Certifying Geometric Robustness of Neural Networks

Mislav Balunović, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin Vechev

Geometric robustness and certification

Problem

Naturally occurring geometric transformations (e.g. rotation) can cause neural networks to misclassify images [1]:

Our goal is to certify that neural network correctly classifies image I_{κ} for each transformation parameter $\kappa \in D$.

We build on DeepPoly [2] which requires computing linear convex relaxation capturing all possible images obtainable using specified geometric transformation.

Optimization problem

To obtain the tight linear relaxation, our goal is to find w_l, b_l and w_u, b_u which minimize the volume

$$L(\mathbf{w}_{l}, b_{l}) := \int_{\mathbf{\kappa} \in D} \left(I_{\mathbf{\kappa}}(\mathbf{x}, \mathbf{y}) - \left(\mathbf{w}_{l}^{T} \mathbf{\kappa} + b_{l} \right) \right) d\mathbf{\kappa}$$

$$U(\mathbf{w}_{u}, b_{u}) := \int_{\mathbf{\kappa} \in D} \left(\left(\mathbf{w}_{u}^{T} \mathbf{\kappa} + b_{u} \right) - I_{\mathbf{\kappa}}(\mathbf{x}, \mathbf{y}) \right) d\mathbf{\kappa}$$

subject to the soundness constraints

$$\mathbf{w}_l^T \mathbf{\kappa} + b_l \leq I_{\kappa}(x, y) \leq \mathbf{w}_u^T \mathbf{\kappa} + b_u, \forall \mathbf{\kappa} \in D.$$

Our algorithm

Step 1: Approximation via Monte Carlo sampling

Replace the intractable objective with a Monte Carlo approximation and the infinite set of constraints with a finite set

$$L(\boldsymbol{w}_{l}, b_{l}) \approx \frac{1}{N} \sum_{i=1}^{N} \left(I_{\boldsymbol{\kappa}^{i}}(x, y) - \left(\boldsymbol{w}_{l}^{T} \boldsymbol{\kappa}^{i} + b_{l} \right) \right)$$

$$\boldsymbol{w}_{l}^{T} \boldsymbol{\kappa}^{i} + b_{l} \leq I_{\boldsymbol{\kappa}^{i}}(x, y)$$
Pixel value

We can solve the relaxed problem exactly in polynomial time using linear programming (LP) and obtain approximate solutions $\widehat{\boldsymbol{w}}_{l}$, \widehat{b}_{l} to the original problem

Step 2: Bound the maximum violation

Next, we bound the maximum soundness violation. This requires computing an upper bound to the function $f: D \to R$,

$$f(\boldsymbol{\kappa}) = (\widehat{\boldsymbol{w}}_l^T \boldsymbol{\kappa} + \widehat{b}_l) - I_{\boldsymbol{\kappa}}(x, y).$$

1) Bound f by running interval propagation to obtain l, u such that $f(\kappa) \in [l, u], \forall \kappa \in D$.

This yields an inequality: $f(\kappa) \le f(\kappa_c) + (u - f(\kappa_c)), \forall \kappa \in D.$ 2) Bound f using mean-value theorem and Lipschitz continuity:

$$f(\kappa) = f(\kappa_c) + 1/2\nabla f(\kappa')^T (\kappa - \kappa_c)$$

$$\leq f(\kappa_c) + 1/2|L|^T (\kappa - \kappa_c)$$

where $|\partial_i f(\kappa')| \leq |L_i|$ for any $\kappa' \in D$.

We also refine the bounds using branch and bound algorithm: we keep partitioning the domain into hyperrectangles as long as the obtained bound is not tight enough.

Step 3: Sound constraints

$$(\widehat{\mathbf{w}}_{l}^{T}\mathbf{\kappa} + \widehat{b}_{l}) - I_{\kappa}(x, y) \leq \delta_{l}, \forall \kappa \in D$$

$$I_{\kappa}(x, y) - (\widehat{\mathbf{w}}_{u}^{T}\mathbf{\kappa} + \widehat{b}_{u}) \leq \delta_{u}, \forall \kappa \in D$$

Then, the constraints $\mathbf{w}_l = \widehat{\mathbf{w}}_l$, $b_l = \widehat{b}_l - \delta_l$ and $\mathbf{w}_u = \widehat{\mathbf{w}}_u$, $b_u = \widehat{b}_u + \delta_u$ are sound.

Asymptotically optimal constraints

Theorem: Let N be the number of sampled points in the algorithm and ϵ tolerance in Lipschitz optimization. Let \mathbf{w}_l^*, b_l^* be the minimum of function L and $\widehat{\mathbf{w}}_l$, \widehat{b}_l be the constraints obtained using our method. For every δ there exists N_δ such that $|L(\mathbf{w}_l^*, b_l^*) - L(\widehat{\mathbf{w}}_l, \widehat{b}_l)| < \delta + \epsilon$ for every $N > N_\delta$, with high probability. Analogous result holds for upper constraint.

Experimental evaluation

Experimental evaluation

Code available at: https://github.com/eth-sri/deepg

Properties: Rotation, translation, scaling, shearing, brightness changes as well as compositions of these transformations.

Networks: 4-layer CNN with 45k neurons on CIFAR-10 dataset and 3-layer CNN on MNIST and Fashion-MNIST datasets.

		Accuracy (%)	Attacked (%)	Certified (%)	
				Interval [9]	DEEPG
MNIST	R(30)	99.1	0.0	7.1	87.8
	T(2, 2)	99.1	1.0	0.0	77.0
	Sc(5), R(5), B(5, 0.01)	99.3	0.0	0.0	34.0
	Sh(2), R(2), Sc(2), B(2, 0.001)	99.2	0.0	1.0	72.0
Fashion-MNIST	Sc(20)	91.4	11.2	19.1	70.8
	R(10), B(2, 0.01)	87.7	3.6	0.0	71.4
	Sc(3), R(3), Sh(2)	87.2	3.5	3.5	56.6
CIFAR-10	R(10)	71.2	10.8	28.4	87.8
	R(2), Sh(2)	68.5	5.6	0.0	54.2
	Sc(1), R(1), B(1, 0.001)	73.2	3.8	0.0	54.4

Comparison of training techniques

We certify networks trained using different training methods:

- 1) Standard training
- 2) Training with data augmentation
- 3) PGD training
- 4) Provable defense (DiffAI)

We find that network trained using combination of data augmentation and PGD training has highest **accuracy** and highest **certification rate** with DeepG.

		Accuracy (%)	Attack success (%)	Certified (%)	
				Interval [9]	DEEPG
MNIST	Standard	98.7	52.0	0.0	12.0
	Augmented	99.0	4.0	0.0	46.5
	L_{∞} -PGD	98.9	45.5	0.0	20.2
	L_{∞} -DiffAI	98.4	51.0	1.0	17.0
	L_{∞} -PGD + Augmented	99.1	1.0	0.0	77.0
	L_{∞} -DIFFAI + Augmented	98.0	6.0	42.0	66.0

Experiments on large networks

We certify robustness against rotations between -2 and 2 degrees.

ResNeti	iny	
- 312	NNN	neuro

ResNet18

312 000 neurons91.1% certified

- 558 000 neurons

- 25 + 528 seconds per image

82.2% certified25 + 1652 seconds per image

[1] Engstrom, Logan, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. "Exploring the Landscape of Spatial Robustness.", ICML 2019

[2] Singh, Gagandeep, Timon Gehr, Markus Püschel, and Martin Vechev. "An abstract domain for certifying neural networks.", POPL 2019

