.org/10.1007/s10994-006-5833-1 (cit. on
p. 65).

[114] Ronald Rosenfeld. ”Two decades of statistical language mod-
eling: Where do we go from here.“ In: Proceedings of the IEEE
(Volume:88, Issue: 8). 2000, pp. 1270–1278. url: http://dx.doi.
org/10.1109/5.880083 (cit. on pp. 7, 69, 77, 78, 151).

[115] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and
William T. Freeman. ”LabelMe: A Database and Web-Based
Tool for Image Annotation.“ In: Int. J. Comput. Vision 77.1-3 (May
2008), pp. 157–173. url: http://dx.doi.org/10.1007/s11263-
007-0090-8 (cit. on p. 1).

[116] Rahul Sharma, Aditya V. Nori, and Alex Aiken. ”Interpolants
As Classifiers.“ In: Proceedings of the 24th International Conference
on Computer Aided Verification. CAV’12. Berkeley, CA: Springer-
Verlag, 2012, pp. 71–87. url: http://dx.doi.org/10.1007/978-
3-642-31424-7_11 (cit. on pp. 1, 12).

168

http://dx.doi.org/10.1007/978-3-642-38856-9_16
http://dx.doi.org/10.1007/978-3-642-38856-9_16
http://doi.acm.org/10.1145/2594291.2594321
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1109/ICSE.2009.5070525
http://dx.doi.org/10.1109/ISESE.2005.1541814
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1109/5.880083
http://dx.doi.org/10.1109/5.880083
http://dx.doi.org/10.1007/s11263-007-0090-8
http://dx.doi.org/10.1007/s11263-007-0090-8
http://dx.doi.org/10.1007/978-3-642-31424-7_11
http://dx.doi.org/10.1007/978-3-642-31424-7_11

Bibliography

[117] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pis-
toia. ”Static Specification Mining Using Automata-based Ab-
stractions.“ In: Proceedings of the 2007 International Symposium on
Software Testing and Analysis. ISSTA ’07. ACM, 2007, pp. 174–184.
url: http://doi.acm.org/10.1145/1273463.1273487 (cit. on
p. 69).

[118] Shrink Your Code and Resources. ProGuard for Android Appli-
cations: https://developer.android.com/studio/build/
shrink-code.html (cit. on pp. 17, 150).

[119] Stephen Frederick Smith. ”A Learning System Based on Genetic
Adaptive Algorithms.“ AAI8112638. PhD thesis. Pittsburgh, PA,
USA, 1980 (cit. on p. 147).

[120] Armando Solar-Lezama. ”The Sketching Approach to Program
Synthesis.“ In: Programming Languages and Systems, 7th Asian
Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Pro-
ceedings. 2009, pp. 4–13. url: http://dx.doi.org/10.1007/978-
3-642-10672-9_3 (cit. on pp. 1, 6, 100).

[121] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit
Seshia, and Vijay Saraswat. ”Combinatorial Sketching for Finite
Programs.“ In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating
Systems. ASPLOS XII. San Jose, California, USA, 2006, pp. 404–
415. url: http://doi.acm.org/10.1145/1168857.1168907
(cit. on pp. 1, 2, 100–102, 107, 108, 121).

[122] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. ”From
Program Verification to Program Synthesis.“ In: Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’10. Madrid, Spain: ACM, 2010,
pp. 313–326. url: http://doi.acm.org/10.1145/1706299.
1706337 (cit. on pp. 1, 100).

[123] Bjarne Steensgaard. ”Points-to Analysis in Almost Linear Time.“
In: Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’96. St. Petersburg
Beach, Florida, USA: ACM, 1996, pp. 32–41. url: http://doi.
acm.org/10.1145/237721.237727 (cit. on pp. 6, 36, 76, 88).

169

http://doi.acm.org/10.1145/1273463.1273487
https://developer.android.com/studio/build/shrink-code.html
https://developer.android.com/studio/build/shrink-code.html
http://dx.doi.org/10.1007/978-3-642-10672-9_3
http://dx.doi.org/10.1007/978-3-642-10672-9_3
http://doi.acm.org/10.1145/1168857.1168907
http://doi.acm.org/10.1145/1706299.1706337
http://doi.acm.org/10.1145/1706299.1706337
http://doi.acm.org/10.1145/237721.237727
http://doi.acm.org/10.1145/237721.237727

Bibliography

[124] Friedrich Steimann and Jens von Pilgrim. ”Refactorings With-
out Names.“ In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ASE 2012. Essen,
Germany: ACM, 2012, pp. 290–293. url: http://doi.acm.org/
10.1145/2351676.2351726 (cit. on p. 151).

[125] Andreas Stolcke. ”SRILM - an extensible language modeling
toolkit.“ In: 7th International Conference on Spoken Language Pro-
cessing, ICSLP2002 - INTERSPEECH 2002, Denver, Colorado, USA,
September 16-20, 2002. 2002. url: http://www.isca-speech.
org/archive/icslp_2002/i02_0901.html (cit. on pp. 82, 88).

[126] Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie.

”The effects of comments and identifier names on program com-
prehensibility: an experimental investigation.“ In: J. Prog. Lang.
4.3 (1996), pp. 143–167. url: http://compscinet.dcs.kcl.ac.
uk/JP/jp040302.abs.html (cit. on p. 4).

[127] Benjamin Taskar, Carlos Guestrin, and Daphne Koller. ”Max-
Margin Markov Networks.“ In: Advances in Neural Information
Processing Systems 16. NIPS’ 03. 2003, pp. 25–32 (cit. on pp. 9, 16,
44, 62).

[128] Suresh Thummalapenta and Tao Xie. ”Parseweb: A Programmer
Assistant for Reusing Open Source Code on the Web.“ In: Pro-
ceedings of the Twenty-second IEEE/ACM International Conference on
Automated Software Engineering. ASE ’07. ACM, 2007, pp. 204–213.
url: http://doi.acm.org/10.1145/1321631.1321663 (cit. on
pp. 69, 98).

[129] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann,
and Yasemin Altun. ”Large Margin Methods for Structured and
Interdependent Output Variables.“ In: J. Mach. Learn. Res. 6 (Dec.
2005), pp. 1453–1484. url: http://dl.acm.org/citation.cfm?
id=1046920.1088722 (cit. on pp. 9, 44).

[130] TypeScript. https://www.typescriptlang.org/ (cit. on pp. 5,
17).

[131] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. ”Soot - a Java Bytecode
Optimization Framework.“ In: Proceedings of the 1999 Conference of
the Centre for Advanced Studies on Collaborative Research. CASCON
’99. Mississauga, Ontario, Canada: IBM Press, 1999, pp. 13–. url:

170

http://doi.acm.org/10.1145/2351676.2351726
http://doi.acm.org/10.1145/2351676.2351726
http://www.isca-speech.org/archive/icslp_2002/i02_0901.html
http://www.isca-speech.org/archive/icslp_2002/i02_0901.html
http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html
http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html
http://doi.acm.org/10.1145/1321631.1321663
http://dl.acm.org/citation.cfm?id=1046920.1088722
http://dl.acm.org/citation.cfm?id=1046920.1088722
https://www.typescriptlang.org/

Bibliography

http://dl.acm.org/citation.cfm?id=781995.782008 (cit. on
pp. 1, 88, 90).

[132] Martin Vechev and Eran Yahav. ”Deriving Linearizable Fine-
grained Concurrent Objects.“ In: Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’08. Tucson, AZ, USA, 2008, pp. 125–135. url:
http://doi.acm.org/10.1145/1375581.1375598 (cit. on
p. 100).

[133] Martin Vechev, Eran Yahav, and Greta Yorsh. ”Abstraction-
guided Synthesis of Synchronization.“ In: Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’10. Madrid, Spain: ACM, 2010,
pp. 327–338. url: http://doi.acm.org/10.1145/1706299.
1706338 (cit. on pp. 1, 121).

[134] Henry S. Warren. Hacker’s Delight. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002 (cit. on pp. 116, 119).

[135] Andrzej Wasylkowski and Andreas Zeller. ”Mining Temporal
Specifications from Object Usage.“ In: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engi-
neering. ASE ’09. IEEE Computer Society, 2009, pp. 295–306. url:
http://dx.doi.org/10.1109/ASE.2009.30 (cit. on p. 68).

[136] Westley Weimer and George C. Necula. ”Mining Temporal Spec-
ifications for Error Detection.“ In: Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems. TACAS’05. Springer-Verlag, 2005, pp. 461–
476. url: http://dx.doi.org/10.1007/978-3-540-31980-
1_30 (cit. on p. 68).

[137] Ian H. Witten and Timothy C. Bell. ”The zero-frequency problem:
Estimating the probabilities of novel events in adaptive text
compression.“ In: IEEE Transactions on Information Theory 37.4
(1991), pp. 1085–1094 (cit. on pp. 79, 138).

[138] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat,
and Manuvir Das. ”Perracotta: Mining Temporal API Rules
from Imperfect Traces.“ In: Proceedings of the 28th International
Conference on Software Engineering. ICSE ’06. Shanghai, China:
ACM, 2006, pp. 282–291. url: http://doi.acm.org/10.1145/
1134285.1134325 (cit. on p. 99).

171

http://dl.acm.org/citation.cfm?id=781995.782008
http://doi.acm.org/10.1145/1375581.1375598
http://doi.acm.org/10.1145/1706299.1706338
http://doi.acm.org/10.1145/1706299.1706338
http://dx.doi.org/10.1109/ASE.2009.30
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://doi.acm.org/10.1145/1134285.1134325
http://doi.acm.org/10.1145/1134285.1134325

Bibliography

[139] Kuat Yessenov, Zhilei Xu, and Armando Solar-Lezama. ”Data-
driven Synthesis for Object-oriented Frameworks.“ In: Proceed-
ings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications. OOPSLA ’11.
Portland, Oregon, USA, 2011, pp. 65–82. url: http://doi.acm.
org/10.1145/2048066.2048075 (cit. on p. 99).

[140] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. ”MAPO:
Mining and Recommending API Usage Patterns.“ In: Proceedings
of the 23rd European Conference on Object-Oriented Programming.
ECOOP’ 09. Springer-Verlag, 2009, pp. 318–343. url: http://dx.
doi.org/10.1007/978-3-642-03013-0_15 (cit. on pp. 69, 99).

[141] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola.

”Parallelized stochastic gradient descent.“ In: NIPS. 2010, pp. 2595–
2603 (cit. on p. 47).

172

http://doi.acm.org/10.1145/2048066.2048075
http://doi.acm.org/10.1145/2048066.2048075
http://dx.doi.org/10.1007/978-3-642-03013-0_15
http://dx.doi.org/10.1007/978-3-642-03013-0_15

colophon

This document was typeset in LATEX using the typographical look-and-
feel classicthesis. Most of the graphics in this thesis are gener-
ated using pgfplots and pgf/tikz. The bibliography is typeset using
biblatex.

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Tools showcase
	1.2 Architecture of Statistical Programming Tools
	1.3 Problem Dimensions
	1.4 Challenges
	1.5 Related work
	1.6 Thesis Contributions

	2 Discriminative Models for Predicting Program Properties
	2.1 Overview
	2.2 Structured Prediction for Programs
	2.2.1 Conditional Random Fields (CRFs)
	2.2.2 Making Predictions for Programs
	2.2.3 MAP Inference
	2.2.4 Learning

	2.3 JSNice: Predicting Names and Type Annotations for JavaScript
	2.3.1 Probabilistic Name Prediction
	2.3.2 Probabilistic Type Annotation Prediction
	2.3.3 Relating Program Elements
	2.3.4 Obtaining Pairwise Feature Functions

	2.4 Prediction Algorithm
	2.4.1 Greedy Inference Algorithm
	2.4.2 Obtaining Candidates
	2.4.3 Additional Improvements

	2.5 Learning
	2.5.1 Learning with Stochastic Gradient Descent
	2.5.2 Regularization
	2.5.3 Complete Training Phase
	2.5.4 Example of Learning Weights for Type Annotations

	2.6 Implementation and Evaluation
	2.6.1 Parameter Selection
	2.6.2 Precision
	2.6.3 Model Sizes
	2.6.4 Running Times

	2.7 Lessons and Design Decisions
	2.7.1 Clustering vs. Probabilistic Models

	2.8 Related Work
	2.9 Discussion

	3 Generative Models for API Completion
	3.1 Motivation
	3.2 Overview
	3.3 Formal Semantics
	3.3.1 Concrete Semantics
	3.3.2 Abstract Semantics

	3.4 Statistical Language Models
	3.4.1 N-gram Language Models
	3.4.2 Recurrent Neural Networks (RNNs)
	3.4.3 Sentence Completion with Language Models
	3.4.4 Training on Programs

	3.5 Synthesis
	3.6 Implementation
	3.6.1 Program Analysis: Heap and Sequences
	3.6.2 Language Models: Preprocessing
	3.6.3 Query Processing

	3.7 Evaluation
	3.7.1 Training Parameters
	3.7.2 Training Phase
	3.7.3 Code Completion

	3.8 Related work

	4 Program Synthesis with Noise
	4.1 Problem Formulation
	4.2 Iterative Synthesis Algorithm
	4.2.1 Reduction of Search Space
	4.2.2 Hard Dataset Sampler (dsH)
	4.2.3 Representative Dataset Sampler (dsR)
	4.2.4 Cost Functions and Regularization

	4.3 The Case of Bounded Noise
	4.4 BitSyn: Bitstream Programs from Noisy Data
	4.4.1 Program Generator with Errors
	4.4.2 Case 1: Examples in D are provided dynamically
	4.4.3 Case 2: All examples in D are given in advance

	4.5 Related work
	4.6 Summary

	5 Learning a Synthesizer with ``Big Code''
	5.1 Inductive Synthesis for Empirical Risk Minimization
	5.1.1 Empirical Risk Minimization
	5.1.2 Using Representative Dataset Sampler

	5.2 DeepSyn: Learning Statistical Code Completion Systems
	5.2.1 Preliminaries
	5.2.2 Our Method: Second-order learning
	5.2.3 TCond: Domain Specific Language for Tree Contexts
	5.2.4 Learning pbest
	5.2.5 Summary of Approach

	5.3 Evaluation of DeepSyn
	5.3.1 Learning pbest
	5.3.2 Precision of DeepSyn
	5.3.3 Interpreting pbest
	5.3.4 Comparison to Existing Systems

	5.4 Related work

	6 Conclusion and Future Work
	6.1 Future Work
	6.1.1 Creating Probabilistic Tools on Top of Our Models
	6.1.2 Universal Model for Code
	6.1.3 Statistical Program Synthesis

	Bibliography
	Index
	Colophon

