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Problem:
Certification of neural network robustness

Small input perturbations can cause neural networks to misclassify

L.,-norm based perturbation
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When each pixel in I, is perturbed by €, the neural network misclassifies the
perturbed image [ as 7 even though I appears as 8 to the human eye

Our goal: certify if a given neural network correctly classifies all images I in the e-ball
B(1,,0)(€) around Iy, i.e., all images I where each pixel in I has a distance of at most €

from the corresponding pixel in I,,.

Abstract interpretation for robustness certification

Abstract interpretation is a framework for over approximating concrete properties

Guaranteed
to classify to label 8

A shape that abstracts

A shape that abstracts all ,
all possible outputs

possible perturbations

Convolution

Not guaranteed
to classify to label 8

In this work, we use the Zonotope abstraction [|] for robustness certification
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Main Contribution:
Optimal Zonotope transformers

Zonotope abstraction

The Zonotope abstraction associates an affine form X containing p noise symbols 7;
with each variable x:

where ag,; € R, n; € |a;, b;] C[—1,1]

Above, ais the center of X and «; are the partial deviations from the center.We
also store the interval concretization [[,, u,] of X.

Zonotopes for robustness certification

* Captures the input shape exactly

* Fast and exact for affine transformation which is a common transformation
* no backpropagation [2] is required

* Prior work [3]
* suboptimal ReLU transformer
* no sigmoid or tanh transformers

Our optimal RelLU transformer

ReLU (%)

/

L

Theorem. Let Z be the input to a ReLU function. Consider the set of pointwise Zonotope approx-
imations O of the output that only alter the affine form ReLU (&) in the output. Let A\ = —=

Ugp =L’
Uy Il

f= =5ty and ey € [—1, 1] be a new noise symbol. The new affine form ReLU (&) in the
output with the minimum area in the input-output plane is given by:

&, ifl, >0,

ReLU (x) = ﬁ 0, ifu, <0,

AT+ o+ [ Npew, oOtherwise.

Our optimal sigmoid and tanh transformers

o ()

o(&) = fluz) + A+ (& —uy) — |

Lo

Theorem. Let Z be the input to a smooth S-shaped function o(x) (such as the sigmoid or
tanh function). Consider the set of pointwise Zonotope approximations O of the output that

~
Y

only alter the affine form o(x) in the output and where the box concretization of o(x) satis-
(I( ')"“'(7(,117) — U('Uu:)- Let \ — IlliIl((f’([w),O’,('ll.;.,_,))_, 1 = a(u..,.)+0(l_,,.l))—,\-('u.,,_.+l_-,-)’

—

— 'XT
o (,u.r ) i (11 ) —A- (_u;r - [.r )
2

[l = , and Npew € |—1,1] be a new noise symbol. The new affine form o () in
the output with the minimum area in the input-output plane is given by:

(3) o(ug),
ag\r)=
AT+ M1 + 142 Thew,

If [ r — Ug,

otherwise,

Our transformers are sound with respect to floating point arithmetic

DeepZ:

Our system for neural network robustness

lllustration on a toy feedforward network with RelLU
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Implementation
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* Both sequential and parallelized implementations available

e Evaluation:

* feedforward networks on a 3.3 GHz 10 core Intel i9-7900X Skylake CPU
e convolutional networks on a 2.6 GHz |4 core Intel Xeon CPU E5-2690

Network architectures

Dataset

CIFARIO

FFNNSmall
FFNNBig
ConvMed
ConvBig
ConvSuper
Skip
ConvSmall

ConvBig

feedforward

feedforward

convo

convo

convo

utiona

utiona

utiona

skipnet

convo

convo

lutional

lutional

#hidden units

610
3,010
4,804
34,688
88,500
71,650

4,852
62,464

* We used networks trained with and without adversarial training

* For adversarial training, we used DiffAl [4] and PGD [5] (parameterized by ¢)
Comparison with state-of-the-art on the MNIST FFNNSmall ReLU network

« DeepZ vs Fast-Lin [2] and AI*[3] with serialized implementations
* First 100 images from each dataset were used for evaluation
* x-axis shows the radius € of B(;, «)(€)
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Results with DeepZ:
State-of-the-art precision and scalability

MNIST FFNNBig ReLU networks
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MNIST ConvMed sigmoid and tanh networks
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Average runtime is < 22 seconds on all networks

CIFAR10 ConvSmall ReLU networks
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DeepZ results on large defended RELU networks trained with DiffAl
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