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Problem:
Certification	of	neural	network	robustness

𝑳"-norm based perturbation
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Small input perturbations can cause neural networks to misclassify
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𝐼 = 𝐼$ + 𝜖
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Abstract interpretation for robustness certification

Implementation

lx ux

ReLU(x̂) = � · x̂

ReLU(x̂) = � · (x̂� lx)
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�(x̂) = f(lx) + � · (x̂� lx)

�(x̂) = f(ux) + � · (x̂� ux)

lx ux

Abstract interpretation is a framework for over approximating concrete properties

DeepZ results	on	large	defended	RELU	networks	trained	with	DiffAI

Dataset Model 𝝐 %	verified Avg. runtime	(s)
MNIST ConvBig 0.1 97 5

ConvBig 0.2 79 7
ConvBig 0.3 37 17
ConvSuper 0.1 97 133
Skip 0.1 95 29

CIFAR10 ConvBig 0.006 50 39
ConvBig 0.008 33 46

DeepZ:
Our	system	for	neural	network	robustness

Results	with	DeepZ:
State-of-the-art	precision	and	scalability

The Zonotope abstraction associates an affine form 𝑥* containing 𝑝	noise symbols 𝜂.
with each variable 𝑥:

Zonotopes for	robustness	certification	

MNIST	ConvMed sigmoid	and	tanh networks

MNIST	FFNNBig ReLU networks

CIFAR10	ConvSmall ReLU networks

Dataset Model Type #hidden units
MNIST FFNNSmall feedforward 610

FFNNBig feedforward 3,010
ConvMed convolutional 4,804
ConvBig convolutional 34,688
ConvSuper convolutional 88,500
Skip skipnet 71,650

CIFAR10 ConvSmall convolutional 4,852
ConvBig convolutional 62,464

• DeepZ vs Fast-Lin [2] and 𝐴𝐼0[3] with serialized implementations 
• First 100 images from each dataset were used for evaluation
• x-axis shows the radius 𝜖 of ℬ 23," (𝜖)

• We used networks trained with and without adversarial training
• For adversarial training, we used DiffAI [4] and PGD [5] (parameterized by 𝜖) 

The neural network classifies the image 𝐼$ correctly as 8

When each pixel in 𝐼$ is perturbed by 𝜖, the neural network misclassifies the 
perturbed image 𝐼	as 7 even though 𝐼 appears as 8 to the human eye

Our goal: certify if a given neural network correctly classifies all images 𝐼 in the 𝜖-ball
ℬ(23,")(𝜖) around 𝐼7, i.e., all images 𝐼 where each pixel in 𝐼 has a distance of at most 𝜖
from the corresponding pixel in 𝐼$.
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Average runtime is ≤ 22 seconds on all networks
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Above, 𝛼7is the center of 𝑥* and 𝛼. are the partial deviations from the center. We 
also store the interval concretization [𝑙;, 𝑢;] of 𝑥*. 

• Both sequential and parallelized implementations available
• Evaluation:
• feedforward networks on a 3.3 GHz 10 core Intel i9-7900X Skylake CPU
• convolutional networks on a 2.6 GHz 14 core Intel Xeon CPU E5-2690
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i=1

↵i · ⌘i, where ↵0,↵i 2 R, ⌘i 2 [ai, bi] ✓ [�1, 1]

In this work, we use the Zonotope abstraction [1] for robustness certification

• Captures the input shape exactly
• Fast and exact for affine transformation which is a common transformation
• no backpropagation [2] is required

• Prior work [3]
• suboptimal ReLU transformer
• no sigmoid or tanh transformers

safeai.ethz.ch

Our	transformers	are	sound	with	respect	to	floating	point	arithmetic 0.005 0.010 0.015 0.020 0.025 0.030
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