Certified Defense to Image Transformations via Randomized Smoothing

NEURAL INFORMATION PROCESSING SYSTEMS

STOP

$\xrightarrow[R_{\beta}]{ }$ STOP

Randomized Smoothing

 for Parametric TransformationsWe generalize randomized smoothing (RS) [Cohen et al.]

$$
g(x)=\operatorname{argmax}_{c \in \mathcal{Y}} \mathbb{P}(f(x+\epsilon)=c)
$$

for classifier f, noise $\epsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$
Then $g(x+\delta)=g(x)$ for $\|\delta\|_{2} \leq r_{\delta}$.
to randomized smoothing for parametric transformations (SPT):

$$
g(x)=\operatorname{argmax}_{c \in \mathcal{Y}} \mathbb{P}\left(f\left(\psi_{\beta}(x)\right)=c\right)
$$

for classifier f, noise $\beta \sim \mathcal{N}\left(0, \sigma^{2} I\right)$
Then $g\left(\psi_{\gamma}(x)\right)=g(x)$ for $\|\gamma\|_{2} \leq r_{\gamma}$.
requires $\psi_{\alpha} \circ \psi_{\beta}=\psi_{\alpha+\beta}$

Heuristic best effort defense

By applying SPT to image rotation we can obtain a heuristic defense as rotations don't compose as required (discussed next). Here we show results for adversarial rotations of up to 30°. In the paper we investigate the tightness of the obtained robustness radius and find counterexamples.

	acc.	adv. acc.	
	f	f	g
MNIST	0.99	0.73	0.99
CIFAR-10	0.91	0.26	0.85
ImageNet	0.76	0.56	0.76

Interpolation: Image Rotations don't compose
Common image transformations such as rotations or translation do not fulfill our required composition property. The reason for this are the interpolation operations employed to represent the resulting image on the pixel grid.

$$
R_{\alpha} \circ R_{\beta} \neq R_{\alpha+\beta}
$$

Certification in the Presence of Interpolation
Over a base classifier (neural network) f we construct (via RS) a classifier h_{E} that is robust to the rotation error. Then via SPT we construct a classifier g that is robust to transformations (e.g., rotations).

$$
\begin{aligned}
& \forall \beta, \gamma \in \mathbb{R} \\
& \left\|R_{\beta+\gamma}(\mathbf{x})-R_{\beta} \circ R_{\gamma}(\mathbf{x})\right\|_{2} \leq E
\end{aligned}
$$

Computing the error bound on the training set We obtain an error bound E on the training set, that we expect to hold for samples from the data distribution \mathcal{D} with probability q_{E}. We use interval analysis over γ and sampling over β to derive a sound bound

Computing individual error bounds online
For a given possible attacked $\mathrm{x}^{\prime}=R_{\gamma}(\mathbf{x})$ we compute E and certify $g\left(\mathbf{x}^{\prime}\right)=g(\mathbf{x})$, without access to γ and \mathbf{x}. Again we use interval analysis over γ and sampling over β to obtain the bound E.

$$
\begin{aligned}
& \max _{\gamma \in \Gamma}\left\|R_{\beta}\left(\mathbf{x}^{\prime}\right)-R_{\beta+\gamma} \circ\left(R_{\gamma}\right)^{-1}\left(\mathbf{x}^{\prime}\right)\right\|_{2} \leq E \\
& \underset{\beta \in \mathbb{R}}{\gamma \in \in}
\end{aligned}
$$

In order to calculate the above expression we need to compute the inverse rotation $\left(R_{\gamma}\right)^{-1}\left(\mathbf{x}^{\prime}\right)$. We relax this into the following set parametrized by Γ, over which we then chose the γ maximizing the outer expression:

$$
\left(R_{\Gamma}\right)^{-1}\left(\mathbf{x}^{\prime}\right):=\left\{\mathbf{x} \mid R_{\gamma}(\mathbf{x})=\mathbf{x}^{\prime}, \gamma \in \Gamma\right\}
$$

We compute an overapproximating of this set by using interval analysis to invert the interpolation algorithm and obtain a lower and upper bound for each pixel in \mathbf{x}. By repeated application we can refine the result.

github.com/eth-sri/transformation-smoothing

