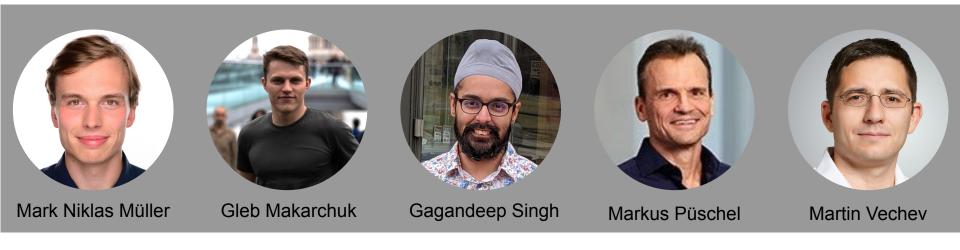
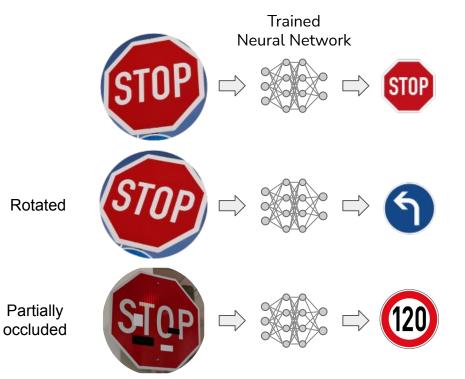
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations





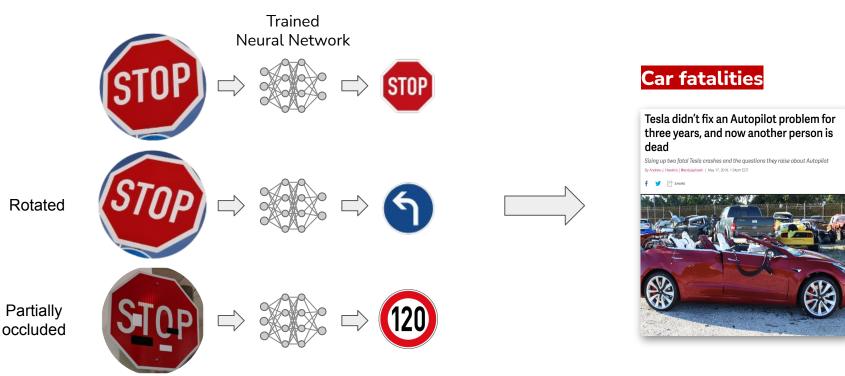
Standard accuracy exceeding human performance

Neural Networks Lack Trustworthiness

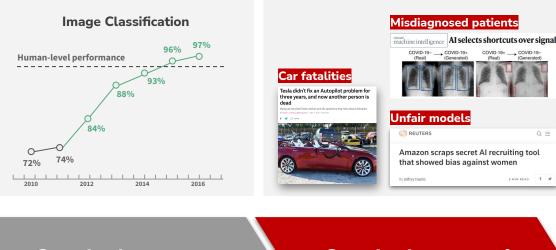


Fischer, Marc, Maximilian Baader, and Martin Vechev. "Certified defense to image transformations via randomized smoothing." [CoRR 2019] Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." [IEEE 2018]

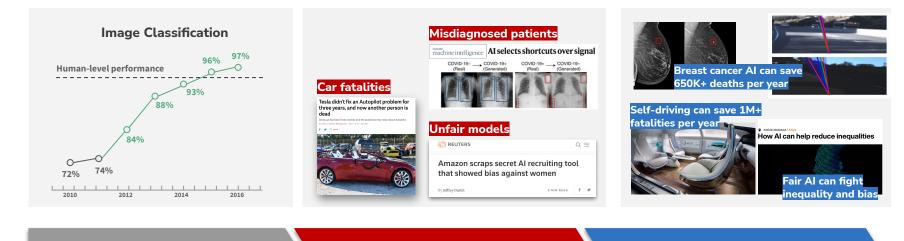
Neural Networks Lack Trustworthiness



Fischer, Marc, Maximilian Baader, and Martin Vechev. "Certified defense to image transformations via randomized smoothing." [CoRR 2019] Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." [IEEE 2018]



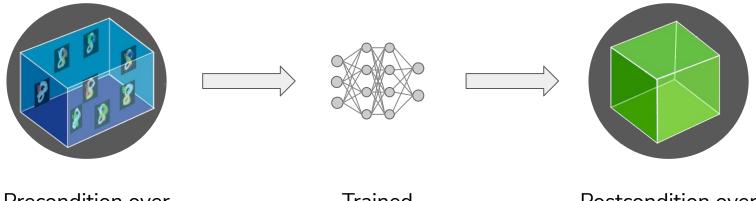
Standard accuracy exceeding human performance Standard accuracy is not enough for real-world AI



Standard accuracy exceeding human performance Standard accuracy is not enough for real-world AI

We need certifiably trustworthy AI

Problem Statement: Neural Network Verification

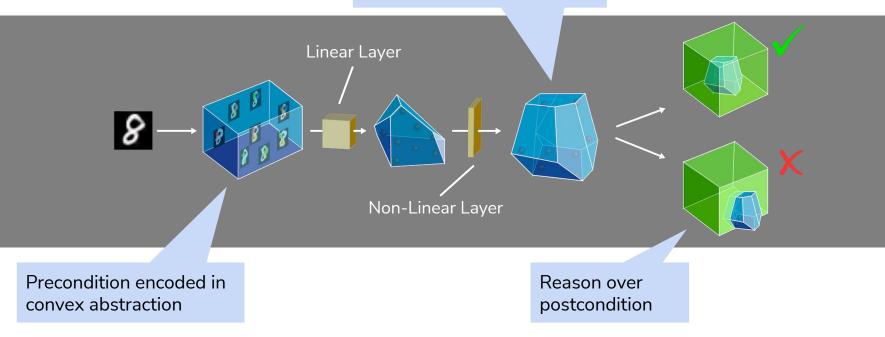


Precondition over Network Inputs Trained Neural Network Postcondition over Network Outputs

Prove that postcondition holds for all inputs satisfying the precondition

Neural Network Verification via Abstract Interpretation

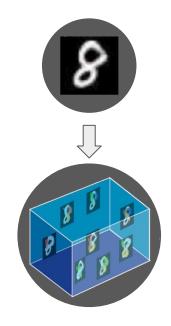
Convex over-approximation of network output



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

Robustness to ℓ_{∞} -norm bounded perturbations:

 $y = \arg \max_i h(\mathbf{x})_i = \arg \max_i h(\mathbf{x}')_i, \quad \forall \mathbf{x}' \in B^{\epsilon}(\mathbf{x})$

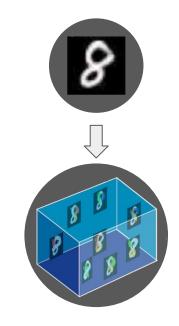


Robustness to ℓ_{∞} -norm bounded perturbations:

 $y = \arg \max_i h(\mathbf{x})_i = \arg \max_i h(\mathbf{x}')_i, \quad \forall \mathbf{x}' \in B^{\epsilon}(\mathbf{x})$

Equivalently:

$$\min_{x'\in B^{\epsilon}(\mathbf{x})} h(\mathbf{x}')_y - h(\mathbf{x}')_i > 0, \quad \forall i \neq y$$

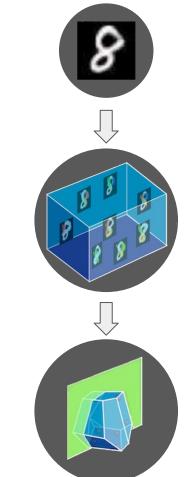


Robustness to ℓ_{∞} -norm bounded perturbations:

 $y = \arg \max_i h(\mathbf{x})_i = \arg \max_i h(\mathbf{x}')_i, \quad \forall \mathbf{x}' \in B^{\epsilon}(\mathbf{x})$

Equivalently:

$$\underline{h(\mathbf{x}')_y - h(\mathbf{x}')_i} > 0, \quad \forall i \neq y$$



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

Robustness to ℓ_{∞} -norm bounded perturbations:

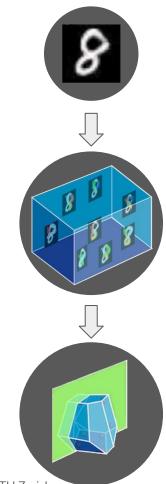
 $y = \arg \max_i h(\mathbf{x})_i = \arg \max_i h(\mathbf{x}')_i, \quad \forall \mathbf{x}' \in B^{\epsilon}(\mathbf{x})$

Equivalently:

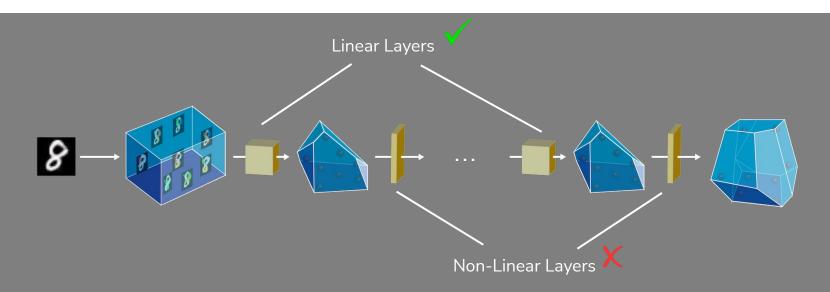
$$\underline{h(\mathbf{x}')_y - h(\mathbf{x}')_i > 0}, \quad \forall i \neq y$$

Encode polyhedral abstraction as LP

PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich



Main Challenge

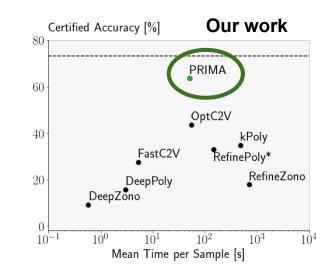


Main Challenge: Abstracting Non-Linear Activations

The Neural Network Verification Race

Reluplex [Katz et al. ICCAV 2017] IBP [Gowal et al. CoRR2018] Al2 [Gehr et. al IEEE S&P 2018] RefinePoly [Singh et al. ICLR 2018] SDP-cert [Raghunathan et al. NeurIPS 2018] DeepZ [Singh et al. NeurIPS 2018] CROWN [Zhang et al. NeurIPS 2018] DeepPoly [Singh et al. POPL 2019] MIPVerify [Tjeng et al. ICLR 2019] k-Poly [Singh et al. NeurIPS 2019] hBox [Mirman et al. CoRR 2019] Marabou [Katz et al. ICCAV 2019] BaB [Bunel JMLR 2020] OptC2V [Tjandraatmadja et al. NeurIPS 2020] GNN BaB [Jaeckle arXiv 2021] Fast and Complete [Xu et al. ICLR2021] Beta-Crown [Wang et al. NeurIPS 2021] DeepSplit [Henricksen IJCAI2021]

~200 papers / year



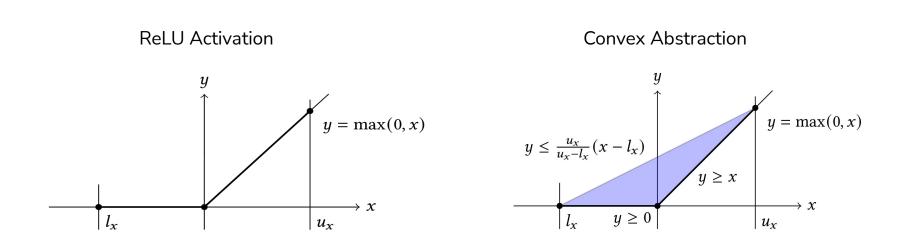
PRIMA: Precise abstractions at reasonable runtime

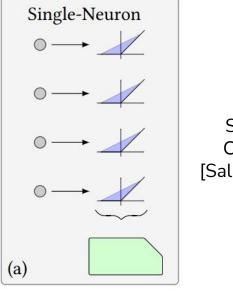
Abstracting Non-Linearities

1. Key Contribution: Efficient Multi-Neuron Abstractions

2. Key Contribution: Approximate Convex Hull Computation

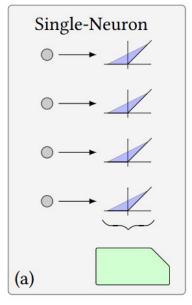
Empirical Evaluation



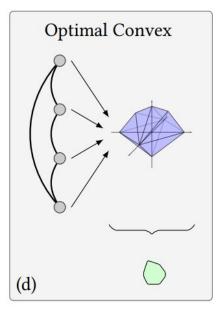


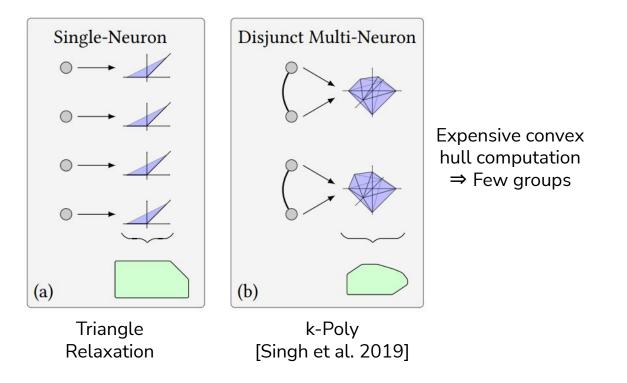
Single Neuron Convex Barrier [Salman et al. 2019]

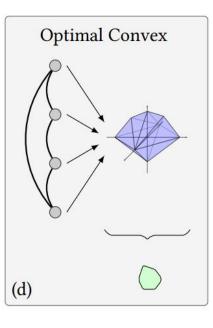
Triangle Relaxation

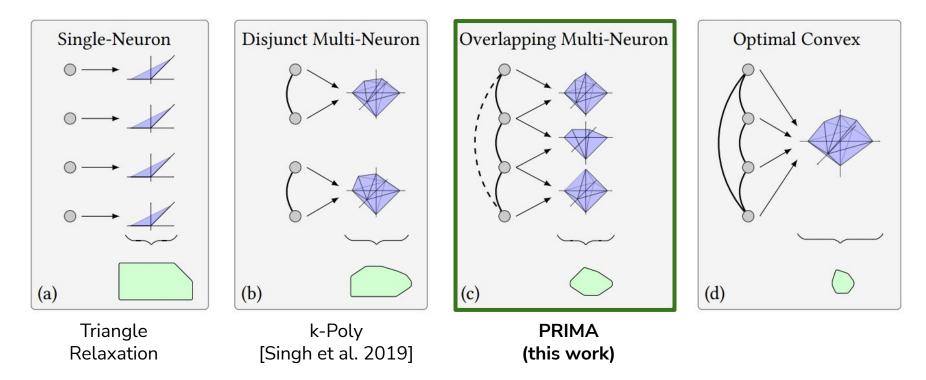


Exponential complexity in number of neurons ⇒ Intractable









PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

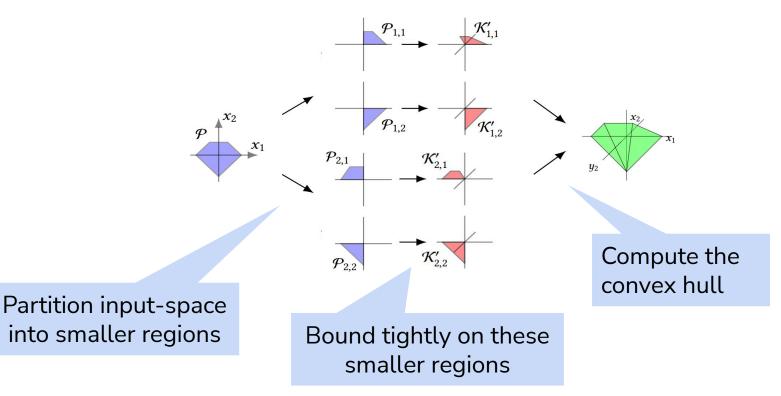
Abstracting Non-Linearities

1. Key Contribution: Efficient Multi-Neuron Abstractions

2. Key Contribution: Approximate Convex Hull Computation

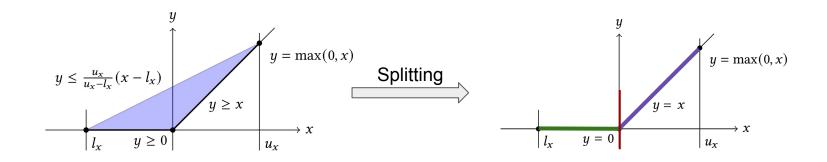
Empirical Evaluation

Abstracting Multiple Neurons Jointly



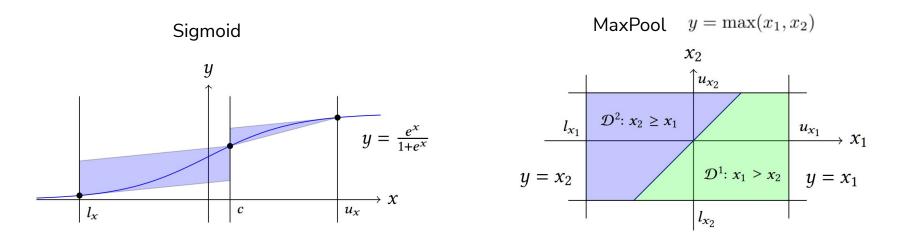
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

Multi-Neuron Abstractions for ReLU



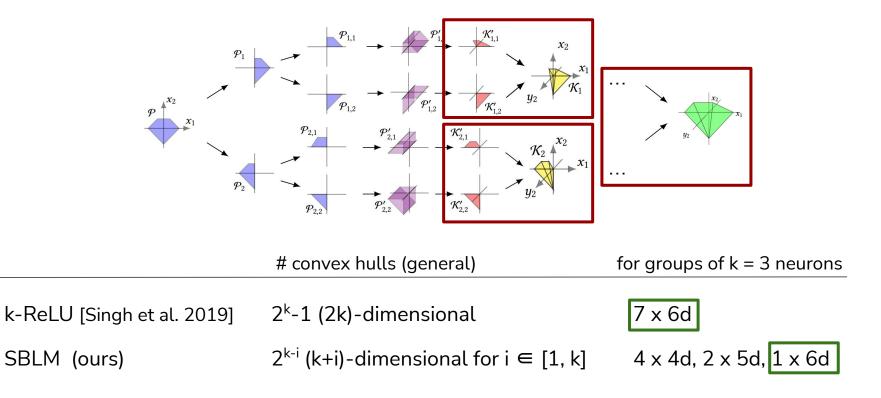
Multi-Neuron Abstractions Beyond ReLU

- Split into arbitrary regions
- Bound tightly on these regions



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

The Split Bound Lift Method (SBLM)



Abstracting Non-Linearities

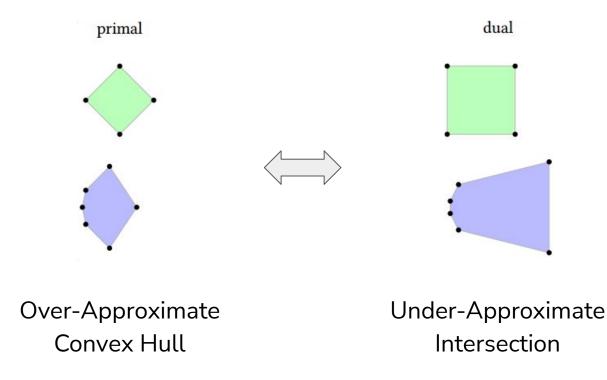
1. Key Contribution: Efficient Multi-Neuron Abstractions

2. Key Contribution: Approximate Convex Hull Computation

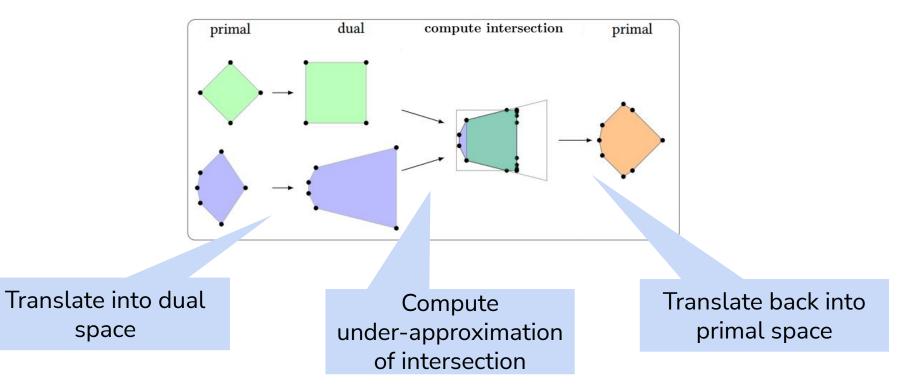
Empirical Evaluation

PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

Duals of Polyhedra



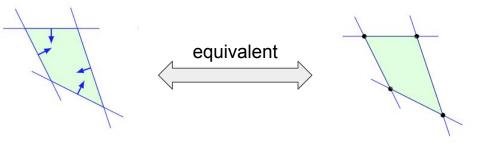
Convex Hull Computation



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

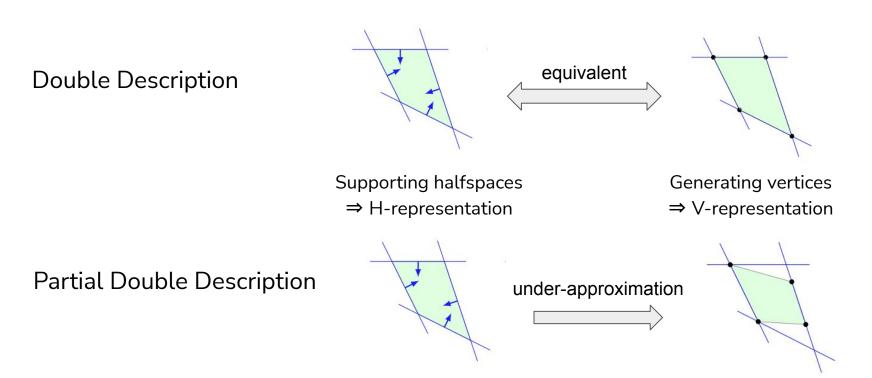
Polyhedra Representation

Double Description



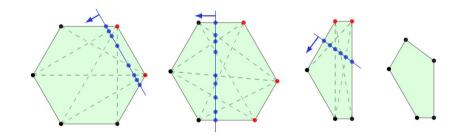
Supporting halfspaces \Rightarrow H-representation

Generating vertices ⇒ V-representation Polyhedra Representation



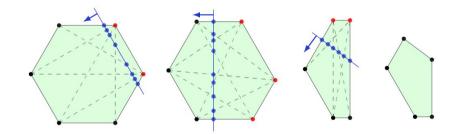
Batch Intersection

Sequential intersection (DDM)

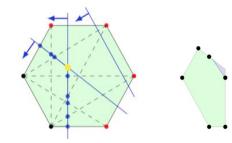


Batch Intersection

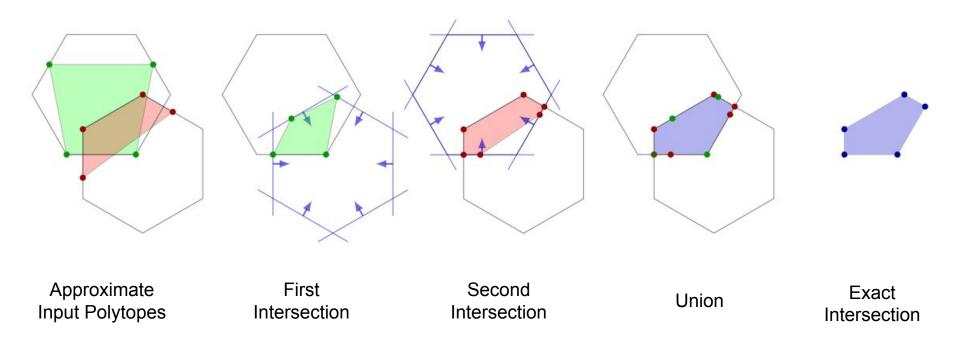
Sequential intersection (DDM)



Batch intersection (PDDM)

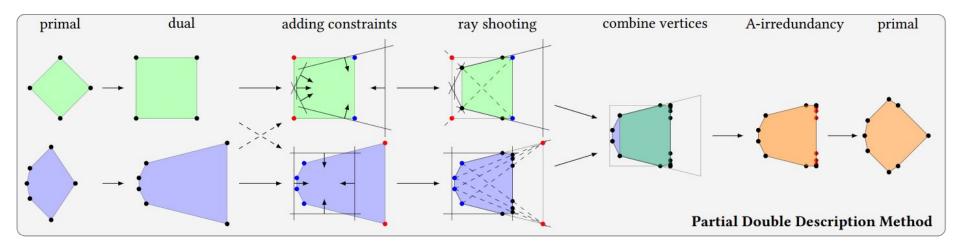


Boosting Precision



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

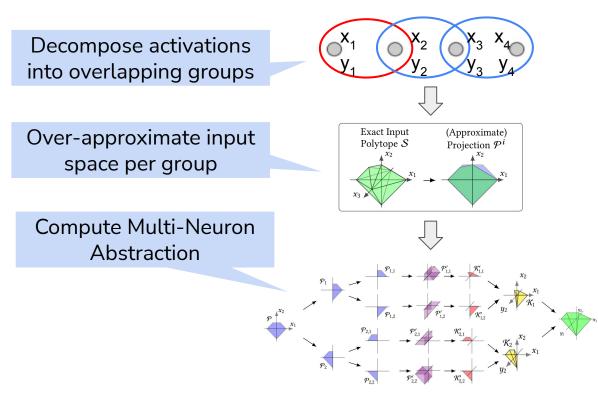
The Partial Double Description Method (PDDM)



PDDM : A general method for over-approximate convex hull

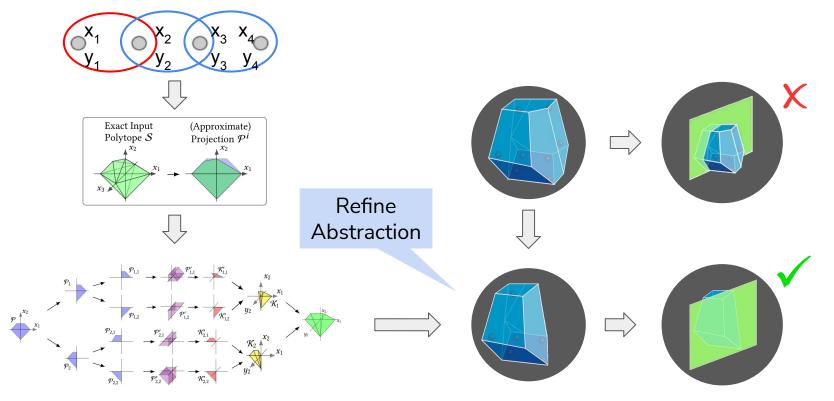
- Exact for small (\leq 3) dimensions
- Complexity: $O(n_v \cdot n_a^4 + n_a^2 \log(n_a^2))$ instead of $O(n_v \log(n_v) + n_v^{\lfloor d/2 \rfloor})$

Integrating Multi-Neuron Constraints in Certification



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

Integrating Multi-Neuron Constraints in Certification



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations – Mark Müller – ETH Zurich

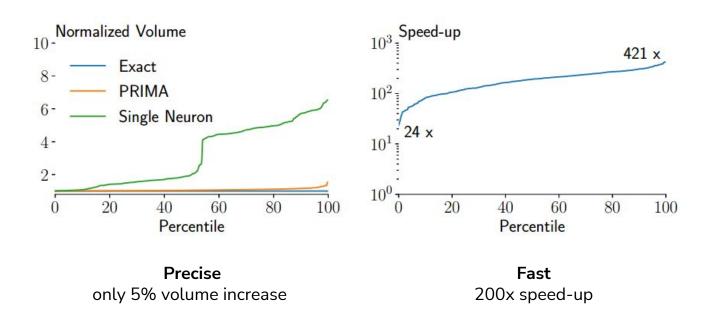
Abstracting Non-Linearities

1. Key Contribution: Efficient Multi-Neuron Abstractions

2. Key Contribution: Approximate Convex Hull Computation

Empirical Evaluation

Empirical Performance of Approximate Convex Hull



Verification Performance

Dataset	Model	Training	# Neurons	# Layers	Accuracy	ε	n_s	KPOLY		OptC2V †		Prima (ours)		# Upper Bound
								# Ver	Time	# Ver	Time	# Ver	Time	
MNIST	5×100	NOR	510	5	960	0.026	100	441	307	429	137	510	159	842
	8×100	NOR	810	8	947	0.026	100	369	171	384	759	428	301	820
	5×200	NOR	1010	5	972	0.015	50	574	187	601	403	690	224	901
	8×200	NOR	1610	8	950	0.015	50	506	464	528	3451	612	395	911
	ConvSmall	NOR	3604	3	980	0.120	100	347	477	436	55	640	51	733
	ConvBig	DiffAI	48064	6	929	0.300	100	736	40	771	102	775	5.5	790
CIFAR10	ConvSmall	PGD	4852	3	630	2/255	100	399	86	398	105	458	16	481
	ConvBig	PGD	62464	6	631	2/255	100	459	346	n/a	n/a^{\dagger}	482	128	550
	ResNet	Wong	107496	10	290	8/255	50	245	91	n/a^{\dagger}	n/a^{\dagger}	248	1.9	248

[†]The OptC2V [Tjandraatmadja et al. 2020] code has not been released; we report their runtimes and results where available.

Verification Performance

Dataset	Model	Training	# Neurons	# Layers	Accuracy	ε	n_s	KPOLY		OptC2V †		Prima (ours)		# Upper Bound
								# Ver	Time	# Ver	Time	# Ver	Time	
MNIST	5×100	NOR	510	5	960	0.026	100	441	307	429	137	510	159	842
	8×100	NOR	810	8	947	0.026	100	369	171	384	759	428	301	820
	5×200	NOR	1010	5	972	0.015	50	574	187	601	403	690	224	901
	8×200	NOR	1610	8	950	0.015	50	506	464	528	3451	612	395	911
	ConvSmall	NOR	3604	3	980	0.120	100	347	477	436	55	640	51	733
	ConvBig	DiffAI	48064	6	929	0.300	100	736	40	771	102	775	5.5	790
CIFAR10	ConvSmall	PGD	4852	3	630	2/255	100	399	86	398	105	458	16	481
	ConvBig	PGD	62464	6	631	2/255	100	459	346	n/a^{\dagger}	n/a^{\dagger}	482	128	550
	ResNet	Wong	107496	10	290	8/255	50	245	91	n/a^{\dagger}	n/a^{\dagger}	248	1.9	248

[†]The OptC2V [Tjandraatmadja et al. 2020] code has not been released; we report their runtimes and results where available.

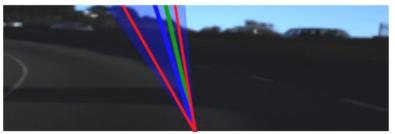
Verification Performance

Dataset	Model	Training	# Neurons	# Layers	Accuracy	ε	n_s	KPOLY		OptC2V †		Prima (ours)		# Upper Bound
								# Ver	Time	# Ver	Time	# Ver	Time	
MNIST	5×100	NOR	510	5	960	0.026	100	441	307	429	137	510	159	842
	8×100	NOR	810	8	947	0.026	100	369	171	384	759	428	301	820
	5×200	NOR	1010	5	972	0.015	50	574	187	601	403	690	224	901
	8×200	NOR	1 6 1 0	8	950	0.015	50	506	464	528	3451	612	395	911
	ConvSmall	NOR	3604	3	980	0.120	100	347	477	436	55	640	51	733
	ConvBig	DiffAI	48064	6	929	0.300	100	736	40	771	102	775	5.5	790
CIFAR10	ConvSmall	PGD	4852	3	630	2/255	100	399	86	398	105	458	16	481
	ConvBig	PGD	62464	6	631	2/255	100	459	346	n/a^{\dagger}	n/a^{\dagger}	482	128	550
	ResNet	Wong	107496	10	290	8/255	50	245	91	n/a^{\dagger}	n/a^{\dagger}	248	1.9	248

[†]The OptC2V [Tjandraatmadja et al. 2020] code has not been released; we report their runtimes and results where available.

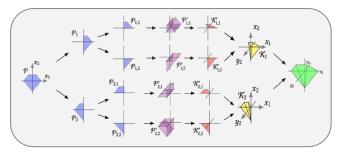
Application: Verification for Autonomous Driving

- Udacity autonomous driving dataset for **steering angle prediction**
- CNN architecture from NVIDIA
- 107k Neurons and 27M connections in 8 layers
- Input size (3 x 66 x 200)
- ℓ_{∞} -norm bounded perturbations with $\epsilon = 2/255$
- 260s per image

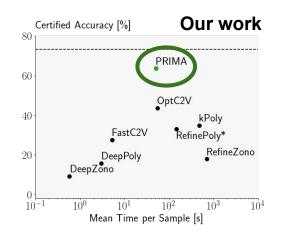


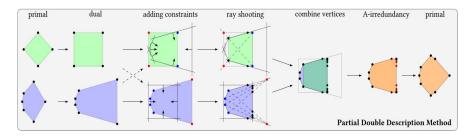
Green: target Blue: certified region with PRIMA Red: empirical bounds

Summary



SBLM – General multi-neuron abstractions





PDDM – General convex hull approximation

Thank you for your attention!

Questions? – Contact us: <u>mark.mueller@inf.ethz.ch</u>

Code available on GitHub: https://github.com/eth-sri/eran