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Geometric robustness and certification

Problem

Naturally occurring geometric transformations (e.g. rotation]
can cause neural networks to misclassify images [1]:

Rotation:

Ty(x,y) = (xcos(¢) — ysin(e), -
xsin(¢p) + ycos(¢)) Q
Translation: Ty, 5y(x, y) = (x + 6,y + 6y) .
E] —
T)(x,y) = (Ax, Ay) .
E] —

Our goal Is to certify that neural network correctly classifies
Image I, for each transformation parameter k € D.

Scaling:

We build on DeepPoly [2] which requires computing linear
convex relaxation capturing all possible images obtainable
using specified geometric transformation.
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Ry(x,) for ¢ € [-30, 301

Optimization problem

To obtain the tight linear relaxation, our goal is to find wy, b,
and w,,,b,, which minimize the volume

L(w;,b;) := f (Ik(x, y) — (wlTK + bl)) dK

KED

((wik +b,) —I.(x,y))dK

KED

Uw,,b,) :=

subject to the soundness constraints

wik +b <I.(x,y)<wlk + b, VK€ D.

Our algorithm

Step 1: Approximation via Monte Carlo sampling

Replace the intractable objective with a Monte Carlo

approximation and the infinite set of constraints with a finite set
N

L(w;,by) = % z (Iki(X, y) — (Wi K" + bl))

i=1
wi k' + b, <1 i(x,y)

Pixel value

We can solve the relaxed problem exactly in
polynomial time using linear programming
[LP) and obtain approximate solutions
W, b; to the original problem

Step 2: Bound the maximum violation

Next, we bound the maximum soundness violation. This
requires computing an upper bound to the function f: D - R,

fae) = (WK +b;) —L(x,y).

1) Bound f by running interval
propagation to obtain [,u such that
f(r) €|l,u],vk € D.

2) Bound f using mean-value
theorem and Lipschitz continuity:

fao) = flec) +1/2Vf (k)" (e — k)

This yields an inequality: < f(r.) +1/2|L|" (k — K,)

f@e) < flre) + (u — f(k,)), VK € D.
where |0;f(k')| < |L;| for any k' € D.

We also refine the bounds using branch and bound algorithm:
we keep partitioning the domain into hyperrectangles as long
as the obtained bound is not tight enough.

Step 3: Sound constraints

Pixel value
(W’{K +Bl)_ I,c(x,y) < 51,VKED 1
I.(x,y)— (Wﬂk + Bu) <46, VKED

Then, the constraints
W, = Wl! bl bl 61 and
w, =w,, b, = b, + 8, are sound.

Asymptotically optimal constraints

Theorem: Let N be the number of sampled points in the algorithm and €
tolerance in Lipschitz optimization. Let w;,b; be the minimum of function

L and Wy, b, be the constraints obtained using our method. For every &

there exists Ng such that |L(w;,b}) — L(W;, b))| < & + € for every N > Ny,
with high probability. Analogous result holds for upper constraint.
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Experimental evaluation

Experimental evaluation

Code available at: https://github.com/eth-sri/deepg

Properties: Rotation, translation, scaling, shearing, brightness
changes as well as compositions of these transformations.

Networks: 4-layer CNN with 45k neurons on CIFAR-10 dataset
and 3-layer CNN on MNIST and Fashion-MNIST datasets.

Accuracy (%)  Attacked (%) Certified (%)

Interval [9] DEEPG

R(30) 99.1 0.0 7.1 87.8
T(2,2) 99.1 1.0 0.0 77.0
Sc(5), R(5), B(5, 0.01) 99.3 0.0 0.0 34.0
Sh(2), R(2), Sc(2), B(2, 0.001) 99.2 0.0 1.0 72.0

Sc(20) 91.4 11.2 19.1 70.8
Fashion-MNIST R(10), B(2, 0.01) 87.7 3.6 0.0 71.4

Sc(3), R(3), Sh(2) 87.2 3.5 3.5 56.6

R(10) 71.2 10.8 28.4 87.8
CIFAR-10 R(2), Sh(2) 68.5 5.6 0.0 54.2
Sc(1), R(1), B(1, 0.001) 73.2 3.8 0.0 544

Comparison of training techniques

We certity networks trained using different training methods:

1) Standard training 2) Training with data augmentation
3) PGD training 4) Provable defense (DiffAll

We tind that network trained using combination of data
augmentation and PGD training has highest accuracy and
highest certification rate with DeepG.

Accuracy (%)  Attack success (%) Certified (%)

Interval [9] DEEPG

Standard 98.7 52.0 0.0 12.0
Augmented 99.0 4.0 0.0 46.5
L-PGD 98.9 45.5 0.0 20.2
L -DIFFAI 98.4 51.0 1.0 17.0
L -PGD + Augmented 99.1 1.0 0.0 77.0
L -DIFFAI + Augmented 98.0 6.0 42.0 66.0

Experiments on large networks

We certify robustness against rotations between -2 and 2 degrees.

ResNet18

- 312 000 neurons - 558 000 neurons

- 91.1% certified - 82.2% certified

- 20 + 028 seconds perimage - 25 + 1652 seconds per image
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