DL2: Training and Querying Neural Networks with Logic Marc Fischer, Mislav Balunović, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, Martin Vechev

Training & Querying with Constraints

DL2 is a system which allows to (i) query networks for inputs i, satisfying a constraint φ and (ii) train networks with weights θ to satisfy a constraint φ .

Key insight: Translate the constraint φ to a loss $\mathcal{L}(\varphi)$.

Querying Neural Networks with Constraints

Users can write queries in a simple SQL-like language.

Differencing neural networks as in [Pei et al., 2017]

find i[32, 32, 3] where i in [0, 1], class(NN1(i)) = dog,class(NN2(i)) = cat, $\|i - image\|_2 < 2$

Read query as: Find i of size $32 \times 32 \times 3$ which (i) has values in [0,1], (ii) gets classified as dog by NN1, (iii) as cat by NN2, and (iv) is close to a given image (w.r.t. L_2 -norm).

Finding adversarial examples using a generator as in [Song et al., 2018]

find i[100] where i in [-1, 1], class(NN(GEN(i, cat))) = dog

query to formula arphi φ to loss $\mathcal{L}(\varphi)$ $\varphi := \left(\bigwedge^{100} \left(-1 \le \mathbf{i}_j \land \mathbf{i}_j \le 1 \right) \right)$ $\underset{\mathbf{i}\in[-1,1]^{100}}{\arg\min}\sum_{\substack{k\in \text{classes}\\k\neq \text{ dog}}}\max\left(\text{logit}_{\text{NN}}(\text{GEN}(\mathbf{i},\text{cat}))_{i}-\right)$ $\bigwedge \quad \text{logit}_{NN}(\text{GEN}(i, \text{cat}))$ $logit_{NN}(GEN(i, cat))_{dog}, 0$ $< \text{logit}_{NN}(\text{GEN}(i, \text{cat}))_{\text{dog}}$

Training with Constraints (Supervised, Semi-Supervised, Unsupervised)

Goal: Train a neural network, with weights θ , on data \mathcal{T} , such that a constraint φ holds for all inputs from a set A.

- **generalizes** prior work on training with constraints
- **applicable** to supervised, semi-supervised and unsupervised training

Key Ingredient: Constraints to Loss

DL2 translates a constraint φ , given as a quantifier-free first order logical formula, to a differentiable loss $\mathcal{L}(\varphi)$ with desirable properties.

Key Properties of the Translation

- $\mathcal{L}(\varphi) \ge 0$
- $\mathcal{L}(\varphi) = 0$ if and only if φ is satisfied
- $\mathcal{L}(\varphi)$ is differentiable almost everywhere w.r.t. all variables and network parameters θ
- allowing the use of **standard optimizers** such as (projected) gradient descent or L-BFGS-B

Recursive Translation

$\mathcal{L}(t \le t')$:=	$\max(t -$
$\mathcal{L}(t \neq t')$:=	$\xi \cdot [t = t]$
$\mathcal{L}(t=t')$:=	$\mathcal{L}(t \le t'$
$\mathcal{L}(t < t')$:=	$\mathcal{L}(t \le t'$
$\mathcal{L}(\varphi' \wedge \varphi'')$:=	$\mathcal{L}(\varphi') +$
$\mathcal{L}(\varphi' \vee \varphi'')$:=	$\mathcal{L}(arphi') \cdot \mathcal{L}$

Negation

In a negated formula $\neg \psi$, the negation is recursively pushed into subformulas until no negation remains, e.g.

$$\mathcal{L}(\neg((a > 3) \land (b < 1))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3)) \to \mathcal{L}((a > 3))) \to \mathcal{L}((a > 3)) \to$$

Query Specific

$$(class(NN(i)) = c) := \bigwedge_{\substack{k \in classes \\ k \neq c}} logits_{k \neq c}$$

Deep Learning with Differentiable Logic

<u>github.com/eth-sri/dl2</u>

References

Pei, K., Cao, Y., Yang, J., and Jana, S. (2017) DeepXplore: Automated whitebox testing of deep learning systems. Song, Y., Shu, R., Kushman, N., and Ermon, S. (2018) Generative adversarial examples.

-t', 0) $' \wedge t' \leq t$ $' \wedge t \neq t'$ $+ \mathcal{L}(\varphi'')$ $\mathcal{L}(\varphi'')$

 $a \le 3) \lor (b \ge 1)).$

 $\mathbf{L}_{\mathrm{NN}}(\mathrm{i})_k < \mathrm{logits}_{\mathrm{NN}}(\mathrm{i})_c$

\leq **SRI**AB

Evaluating DL2

Querying

- 18 templated queries (similar to the queries in the left column)
- 2 minute timeout Differencing neural networks using a generator

Supervised Training

"A car should be considered more similar to a truck than a dog."

 $\forall \boldsymbol{z} \in B_{\epsilon}(\boldsymbol{x}) \cap [0,1]^d. \boldsymbol{y} = \operatorname{car} \implies$ $\operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{truck}} > \operatorname{logit}_{\theta}(\boldsymbol{z})_{\operatorname{dog}} + \delta$

Unsupervised Training

Given an unweighted graph with 15 nodes and random edges, predict the length of the shortest path from a root node only from a logical description.

Semi-supervised Training

For CIFAR-100, train with:

- cross-entropy loss on 25% 100labeled data
- the DL2 loss matching the 40 following constraint on the remaining unlabelled data

Department of Computer Science FILZürich