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Information	Flow	Vulnerabilities	in	Mobile	Apps
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Confidential	data

‘ OR 1 = 1

Untrusted	inputs

Manual	analysis	of	information	flow	threats	is	challenging

App
Attacker



Existing	Solutions
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Sink

Source
Detection
§ TaintDroid	(dynamic)
§ FlowDroid	(static)

Enforcement
§ AppFence
(masking	&	blocking)

Raise	an	alarm	when	
bad	flow	is	detected

Mask/block	
bad	flows



Existing	Solutions
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Sink

Source
Detection
§ TaintDroid	(dynamic)
§ FlowDroid	(static)

Enforcement
§ AppFence
(masking	&	blocking)

Mask/block	
bad	flows

However,	correct security	enforcement	depends	on	the	app’s	functionality



The	Lack	of	Functionality-Awareness
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Normal	Behavior App	secured	with	AppFence



The	Lack	of	Functionality-Awareness
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Normal	Behavior App	secured	with	AppFence

What	causes	these	
side	effects	and	crashes?
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Illustrative	Example



Illustrative	Example
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String imsi = getSubscriberId(); // source

// imsi	↦	"310152843957264"

HttpGet request = new HttpGet("analytics.com?id=" + imsi);

// request.uri	↦	"analytics.com?id=310152843957264"

httpClient.execute(req); // sink

Source	returns	the	
International	Mobile	

Subscriber	Identity	(IMSI)

The	IMSI	flows	into	a	
sink as	part	of	the	URI

310152843957264



Illustrative	Example
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String imsi = getSubscriberId(); // source

// imsi	↦	"310152843957264"

HttpGet request = new HttpGet("analytics.com?id=" + imsi);

// request.uri	↦	"analytics.com?id=310152843957264"

httpClient.execute(req); // sink

Source	returns	the	
International	Mobile	

Subscriber	Identity	(IMSI)

310152843957264

How	can	we	correctly	anonymize	the	URI	that	contains	the	IMSI?



Common	Functionality	Constraints
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Generic	constraint
“Must	abide	URI	format”

Must	not	modify	
trusted	parts

App-specific	constraint
“Keep	first	six	digits	intact”

request.uri = "XYZ"

request.uri = "analytics.com?id=000000000000000"

request.uri = "analytics.com?id=310152000000000"

request.uri	↦	"analytics.com?id=310152843957264"

Incorrect

Correct
Incorrect

request.uri = "xyz.com?id=XYZ" Incorrect
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How	can	we	enforce	security	while	satisfying	
such	functionality	constraints?



Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)
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Sink

Source

Safe	values
synthesizer

Functionality
Constraints

Synthesize	constraint-
compliant	value

Capture	generic	and	
app-specific	constraints



Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)
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Sink

Source

Safe	values
synthesizer

Functionality
Constraints

Capture	generic	and	
app-specific	constraints

App	secured	with	FASE



Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)
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Sink

Source Functionality
Constraints

Safe	values
synthesizer



Fine-Grained	Data	Flow	Tracking
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String imsi = getSubscriberId(); // source (IMSI)
// imsi	↦	"310152843957264"
HttpGet request = new HttpGet("analytics.com?id=" + imsi);
// request.uri	↦	"analytics.com?id=310152843957264"

Character-level	Tracking	for	Strings

Value-based	Tracking	for	Primitives Each	character	
is	mapped	to	
label												aIMSILocation l = getLastKnownLocation(GPS);

// l.lat	↦	37.3876, l.lon	↦	122.0575
Each	value	is	mapped	
to	label																aLocation



Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)
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Sink

Source Functionality
Constraints

Safe	values
synthesizer



Two	Kinds	of	Functionality	Constraints
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Generic
§ Specified	once	for	all	apps
§ Capture	sink	pre-conditions

Example:	“URI	strings	must	be	valid”
<Uri>   ::= “http” “s”? “://” 

<Chars> “.” <Dom> <Args>
<Chars> ::= [a-zA-Z0-9]+

<Dom>   ::= “com” | “net” | ...

Application-specific
§ Specified	by	developers
§ Captured	in	a	designated	DSL

Example:	“First	6	chars	of	IMSI	must	be	kept
intact	when	sent	to	analytics.com”

if uri.startsWith(“analytics.com”)
constrain uri<     > 
to val.substr(0,6).[0-9]9

IMSI



Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)
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Sink

Source Functionality
Constraints

Safe	values
synthesizer



Synthesizer
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Generic	constraint
<Uri> ::= [a-zA-Z0-9]+ . <Dom>

App-specific	constraint
if uri.startsWith(“analytics.com”)
constrain uri<     > 
to val.substr(0,6).[0-9]9

Labeled	string
"analytics.com?id=                "

Derived	regular	expression
"analytics.com?id=310152".[0-9]9

310152843957264

IMSI

Constraint-compliant	string
"analytics.com?id=31015200000000"
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Implementation	&	Experiments



FASE	System	Implementation
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Data	Flow	Tracking
§ Instruments	Android	Libraries	(String,	StringBuilder,	...)	as	well	as	

sources	and	sinks	(>10K)
§ Efficiency	achieved	by	locality-aware	memory	allocation	for	labels

App-level	Instrumentation
§ Rewrites	source	and	sink	calls	to	invoke	synthesizer

Synthesizer
§ Uses	the	ACLA	framework	for	analysis	context-free	and	regular	

languages
§ Efficiency	achieved	by	combination	of	caching	and	short-circuiting	

heuristics



Experiments
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Benchmark	Applications
§ 20	apps	used	in	prior	studies
§ On	average,	these	apps	have	500	source/sink	call	
sites	and	10	security-relevant	flows

Robustness
Can	the	FASE	system	secure	apps	while	preserving	functionality?

Overhead
What	is	the	overhead	caused	by	the	FASE	system?



Robustness	Experiment
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Coarse
Tracking

No
Constraints

Generic
Constraints

FASE
System

Fine-grained	
Tracking

Generic	
Constraints

App-specific
Constraints



Robustness	Experiment
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Coarse
Tracking

No
Constraints

Generic
Constraints

FASE
System

0

4

8

#	of	applications

Crash

Major	side	effects

Minor	side	effects

No	crashes
Only	1	app	shows	
a	minor	side	effect

The	FASE	system	secures	apps	in	a	robust	way
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Overhead	Experiment

Applications
0

1

2

3

Task	completion	time	(in	seconds)
Stock	Android	device

With	FASE

Roughly	10%	overhead



Summary
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Existing	enforcement	
solutions	often	break

functionality

Data	Flow	Tracking

Sink

Source

Safe	values
synthesizer

Functionality
Constraints

Functionality-aware	
security	enforcement

Coarse	
Tracking

FASE	
System

Robust security	
enforcement	with	
low	overhead


