
Safe and Robust Deep Learning

Mislav Balunović

Department of Computer Science

1



SafeAI @ ETH Zurich (safeai.ethz.ch)
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Publications:

S&P’18: AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation

NeurIPS’18: Fast and Effective Robustness Certification

POPL’19: An Abstract Domain for Certifying Neural Networks

ICLR’19: Boosting Robustness Certification of Neural Networks

ICML’18: Differentiable Abstract Interpretation for Provably Robust Neural Networks

ICML’19: DL2: Training and Querying Neural Network with Logic

Systems:

ERAN: Generic neural network verifier
https://github.com/eth-sri/eran/

DiffAI: System for training provably robust networks
https://github.com/eth-sri/diffai

DL2: System for training and querying networks with logical 
constraints
https://github.com/eth-sri/dl2

safeai.ethz.ch
https://github.com/eth-sri/eran/
https://github.com/eth-sri/diffai
https://github.com/eth-sri/dl2


Deep Learning Systems

https://www.amazon.com/

Amazon-Echo-And-Alexa-Devices

https://waymo.com/tech/

Self driving cars Voice assistantTranslation

https://translate.google.com
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https://www.amazon.com/Amazon-Echo-And-Alexa-Devices
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices
https://waymo.com/tech/
https://yekaliva.ai/


Attacks on Deep Learning

The self-driving car incorrectly 

decides to turn right on Input 2 

and crashes into the guardrail

DeepXplore: Automated Whitebox

Testing of Deep Learning Systems, 

SOSP’17 4



Attacks on Deep Learning

The self-driving car incorrectly 

decides to turn right on Input 2 

and crashes into the guardrail

DeepXplore: Automated Whitebox

Testing of Deep Learning Systems, 

SOSP’17

Adversarial Examples for Evaluating 

Reading Comprehension Systems, 

EMNLP’17 

The Ensemble model is fooled by 

the addition of an adversarial 

distracting sentence in blue. 
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Attacks on Deep Learning

Adding small noise to the input 

audio makes the network 

transcribe any arbitrary phrase 

Audio Adversarial Examples: 

Targeted Attacks on Speech-to-Text, 

ICML 2018

The self-driving car incorrectly 

decides to turn right on Input 2 

and crashes into the guardrail

DeepXplore: Automated Whitebox

Testing of Deep Learning Systems, 

SOSP’17

Adversarial Examples for Evaluating 

Reading Comprehension Systems, 

EMNLP’17 

The Ensemble model is fooled by 

the addition of an adversarial 

distracting sentence in blue. 
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Attacks based on intensity changes in images

𝐼𝑜

8
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Attacks based on intensity changes in images

𝐼𝑜

8

𝐼 = 𝐼𝑜 + 0.01

0
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Attacks based on intensity changes in images

𝐼𝑜

8

𝐼 = 𝐼𝑜 + 0.01

0

𝐿∞-norm: consider all images 𝐼 in the 𝜖-ball ℬ(𝐼0,∞)(𝜖) around 𝐼0 9

To verify absence of attack:



Attacks based on geometric transformations

𝐼𝑜
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Attacks based on geometric transformations

𝐼𝑜

7

𝐼 = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼𝑜,-35)

3
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Attacks based on geometric transformations

𝐼𝑜

7

𝐼 = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼𝑜,-35)

3

Consider all images 𝐼 obtained by applying geometric transformations to ℬ(𝐼0,∞)(𝜖)12

To verify absence of attack:



Attacks based on intensity changes to sound

13

“Stop”
𝑠𝑜



Attacks based on intensity changes to sound
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“Stop”

“Go”

𝑠𝑜

𝑠 = 𝑠𝑜
− 110 𝑑𝐵



Attacks based on intensity changes to sound
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“Stop”

“Go”

Consider all signals 𝑠 in the 𝜖-ball ℬ(𝑠0 ,∞)(𝜖) around 𝑠0

𝑠𝑜

𝑠 = 𝑠𝑜
− 110 𝑑𝐵

To verify absence of attack:



Neural Network Verification: Problem statement

Given:

Prove: for all I in R, 

prove f(I) satisfies S
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Image classification network f

Region R based on changes to pixel intensity

Region R based on geometric: e.g., rotation

Speech recognition network f

Region R based on added noise to audio signal

Aircraft collision avoidance network f

Region R based on input sensor values

Neural Network f,

Input Region R

Safety Property S

Example networks and regions:

Input Region R can contain an infinite number of inputs, thus enumeration is infeasible



Tries to find violating inputs

Like testing, no full guarantees

E.g. Goodfellow 2014, Carlini & Wagner 2016, Madry et al. 2017

Prove absence of violating inputs

Actual verification guarantees

E.g.: Reluplex [2017], Wong et al. 2018, AI2 [2018]

Experimental robustness Certified robustness

17

Experimental vs. Certified Robustness

In this talk we will focus on certified robustness



General Approaches to Network Verification
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Complete verifiers: exact but suffer from scalability issues:

SMT: Reluplex [CAV’17], MILP: MIPVerify [ICLR’19],

Splitting: Neurify [NeurIPS’18],…

Incomplete verifiers, trade-off precision for scalability:

Box/HBox [ICML'18], SDP [ICLR’18], Wong et.al. [ICML'18], FastLin

[ICML'18], Crown [NeurIPS'18],…

Key Challenge: scalable and precise automated verifier
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Based on Pixel

Intensity changes
Box

DeepZ

DeepPoly

RefineZono: MILP + DeepZ

ERAN verification framework

https://github.com/eth-sri/eran

K-Poly: MILP + DeepPoly

Yes

Fully connected

Convolutional

Residual

LSTM

ReLU

Sigmoid

Tanh

Maxpool

Neural Network

Sound w.r.t. floating point arithmetic

Extensible to other verification tasks

Possible sensor values
Aircraft

sensors

Safety Property 

GPUPoly

No

Based on Geometric

transformations: vector 

fields, rotations, etc.

Based on Audio processing

Input region

Network Verification with Eran

State-of-the-art complete and 

incomplete verification

https://github.com/eth-sri/eran
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Reluplex Neurify ERAN

> 32 hours 921 sec 227 sec

Aircraft collision avoidance system (ACAS)

Faster Complete Verification

𝝐 %verified Time (s)

0.03 66% 79 sec

CIFAR10 ResNet-34 

Scalable Incomplete Verification

Complete and Incomplete Verification with ERAN
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𝝐 %verified Time(s)

0.001 86 10 sec

Rotation between -30° and 30° on MNIST 

CNN with 4,804 neurons

𝝐 %verified Time (s)

-110 dB 90% 9 sec

LSTM with 64 hidden neurons

Geometric Verification

Geometric and Audio Verification with ERAN

Audio Verification



Example:  Analysis of a Toy Neural Network
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𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0

We want to prove that 𝑥11 > 𝑥12 for all values of 𝑥1, 𝑥2 in the input set



23

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0



24Complete verification with solvers often does not scale

𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0

Each 𝑥𝑗 = 𝐦𝐚𝐱(0, 𝑥𝑖) corresponds to

(𝑥𝑖 ≤ 0 and 𝑥𝑗 = 0) or

(𝑥𝑖 > 0 and 𝑥𝑗 = 𝑥𝑖)

Solver has to explore two paths per ReLU

resulting in exponential number of paths 
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...

C
er
ti
fi
ca
ti
o
n

Output constraint 𝜑𝑛

𝑥0 = 0
𝑥1 = 2.60+ 0.015𝜖0+ 0.023𝜖1+ 5.181𝜖2+⋯
𝑥2 = 4.63− 0.005𝜖0− 0.006𝜖1+ 0.023𝜖2+⋯
…

𝑥9 = 0.12− 0.125𝜖0+ 0.102𝜖1+ 3.012𝜖2+⋯
∀𝑖. 𝜖𝑖 ∈ [0,1]

Attacker region:

𝑥0 = 0
𝑥1 = 0.975+ 0.025𝜖1
𝑥2 = 0.125
…

𝑥784 = 0.938+ 0.062𝜖784
∀𝑖. 𝜖𝑖 ∈ [0,1]

All possible outputs

(before softmax)

Network Verification with ERAN: High Level Idea



𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0
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Box Approximation (scalable but imprecise)

[−1,1]

[−1,1]

[−2,2]

[−2,2]

[0,2]

[0,2]

[0,4]

[−2,2]

[0,4]

[0,2]

[1,7]

[0,2]



𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0
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Box Approximation (scalable but imprecise)

[−1,1]

[−1,1]

[−2,2]

[−2,2]

[0,2]

[0,2]

[0,4]

[−2,2]

[0,4]

[0,2]

[1,7]

[0,2]

Verification with the Box domain fails as it cannot capture relational information



DeepPoly Approximation [POPL’19]

Shape:  associate a lower polyhedral 𝑎𝑖
≤ and an upper polyhedral 𝑎𝑖

≥ constraint with each 𝑥𝑖

Key points:

Captures affine transformation precisely

Custom approximations for ReLU, sigmoid, tanh, and maxpool activations

Less precise but more scalable than general Polyhedra

28



𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0

29

Example: Verification using DeepPoly



ReLU activation

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

Pointwise transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖
𝑖𝑓 𝑢𝑖 ≤ 0, 𝑎𝑗

≤ = 𝑎𝑗
≥ = 0, 𝑙𝑗 = 𝑢𝑗 = 0,

𝑖𝑓 𝑙𝑖 ≥ 0, 𝑎𝑗
≤ = 𝑎𝑗

≥ = 𝑥𝑖, 𝑙𝑗 = 𝑙𝑖, 𝑢𝑗 = 𝑢𝑖 ,

𝑖𝑓 𝑙𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 > 0

30



ReLU activation

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

Pointwise transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖
𝑖𝑓 𝑢𝑖 ≤ 0, 𝑎𝑗

≤ = 𝑎𝑗
≥ = 0, 𝑙𝑗 = 𝑢𝑗 = 0,

𝑖𝑓 𝑙𝑖 ≥ 0, 𝑎𝑗
≤ = 𝑎𝑗

≥ = 𝑥𝑖, 𝑙𝑗 = 𝑙𝑖, 𝑢𝑗 = 𝑢𝑖 ,

𝑖𝑓 𝑙𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 > 0

choose (b) or (c) depending on the area
31



ReLU activation

𝑥3 𝑥5

𝑥4 𝑥6

max(0, 𝑥3)

max(0, 𝑥4)

Pointwise transformer for 𝑥𝑗 ≔ 𝑚𝑎𝑥(0, 𝑥𝑖) that uses 𝑙𝑖 , 𝑢𝑖
𝑖𝑓 𝑢𝑖 ≤ 0, 𝑎𝑗

≤ = 𝑎𝑗
≥ = 0, 𝑙𝑗 = 𝑢𝑗 = 0,

𝑖𝑓 𝑙𝑖 ≥ 0, 𝑎𝑗
≤ = 𝑎𝑗

≥ = 𝑥𝑖, 𝑙𝑗 = 𝑙𝑖, 𝑢𝑗 = 𝑢𝑖 ,

𝑖𝑓 𝑙𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 > 0

choose (b) or (c) depending on the area

Constant runtime 32



Affine transformation after ReLU

𝑥5

𝑥7

𝑥6

0

1

1

33



Affine transformation after ReLU

𝑥5

𝑥7

𝑥6

0

1

1

Imprecise upper bound 𝑢7 by substituting 𝑢5 , 𝑢6 for 𝑥5 and 𝑥6 in 𝑎7
≥

34



Backsubstitution

𝑥5

𝑥7

𝑥6

0

1

1
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Backsubstitution

𝑥5

𝑥7

𝑥6

0

1

1

36



𝑥5

𝑥7

𝑥6

0

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1

37



Affine transformation with backsubstitution is pointwise, complexity: Ο 𝑤𝑚𝑎𝑥
2 𝐿

𝑥5

𝑥7

𝑥6

0

1

1
𝑥3

𝑥4

max(0, 𝑥3)

max(0, 𝑥4)

0

0

𝑥1

𝑥2

1

−1

1

1

38



𝑥1 𝑥3 𝑥5 𝑥11

𝑥2

𝑥7 𝑥9

𝑥4 𝑥6 𝑥8 𝑥10 𝑥12

1 max(0, 𝑥3) 1 1

−1 −1 1

max(0, 𝑥7)

max(0, 𝑥4) max(0, 𝑥8)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0

39



Checking for robustness

Prove 𝑥11 − 𝑥12 > 0 for all inputs in −1,1 × [−1,1]

Computing lower bound for 𝑥11 − 𝑥12 using 𝑙11, 𝑢12 gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for 𝑥11 − 𝑥12 , proving robustness 40



Medium sized benchmarks

41

Dataset Model Type #Neurons #Layers Defense

MNIST 6 × 100 feedforward 610 6 None

6 × 200 feedforward 1,210 6 None

9 × 200 feedforward 1,810 9 None

ConvSmall convolutional 3,604 3 DiffAI

ConvBig convolutional 34,688 6 DiffAI

ConvSuper convolutional 88,500 6 DiffAI

CIFAR10 ConvSmall convolutional 4,852 3 DiffAI



Results on medium sized benchmarks

42

Dataset Model 𝝐 DeepZ DeepPoly RefineZono

%

✅

time(s) %

✅

time(s) %✅ time(s)

MNIST 6 × 100 0.02 31 0.6 47 0.2 67 194

6 × 200 0.015 13 1.8 32 0.5 39 567

9 × 200 0.015 12 3.7 30 0.9 38 826

ConvSmall 0.12 7 1.4 13 6.0 21 748

ConvBig 0.2 79 7 78 61 80 193

ConvSuper 0.1 97 133 97 400 97 665

CIFAR10 ConvSmall 0.03 17 5.8 21 20 21 550



Large benchmarks
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Dataset Model Type #Neurons #Layers Defense

CIFAR10 ResNetTiny residual 311K 12 PGD

ResNet18 residual 558K 18 PGD

ResNetTiny residual 311K 12 DiffAI

SkipNet18 residual 558K 18 DiffAI

ResNet18 residual 558K 18 DiffAI

ResNet34 residual 967K 34 DiffAI



Results on large benchmarks

44

Model Training 𝝐 Hbox [ICML’18] GPUPoly

%✅ time(s) %

✅

time(s)

ResNetTiny PGD 0.002 0 0.3 82 30

ResNet18 PGD 0.002 0 6.8 77 1400

ResNetTiny DiffAI 0.03 64 0.3 69 7.6

SkipNet18 DiffAI 0.03 77 6.1 83 57

ResNet18 DiffAI 0.03 67 6.3 72 37

ResNet34 DiffAI 0.03 59 16 66 79
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Based on Pixel

Intensity changes
Box

DeepZ

DeepPoly

RefineZono: MILP + DeepZ

ERAN verification framework

https://github.com/eth-sri/eran

K-Poly: MILP + DeepPoly

Yes

Fully connected

Convolutional

Residual

LSTM

ReLU

Sigmoid

Tanh

Maxpool

Neural Network

Sound w.r.t. floating point arithmetic

Extensible to other verification tasks

Possible sensor values
Aircraft

sensors

Safety Property

GPUPoly

No

Based on Geometric

transformations: vector 

fields, rotations, etc.

Based on Audio processing

Input region

Network Verification with Eran

State-of-the-art complete and 

incomplete verification

https://github.com/eth-sri/eran


In-progress work in verification/training (sample)

46

Verification Precision: More precise convex relaxations by considering multiple ReLUs

Verification Scalability: GPU-based custom abstract domains for handling large nets

Theory: Proof on Existence of Accurate and Provable Networks with Box

Provable Training: Procedure for training Provable and Accurate Networks

Applications: e.g., reinforcement learning, geometric, audio, sensors



Conclusion
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Based on Pixel
Intensity changes

Box

DeepZ

DeepPoly

RefineZono: MILP + DeepZ

ERAN verification framework
https://github.com/eth-sri/eran

K-Poly: MILP + DeepPoly

Yes

Fully connected
Convolutional

Residual
LSTM

ReLU
Sigmoid

Tanh
Maxpool

Neural Network

Sound w.r.t. floating point arithmetic

Extensible to other verification tasks

Possible sensor values

Air
cra

ft
se

ns

ors

Safety Property

GPUPoly

No

Based on Geometric
transformations: vector 

fields, rotations, etc.

Based on Audio processing

Input region

State-of-the-art complete and 
incomplete verification

Neural Network Verification FrameworkAttacks on Deep Learning

safeai.ethz.chMore at:

https://github.com/eth-sri/eran
http://safeai.ethz.ch/

