An Abstract Domain for Certifying Neural Networks

Timon Gehr

Markus Püschel

Martin Vechev

Department of Computer Science

Adversarial input perturbations

Neural network robustness

Given:

Neural network $f: \mathbb{R}^m \to \mathbb{R}^n$ Perturbation region $\mathcal{R}(I_0, \phi)$

Regions:

 $L_{\infty}(I_0, \epsilon)$: All images I where pixel values in I and I_0 differ by at most ϵ Rotate(I_0 , ϵ , α , β): All images I in $L_{\infty}(I_0,\epsilon)$ rotated by $\theta \in [\alpha,\beta]$

 $\forall I \in \mathcal{R}(I_0, \phi). f(c) > f(j)$ To Prove: where c is the correct output and j is any other output

Challenges

The size of $\mathcal{R}(I_0, \phi)$ grows exponentially in the number of pixels:

cannot compute f(I) for all I separately

Prior Work

- Precise but does not scale:
 - SMT Solving [CAV'17]
 - Input refinement [USENIX'18]
 - Semidefinite relaxations [ICLR'18]
- Scales but imprecise
 - Linear relaxations [ICML'18]
 - Abstract interpretation [S&P'18, **NIPS'18**]

This work: contributions

A new abstract domain combining floating point Polyhedra with Intervals:

- custom transformers for common functions in neural networks such as affine transforms, ReLU, sigmoid, tanh, and maxpool activations
- scalable and precise analysis

DeepPoly:

- complete and parallelized end-to-end implementation based on ELINA
- https://github.com/eth-sri/eran

First approach to certify robustness under rotation combined with linear interpolation:

- based on refinement of the abstract input
- $\epsilon = 0.001, \alpha = -45^{\circ}, \beta = 65^{\circ}$

Network	ϵ	NIPS'18	DeepPoly
6 layers3010 units	0.035	proves 21% 15.8 sec	proves 64% 4.8 sec
6 layers34,688 units	0.3	proves 37% 17 sec	proves 43% 88 sec

Our Abstract Domain

Shape: associate a lower polyhedral a_i^{\leq} and an upper polyhedral a_i^{\geq} constraint with each x_i

$$a_i^{\leq}, a_i^{\geq} \in \{x \mapsto v + \sum_{j \in [i-1]} w_j \cdot x_j \mid v \in \mathbb{R} \cup \{-\infty, +\infty\}, w \in \mathbb{R}^{i-1}\} \text{ for } i \in [n]$$

Concretization of abstract element a:

$$\gamma_n(a) = \{ x \in \mathbb{R}^n \mid \forall i \in [n]. \ a_i^{\leq}(x) \leq x_i \land a_i^{\geq}(x) \geq x_i \}$$

Domain invariant: store auxiliary concrete lower and upper bounds l_i , u_i for each x_i

$$\gamma_n(a) \subseteq \times_{i \in [n]} [l_i, u_i]$$

- less precise than Polyhedra, restriction needed to ensure scalability
- captures affine transformation precisely unlike Octagon, TVPI
- custom transformers for ReLU, sigmoid, tanh, and maxpool activations

n: #neurons, m: #constraints

 w_{max} : max #neurons in a layer, L: # layers

Transformer	Polyhedra	Our domain
Affine	$O(nm^2)$	$O(w_{max}^2L)$
ReLU	$O(\exp(n, m))$	0(1)

Example: Analysis of a Toy Neural Network

ReLU activation

Pointwise transformer for $x_i := max(0, x_i)$ that uses l_i, u_i

if
$$u_i \le 0$$
, $a_j^{\le} = a_j^{\ge} = 0$, $l_j = u_j = 0$,
if $l_i \ge 0$, $a_j^{\le} = a_j^{\ge} = x_i$, $l_j = l_i$, $u_j = u_i$,
if $l_i < 0$ and $u_i > 0$

$$x_i \le x_j, 0 \le x_j,$$
 $0 \le x_j,$ $x_j \le u_i(x_i - l_i)/(u_i - l_i).$ $0 \le x_j,$ $0 \le x_j,$ $0 \le u_i(x_i - l_i)/(u_i - l_i).$ $0 \le x_j,$ $0 \le u_i(x_i - l_i)/(u_i - l_i).$ $0 \le u_j,$ $0 \le$

$$0 \le x_j,$$
). $x_j \le u_i(x_i - l_i)/(u_i - l_i),$
 $l_i = 0, \ u_i = u_i$

$$x_i \le x_j, 0 \le x_j,$$
 $0 \le x_j,$ $x_i \le x_j,$ $x_j \le u_i(x_i - l_i)/(u_i - l_i),$ $x_j \le u_i(x_i - l_i)/(u_i - l_i),$ $x_j \le u_i(x_i - l_i)/(u_i - l_i),$ $u_j = 0, u_j = u_i$ $u_j = u_i$ $u_j = u_i$ $u_j = u_i$

$$\langle x_3 \ge x_1 + x_2, \ \langle x_5 \ge 0,$$
 $x_3 \le x_1 + x_2, \ x_5 \le 0.5 \cdot x_3 + 1,$
 $l_3 = -2, \ l_5 = 0,$
 $u_3 = 2 \rangle$
 $u_5 = 2 \rangle$

choose (b) or (c) depending on the area

Affine transformation after ReLU

$$\langle x_5 \geq 0, \ x_5 \leq 0.5 \cdot x_3 + 1, \ \langle x_7 \geq x_5 + x_6, \ l_5 = 0, \ x_7 \leq x_5 + x_6, \ l_7 = 0, \ u_7 = 2 \rangle$$
 $\langle x_6 \rangle 1$
 $\langle x_6 \geq 0, \ x_6 \leq 0.5 \cdot x_4 + 1, \ l_6 = 0, \ u_6 = 2 \rangle$

Backsubstitution

$$\langle x_5 \geq 0, \ x_5 \leq 0.5 \cdot x_3 + 1, \ x_7 \geq 0 + x_6, \ l_5 = 0, \ x_7 \leq 0 + x_6 + 0.5 \cdot x_4 + 2, \ l_7 = ?, \ x_5 \qquad 1 \qquad 0 \qquad x_7 = ? \rangle$$
 $\langle x_6 \rangle \qquad 1 \qquad \langle x_6 \geq 0, \ x_6 \leq 0.5 \cdot x_4 + 1, \ l_6 = 0, \ u_6 = 2 \rangle$

Checking for robustness

Prove $x_{11} - x_{12} > 0$ for all inputs in $[-1,1] \times [-1,1]$

$$\langle x_{11} \ge x_9 + x_{10} + 1,$$
 $\langle x_{12} \ge x_{10},$
 $x_{11} \le x_9 + x_{10} + 1,$ $x_{11} \le x_{10},$
 $l_{11} = 1,$ $l_{12} = 0,$
 $u_{11} = 5.5 \rangle$ $u_{12} = 2 \rangle$

Computing lower bound for $x_{11} - x_{12}$ using l_{11} , u_{12} gives -1 which is an imprecise result

More complex perturbations: rotations

Challenge: Rotate $(I_0, \epsilon, \alpha, \beta)$ is non-linear and cannot be captured in our domain unlike $L_{\infty}(I_0, \epsilon)$

Solution: Over-approximate $Rotate(I_0, \epsilon, \alpha, \beta)$ with boxes and use input refinement for precision

Result: Prove robustness for networks under $Rotate(I_0, 0.001, -45, 65)$

More in the paper

Sigmoid transformer

Tanh transformer

Maxpool transformer $y:=max(x_1,x_2,\ldots,x_r)$

$$a_i^{\leq}, a_i^{\geq} \in \{x \mapsto [v^-, v^+] \oplus_f \sum_{j \in [i-1]} [w_j^-, w_j^+] \otimes_f x_j\}$$
 Floating point soundness

Experimental evaluation

- Neural network architectures:
 - fully connected feedforward (FFNN)
 - convolutional (CNN)
- Training:
 - trained to be robust with DiffAI [ICML'18] and PGD [CVPR'18]
 - without adversarial training
- Datasets:
 - MNIST
 - CIFAR I 0
- DeepPoly vs. state-of-the-art DeepZ [NIPS'18] and Fast-Lin [ICML'18]

Results

MNIST FFNN (3,010 hidden units)

CIFAR IO CNNs (4,852 hidden units)

Large Defended CNNs trained via DiffAl [ICML'18]

Dataset	Model	#hidden units	ϵ	%verified	drobustness	Average	runtime (s)
				DeepZ	DeepPoly	DeepZ	DeepPoly
MNIST	ConvBig	34,688	0.1	97	97	5	50
	ConvBig	34,688	0.2	79	78	7	61
	ConvBig	34,688	0.3	37	43	17	88
	ConvSuper	88,500	0.1	97	97	133	400
CIFAR I 0	ConvBig	62,464	0.006	50	52	39	322
	ConvBig	62,464	0.008	33	40	46	331

Conclusion

Adversarial input perturbations

DeepPoly:

- complete and parallelized end-to-end implementation based on ELINA
- https://github.com/eth-sri/eran

A new abstract domain combining floating point Polyhedra with Intervals:

n: #neurons, m: #constraints

 w_{max} : max #neurons in a layer, L: # layers

Transformer	Polyhedra	Our domain		
Affine	$O(nm^2)$	$O(w_{max}^2L)$		
ReLU	$O(\exp(n, m))$	0(1)		

