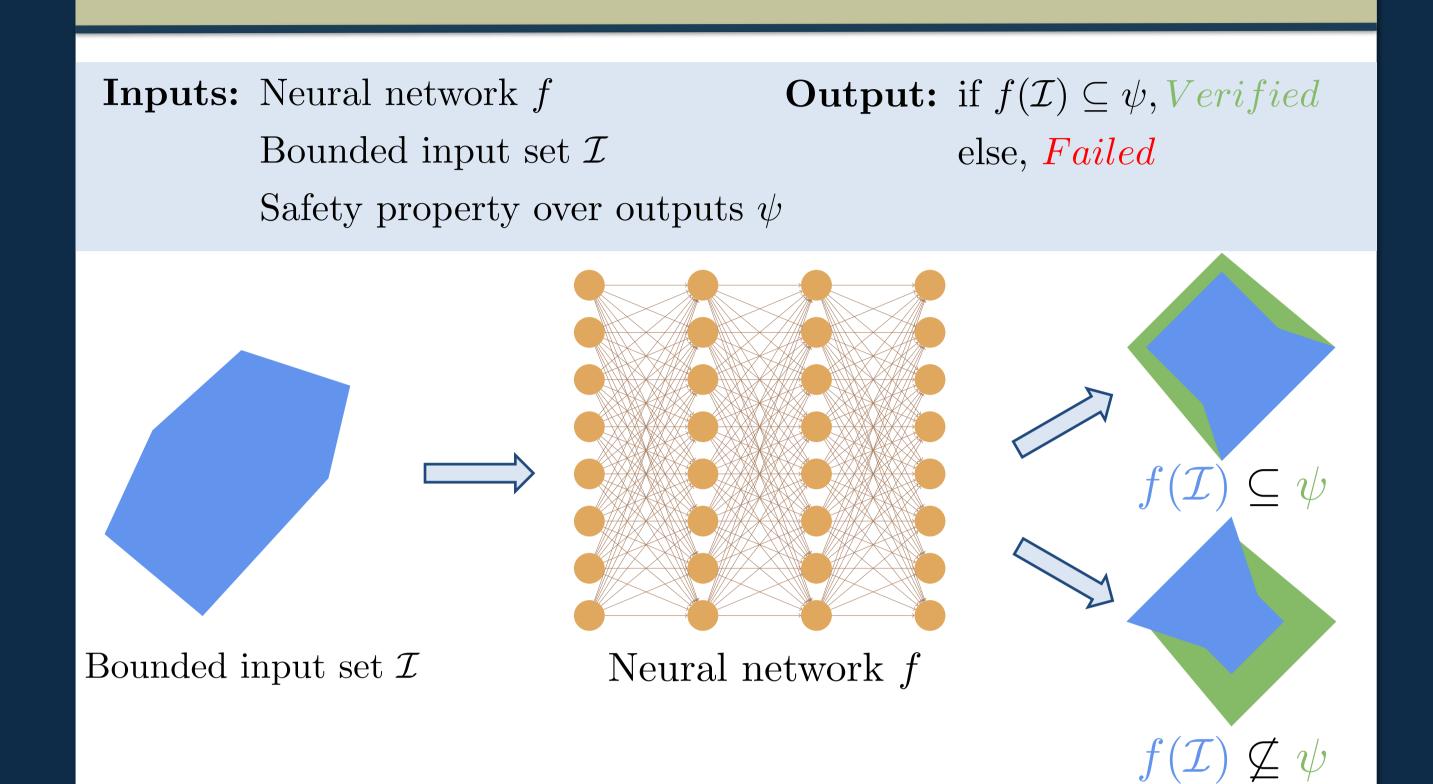
Beyond the Single Neuron Convex Barrier for Neural Network Certification

Gagandeep Singh, Rupanshu Ganvir, Martin Vechev, and Markus Püschel safeai.ethz.ch

Problem: Neural network certification



Example networks and inputs:

Image classification network f Input \mathcal{I} based on changes to pixel intensity Input \mathcal{I} based on geometric: e.g., rotation Speech recognition network f

Input \mathcal{I} based on added noise to audio signal

Aircraft collision avoidance network f Input \mathcal{I} based on input sensor values

Example safety properties:

Robustness: all inputs classify correctly Stability:

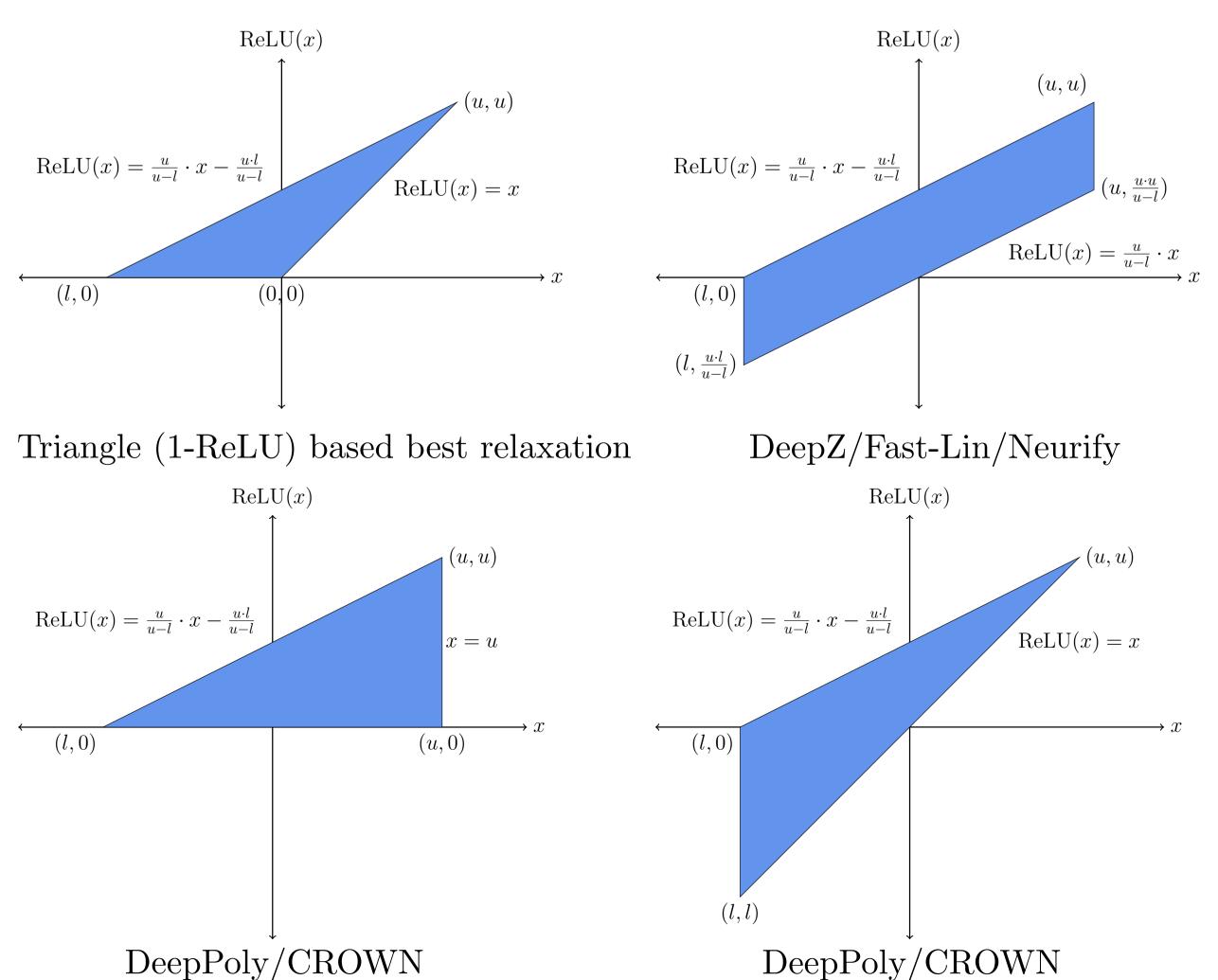
 $f(\mathcal{I})$ within a specified tolerance

Equivalence: networks f_1, f_2 produce same outputs

Exact certification of ReLU-based networks is NP-Complete

Single neuron convex relaxations of ReLU

Input: $P_{1\text{-ReLU}} = \{l \leq x \leq u\}$ computed via a convex approximation method M

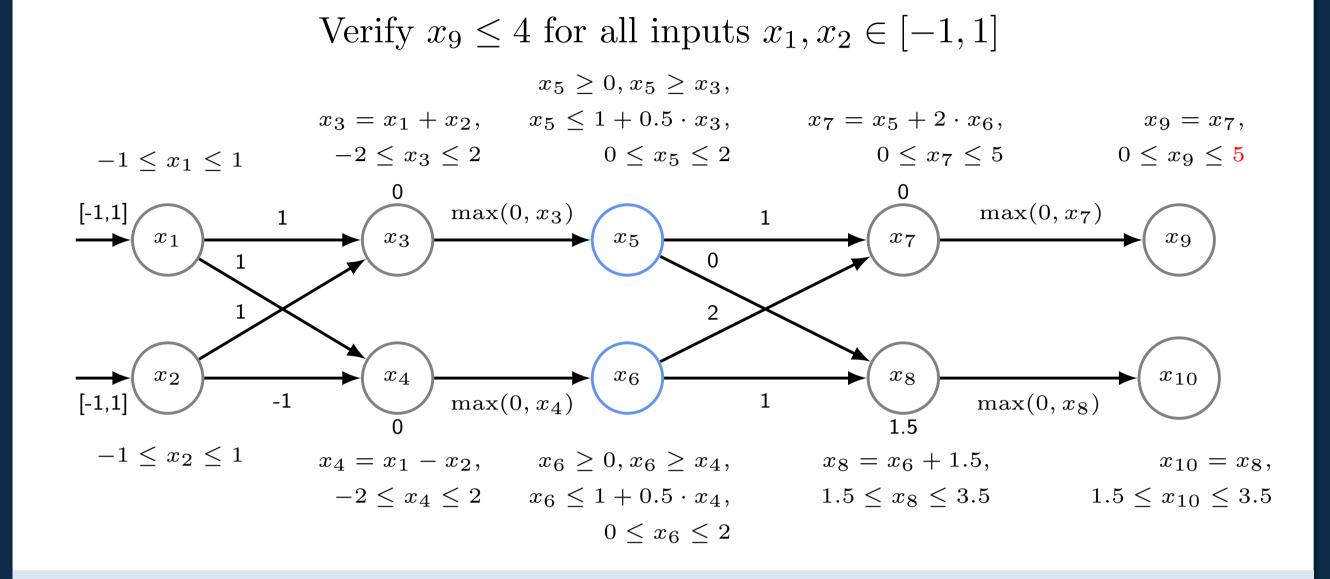


These relaxations can be quite imprecise as they ignore neuron dependencies

Our Contribution:

Compute relaxations for multiple ReLUs jointly

Imprecision with I-ReLU relaxation



Our k-ReLU framework

Given:

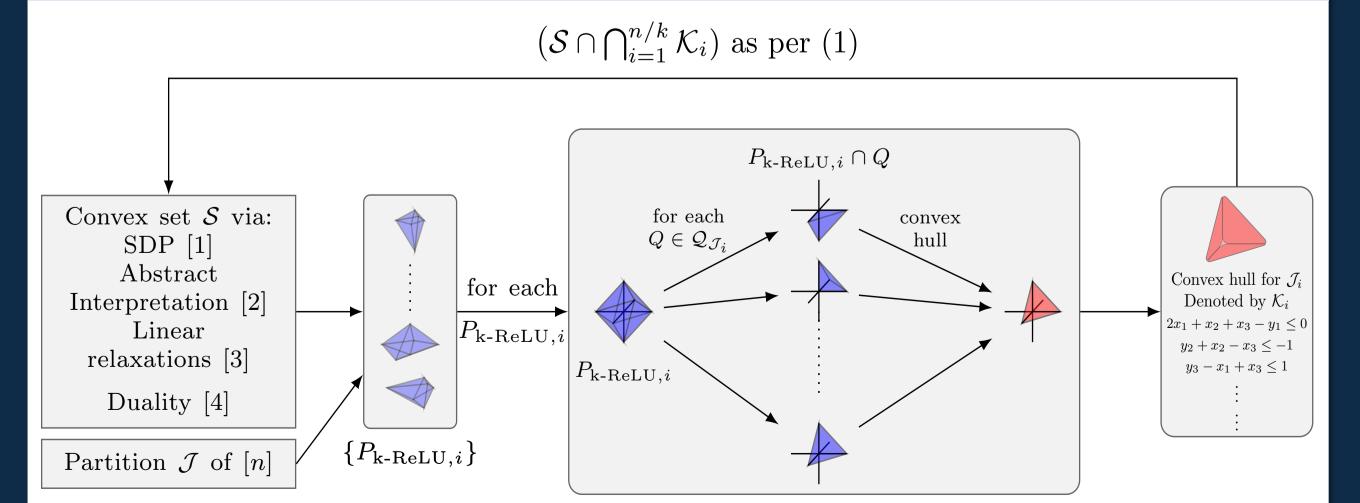
• $n \text{ ReLU assignments } y_i := \text{ReLU}(x_i), x_i \in \mathcal{X}, y_i \in \mathcal{Y}.$

Steps:

- . Compute a convex overapproximation \mathcal{S} wrt \mathcal{I} of neuron values before the ReLU assignments via M.
- 2. Compute partition \mathcal{J} of [n] where each $\mathcal{J}_i \in \mathcal{J}$ contains k indices.
- 3. For each \mathcal{J}_i , compute polyhedron $P_{k-\text{ReLU},i}$ where
 - $P_{\text{k-ReLU},i}$ contains constraints over the neurons in \mathcal{X} indexed by \mathcal{J}_i
 - $S \subseteq P_{k\text{-ReLU},i}$
 - $P_{k-\text{ReLU},i} \subseteq \cap_{u \in \mathcal{J}_i} P_{1-\text{ReLU},u}$.
- 4. Using polyhedra $C_i^+ = \{x_i \geq 0, y_i = x_i\}, C_i^- = \{x_i \leq 0, y_i = 0\}$ induced by each y_i :=ReLU (x_i) , compute the set of polyhedra $\mathcal{Q}_{\mathcal{J}_i} = \{\bigcap_{u \in \mathcal{J}_i} C_u^{s(u)} \mid$ $s \in \mathcal{J}_i \to \{-,+\}\}$ for the k ReLU assignments induced by \mathcal{J}_i . Each polyhedron $Q \in \mathcal{Q}_{\mathcal{J}_i}$ corresponds to a branch produced by considering the k ReLU assignments jointly.
- 5. Our k-ReLU framework produces the following output convex relaxation:

$$S_{k-\text{ReLU}} = S \cap \bigcap_{i=1}^{n/k} \text{Conv}_{Q \in \mathcal{Q}_{\mathcal{J}_i}}(P_{k-\text{ReLU},i} \cap Q). \tag{1}$$

Instantiating k-ReLU framework



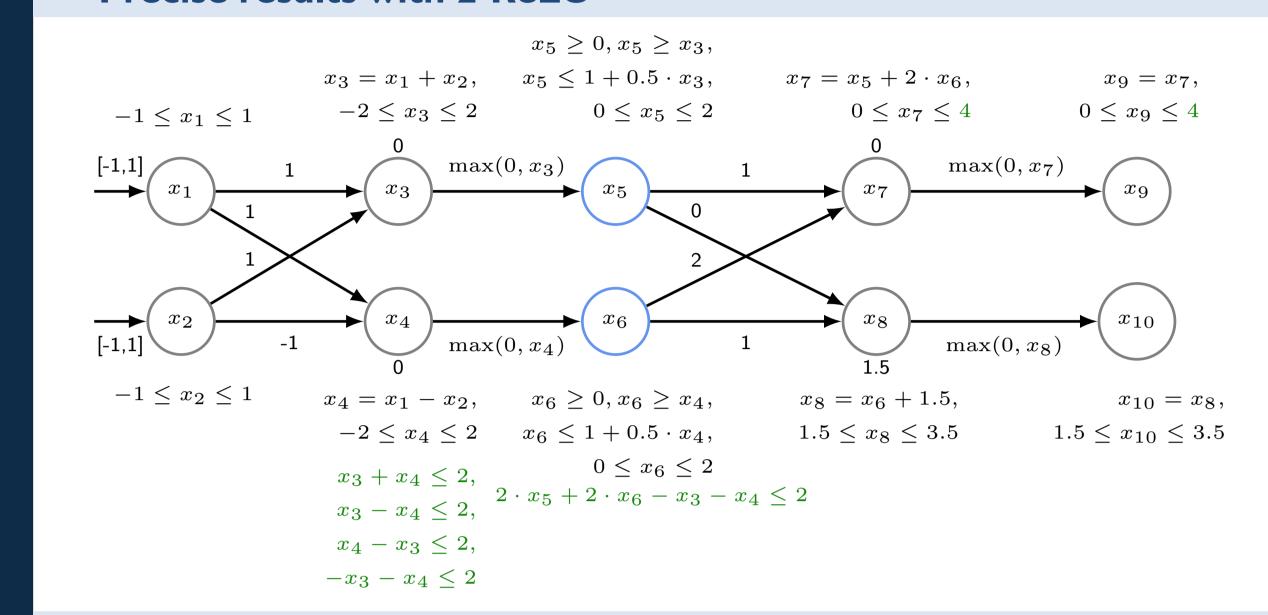
The result of (1) is optimal for the given choice of S, k, \mathcal{J} , and $P_{k-ReLU,i}$

Theorem. For k > 1 and a partition \mathcal{J} of indices, if there exists a \mathcal{J}_i for which $P_{k-ReLU,i} \subsetneq \bigcap_{u \in \mathcal{J}_i} P_{1-ReLU,u} \text{ holds, then } \mathcal{S}_{k-ReLU} \subsetneq \mathcal{S}_{1-ReLU}.$

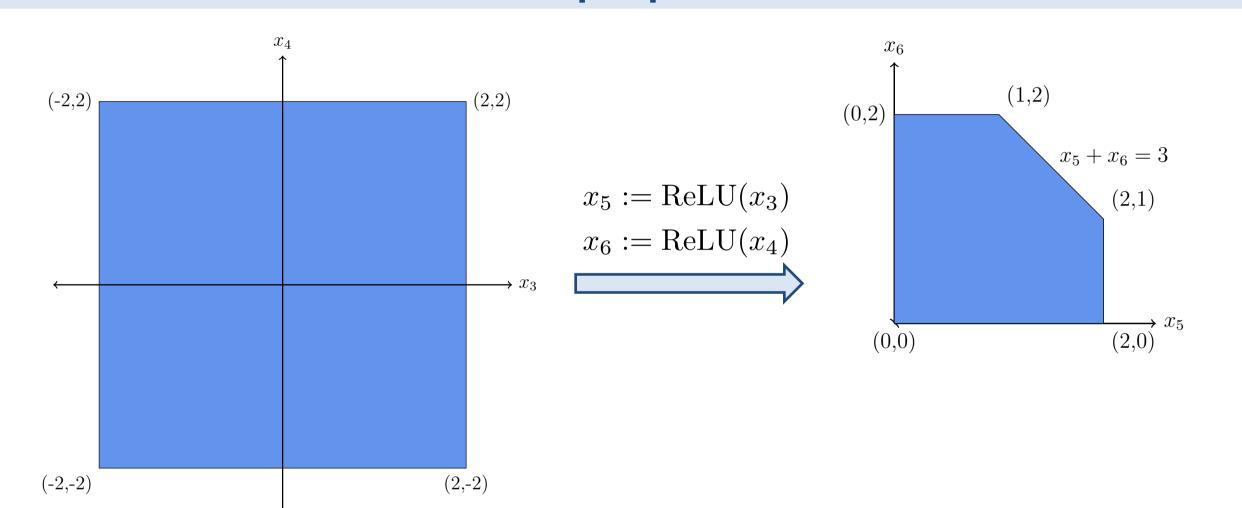
k-ReLU framework:

State-of-the-art convex relaxations

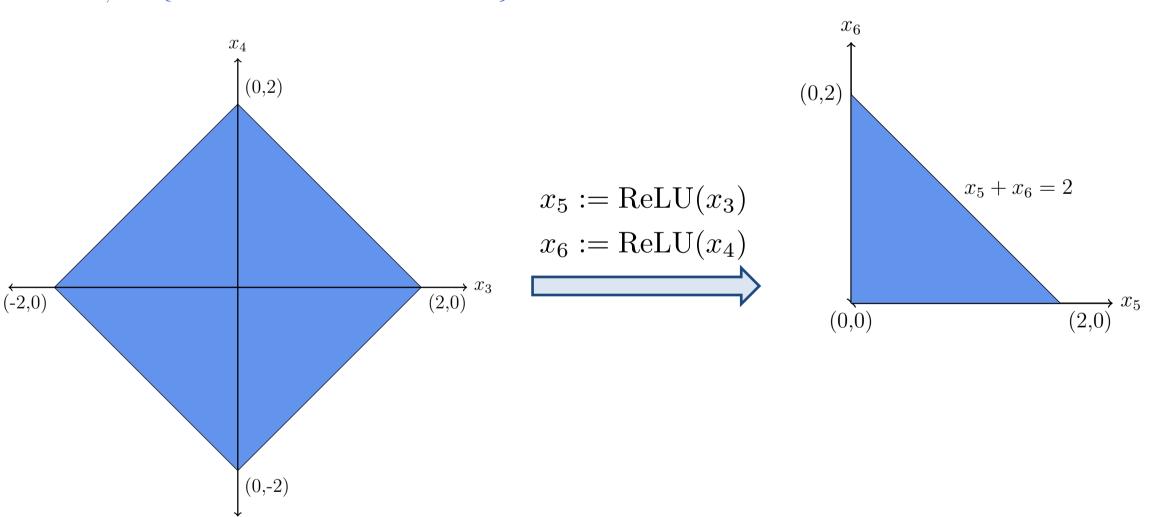
Precise results with 2-ReLU



2-ReLU vs I-ReLU in the output plane



 $\cap_i P_{1\text{-ReLU},i} = \{-2 \le x_3 \le 2, -2 \le x_4 \le 2\}$



 $P_{2\text{-ReLU}} = \{-2 \le x_3 \le 2, -2 \le x_4 \le 2,$ $-2 \le x_3 + x_4 \le 2, -2 \le x_3 - x_4 \le 2$

Approximating optimal relaxations for larger k

Computing \mathcal{K}_i involves 2^k convex hulls each of which has worst-case exponential cost in k

- . Choose $2 \leq l < k$ and let $\mathcal{R}_i = \{\{j_1, \ldots, j_l\} \mid j_1, \ldots, j_l \in \mathcal{J}_i\}$ be the set containing all subsets of \mathcal{J}_i with exactly l indices.
- 2. For each $R \in \mathcal{R}_i$, compute polyhedron $P'_{l\text{-ReLU},R}$ where
 - $P'_{l\text{-ReLU},R}$ contains constraints over the neurons in \mathcal{X} indexed by R
 - $S \subseteq P'_{l\text{-ReLU},R}$
 - $P'_{l\text{-ReLU},R} \subseteq \cap_{u \in R} P_{1\text{-ReLU},u}$.
- 3. The approximation \mathcal{K}'_i is computed by applying l-ReLU $\binom{k}{l}$ times as:

$$\mathcal{K}'_i = \bigcap_{R \in \mathcal{R}_i} \operatorname{Conv}_{Q \in \mathcal{Q}_R}(P'_{l\text{-ReLU},R} \cap Q).$$

Our verifier kPoly: State-of-the-art precision and scalability

k-ReLU parameter instantiation for kPoly

Parameter	Instantiation for kPoly
Approximation method M	DeepPoly
Partition $\mathcal J$	Group indices i where the triangle relaxation for $y_i \coloneqq \text{ReLU}(x_i)$ has larger area in $x_i y_i$ -plane
Polyhedron $P_{k-ReLU,i}$	Compute upper bounds for $\sum_{u \in \mathcal{J}_i} a_u \cdot x_u$ wrt \mathcal{S} via M where $a_u \in \{-1,0,1\}$

Benchmarks

Dataset	Model	Туре	#neurons	Defense	k			
MNIST	6×100	feedforward	610	None	3			
	9×100	feedforward	910	None	2			
	6x200	convolutional	1,210	None	2			
	9×200	convolutional	1,810	None	2			
	ConvSmall	convolutional	3,604	None	Adapt			
	ConvBig	convolutional	34,688	[5]	5			
CIFAR I 0	ConvSmall	convolutional	4,852	[6]	Adapt			
	ConvBig	convolutional	62,464	[6]	5			
	ResNet	residual	107,496	[4]	Adapt			
All Chible and Dachlet and 24 CHz Id care Intel Voor CDI LEE 2400								

- All CNNs and ResNet on a 2.6 GHz 14 core Intel Xeon CPU E5-2690
- All FNNs on a 3.3 GHz 10 core Intel i9-7900X Skylake CPU

Certifying network robustness wrt L_{∞} -ball (1000 test images)

MNIST Networks

Model	ϵ	DeepPoly		RefineZono		kPoly	
		# 🗸	time(s)	#	time(s)	#	time(s)
6×100	0.026	160	0.3	312	310	441	307
9 × 100	0.026	182	0.4	304	411	369	171
6×200	0.015	292	0.5	341	570	574	187
9 × 200	0.015	259	0.9	316	860	506	464
ConvSmall	0.12	158	3	179	707	347	477
ConvBig	0.3	711	21	648	285	736	40

CIFAR 10 Networks

Model	ϵ	DeepPoly		RefineZono		kPoly	
		# 🗸	time(s)	#	time(s)	#	time(s)
ConvSmall	2/255	359	4	347	716	399	86
ConvBig	2/255	421	43	305	592	459	346
ResNet	8/255	243	12	243	27	245	91

Verifying MNIST ConvSmall robustness with k-ReLU vs I-ReLU

- 100 L_{∞} perturbation regions with $\epsilon=0.12$
- kPoly with k-ReLU and I-ReLU verifies 35 and 20 regions respectively

- [1] Semidefinite relaxations for certifying robustness to adversarial examples, NeurIPS'18
- [2] An Abstract Domain for Certifying Neural Networks, POPL'19
- [3] A convex relaxation barrier to tight robustness verification of neural networks, NeurIPS'19
- [4] Provable defenses against adversarial examples via the convex outer adversarial polytope, ICML'18
- [5] Differentiable Abstract Interpretation for Provably Robust Neural Networks, ICML'18
- [6] Towards deep learning models resistant to adversarial attacks, ICLR'18