An Abstract Domain for Certifying Neural Networks

Gagandeep Singh Timon Gehr Markus Püschel Martin Vechev

Department of Computer Science

ETH Zürich
Adversarial input perturbations

\[I \in L_{\infty}(I_0, \epsilon) \]

\[I \in \text{Rotate}(I_0, \epsilon, \alpha, \beta) \]
Neural network robustness

Given:
Neural network \(f: \mathbb{R}^m \rightarrow \mathbb{R}^n \)
Perturbation region \(\mathcal{R}(I_0, \phi) \)

Regions:
- \(L_\infty(I_0, \epsilon) \): All images \(I \) where pixel values in \(I \) and \(I_0 \) differ by at most \(\epsilon \)
- \(\text{Rotate}(I_0, \epsilon, \alpha, \beta) \): All images \(I \) in \(L_\infty(I_0, \epsilon) \) rotated by \(\theta \in [\alpha, \beta] \)

To Prove:
\(\forall I \in \mathcal{R}(I_0, \phi). f(c) > f(j) \)
where \(c \) is the correct output and \(j \) is any other output

Challenges
The size of \(\mathcal{R}(I_0, \phi) \) grows exponentially in the number of pixels:
- cannot compute \(f(I) \) for all \(I \) separately

Prior Work
- Precise but does not scale:
 - SMT Solving [CAV’17]
 - Input refinement [USENIX’18]
 - Semidefinite relaxations [ICLR’18]
- Scales but imprecise
 - Linear relaxations [ICML’18]
 - Abstract interpretation [S&P’18, NIPS’18]
This work: contributions

A new abstract domain combining floating point Polyhedra with Intervals:
• custom transformers for common functions in neural networks such as affine transforms, ReLU, sigmoid, tanh, and maxpool activations
• scalable and precise analysis

First approach to certify robustness under rotation combined with linear interpolation:
• based on refinement of the abstract input
• $\epsilon = 0.001, \alpha = -45^\circ, \beta = 65^\circ$

DeepPoly:
• complete and parallelized end-to-end implementation based on ELINA
• https://github.com/eth-sri/eran

<table>
<thead>
<tr>
<th>Network</th>
<th>ϵ</th>
<th>NIPS’18</th>
<th>DeepPoly</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 layers, 3010 units</td>
<td>0.035</td>
<td>proves 21%</td>
<td>proves 64%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.8 sec</td>
<td>4.8 sec</td>
</tr>
<tr>
<td>6 layers, 34,688 units</td>
<td>0.3</td>
<td>proves 37%</td>
<td>proves 43%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 sec</td>
<td>88 sec</td>
</tr>
</tbody>
</table>
Our Abstract Domain

Shape: associate a lower polyhedral a_i^\leq and an upper polyhedral a_i^\geq constraint with each x_i

$$a_i^\leq, a_i^\geq \in \{x \mapsto v + \sum_{j \in [i-1]} w_j \cdot x_j \mid v \in \mathbb{R} \cup \{-\infty, +\infty\}, w \in \mathbb{R}^{i-1}\} \text{ for } i \in [n]$$

Concretization of abstract element a:

$$\gamma_n(a) = \{ x \in \mathbb{R}^n \mid \forall i \in [n]. a_i^\leq(x) \leq x_i \land a_i^\geq(x) \geq x_i \}$$

Domain invariant: store auxiliary concrete lower and upper bounds l_i, u_i for each x_i

$$\gamma_n(a) \subseteq \times_{i \in [n]} [l_i, u_i]$$

- less precise than Polyhedra, restriction needed to ensure scalability
- captures affine transformation precisely unlike Octagon, TVPI
- custom transformers for ReLU, sigmoid, tanh, and maxpool activations

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Polyhedra</th>
<th>Our domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affine</td>
<td>$O(nm^2)$</td>
<td>$O(w_{max}^2L)$</td>
</tr>
<tr>
<td>ReLU</td>
<td>$O(\exp(n,m))$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

n: #neurons, m: #constraints
w_{max}: max #neurons in a layer, L: # layers
Example: Analysis of a Toy Neural Network
\[
\begin{align*}
\langle x_1 \geq -1, & \quad \langle x_3 \geq x_1 + x_2, \\
 x_1 \leq 1, & \quad x_3 \leq x_1 + x_2, \\
 l_1 = -1, & \quad l_3 = -2, \\
u_1 = 1 \rangle & \quad u_3 = 2 \rangle
\end{align*}
\]
ReLU activation

Pointwise transformer for $x_j := \max(0, x_i)$ that uses l_i, u_i
if $u_i \leq 0$, $a_j^\leq = a_j^\geq = 0, l_j = u_j = 0$,
if $l_i \geq 0$, $a_j^\leq = a_j^\geq = x_i, l_j = l_i, u_j = u_i$,
if $l_i < 0$ and $u_i > 0$

Choose (b) or (c) depending on the area

Constant runtime

\[
\begin{align*}
\langle x_3 \geq x_1 + x_2, & \quad \langle x_5 \geq 0, \\
x_3 \leq x_1 + x_2, & \quad x_5 \leq 0.5 \cdot x_3 + 1, \\
l_3 = -2, & \quad l_5 = 0, \\
u_3 = 2 \rangle & \quad u_5 = 2 \rangle
\end{align*}
\]
Affine transformation after ReLU

\[
\begin{align*}
\langle x_5 \geq 0, \\
x_5 &\leq 0.5 \cdot x_3 + 1, \\
l_5 = 0, \\
u_5 = 2 \rangle \\
\langle x_7 \geq x_5 + x_6, \\
x_7 &\leq x_5 + x_6, \\
l_7 = 0, \\
u_7 = \frac{5}{4} \rangle
\end{align*}
\]

Imprecise upper bound \(u_7 \) by substituting \(u_5, u_6 \) for \(x_5 \) and \(x_6 \) in \(a \).
Backsubstitution

\[
\begin{align*}
(x_5 &\geq 0, \\
x_5 &\leq 0.5 \cdot x_3 + 1, \\
l_5 &= 0, \\
u_5 &= 2) \\
(x_7 &\geq 0, \\
x_7 &\leq 0.5 \cdot x_5 + x_6, \\
l_7 &= ?, \\
u_7 &= ?) \\
(x_6 &\geq 0, \\
x_6 &\leq 0.5 \cdot x_4 + 1, \\
l_6 &= 0, \\
u_6 &= 2)
\end{align*}
\]
Affine transformation with backsubstitution is pointwise, complexity: $O(w_{\text{max}}^2 L)$
Checking for robustness

Prove $x_{11} - x_{12} > 0$ for all inputs in $[-1,1] \times [-1,1]$

$$\langle x_{11} \geq x_9 + x_{10} + 1, \quad \langle x_{12} \geq x_{10},$$
$$x_{11} \leq x_9 + x_{10} + 1, \quad x_{11} \leq x_{10},$$
$$l_{11} = 1, \quad l_{12} = 0,$$
$$u_{11} = 5.5 \rangle \quad u_{12} = 2 \rangle$$

Computing lower bound for $x_{11} - x_{12}$ using l_{11}, u_{12} gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for $x_{11} - x_{12}$, proving robustness.
More complex perturbations: rotations

Challenge: \(\text{Rotate}(I_0, \epsilon, \alpha, \beta) \) is non-linear and cannot be captured in our domain unlike \(L_\infty(I_0, \epsilon) \).

Solution: Over-approximate \(\text{Rotate}(I_0, \epsilon, \alpha, \beta) \) with boxes and use input refinement for precision.

Result: Prove robustness for networks under \(\text{Rotate}(I_0, 0.001, -45, 65) \).
More in the paper

Sigmoid transformer

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Tanh transformer

\[\sigma(x) = \tanh(x) \]

Maxpool transformer

\[y := \max(x_1, x_2, \ldots, x_r) \]

\[a_i^\leq, a_i^\geq \in \{x \mapsto [v^-, v^+] \oplus f \sum_{j \in [i-1]} [w_j^-, w_j^+] \otimes f x_j\} \]

Floating point soundness
Experimental evaluation

• Neural network architectures:
 • fully connected feedforward (FFNN)
 • convolutional (CNN)

• Training:
 • trained to be robust with DiffAI [ICML’18] and PGD [CVPR’18]
 • without adversarial training

• Datasets:
 • MNIST
 • CIFAR10

• DeepPoly vs. state-of-the-art DeepZ [NIPS’18] and Fast-Lin [ICML’18]
Results

(a) MNIST 6 × 100

(b) MNIST 6 × 100
MNIST FFNN (3,010 hidden units)

Verified robustness

(a) MNIST 6 × 500 ReLU

Time (s)

(b) MNIST 6 × 500 ReLU
CIFAR10 CNNs (4,852 hidden units)
Large Defended CNNs

trained via DiffAI [ICML’18]

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>#hidden units</th>
<th>ϵ</th>
<th>%verified robustness</th>
<th>Average runtime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>ConvBig</td>
<td>34,688</td>
<td>0.1</td>
<td>DeepZ 97</td>
<td>DeepPoly 50</td>
</tr>
<tr>
<td></td>
<td>ConvBig</td>
<td>34,688</td>
<td>0.2</td>
<td>DeepZ 79</td>
<td>DeepPoly 7</td>
</tr>
<tr>
<td></td>
<td>ConvBig</td>
<td>34,688</td>
<td>0.3</td>
<td>DeepZ 37</td>
<td>DeepPoly 17</td>
</tr>
<tr>
<td></td>
<td>ConvSuper</td>
<td>88,500</td>
<td>0.1</td>
<td>DeepZ 97</td>
<td>DeepPoly 133</td>
</tr>
<tr>
<td>CIFAR10</td>
<td>ConvBig</td>
<td>62,464</td>
<td>0.006</td>
<td>DeepZ 50</td>
<td>DeepPoly 39</td>
</tr>
<tr>
<td></td>
<td>ConvBig</td>
<td>62,464</td>
<td>0.008</td>
<td>DeepZ 33</td>
<td>DeepPoly 46</td>
</tr>
</tbody>
</table>
Conclusion

Adversarial input perturbations

DeepPoly:
- complete and parallelized end-to-end implementation based on ELINA
- https://github.com/eth-sri/eran

A new abstract domain combining floating point Polyhedra with Intervals:

\(n: \#\text{neurons} \), \(m: \#\text{constraints} \)

\(w_{\text{max}}: \text{max } \#\text{neurons in a layer} \), \(L: \#\text{layers} \)

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Polyhedra</th>
<th>Our domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affine</td>
<td>0((nm^2))</td>
<td>0((w_{\text{max}}^2L))</td>
</tr>
<tr>
<td>ReLU</td>
<td>0((\exp(n,m)))</td>
<td>0(1)</td>
</tr>
</tbody>
</table>

Verified robustness

(a) MNIST 6 \times 500 ReLU

(b) MNIST 6 \times 500 ReLU