
Petar Tsankov
ETH	Zurich

Marco	Pistoia
IBM	T.J.	Watson	
Research	Center

Omer	Tripp
Google	Inc.

Martin	Vechev
ETH	Zurich

Pietro	Ferrara
Julia

Functionality-Aware
Security	Enforcement

FASE:

Information	Flow	Vulnerabilities	in	Mobile	Apps

2

Confidential	data

‘ OR 1 = 1

Untrusted	inputs

Manual	analysis	of	information	flow	threats	is	challenging

App
Attacker

Existing	Solutions

3

Sink

Source
Detection
§ TaintDroid	(dynamic)
§ FlowDroid	(static)

Enforcement
§ AppFence
(masking	&	blocking)

Raise	an	alarm	when	
bad	flow	is	detected

Mask/block	
bad	flows

Existing	Solutions

4

Sink

Source
Detection
§ TaintDroid	(dynamic)
§ FlowDroid	(static)

Enforcement
§ AppFence
(masking	&	blocking)

Mask/block	
bad	flows

However,	correct security	enforcement	depends	on	the	app’s	functionality

The	Lack	of	Functionality-Awareness

5

Normal	Behavior App	secured	with	AppFence

The	Lack	of	Functionality-Awareness

6

Normal	Behavior App	secured	with	AppFence

What	causes	these	
side	effects	and	crashes?

7

Illustrative	Example

Illustrative	Example

8

String imsi = getSubscriberId(); // source

// imsi	↦	"310152843957264"

HttpGet request = new HttpGet("analytics.com?id=" + imsi);

// request.uri	↦	"analytics.com?id=310152843957264"

httpClient.execute(req); // sink

Source	returns	the	
International	Mobile	

Subscriber	Identity	(IMSI)

The	IMSI	flows	into	a	
sink as	part	of	the	URI

310152843957264

Illustrative	Example

9

String imsi = getSubscriberId(); // source

// imsi	↦	"310152843957264"

HttpGet request = new HttpGet("analytics.com?id=" + imsi);

// request.uri	↦	"analytics.com?id=310152843957264"

httpClient.execute(req); // sink

Source	returns	the	
International	Mobile	

Subscriber	Identity	(IMSI)

310152843957264

How	can	we	correctly	anonymize	the	URI	that	contains	the	IMSI?

Common	Functionality	Constraints

10

Generic	constraint
“Must	abide	URI	format”

Must	not	modify	
trusted	parts

App-specific	constraint
“Keep	first	six	digits	intact”

request.uri = "XYZ"

request.uri = "analytics.com?id=000000000000000"

request.uri = "analytics.com?id=310152000000000"

request.uri	↦	"analytics.com?id=310152843957264"

Incorrect

Correct
Incorrect

request.uri = "xyz.com?id=XYZ" Incorrect

11

How	can	we	enforce	security	while	satisfying	
such	functionality	constraints?

Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)

12

Sink

Source

Safe	values
synthesizer

Functionality
Constraints

Synthesize	constraint-
compliant	value

Capture	generic	and	
app-specific	constraints

Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)

13

Sink

Source

Safe	values
synthesizer

Functionality
Constraints

Capture	generic	and	
app-specific	constraints

App	secured	with	FASE

Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)

14

Sink

Source Functionality
Constraints

Safe	values
synthesizer

Fine-Grained	Data	Flow	Tracking

15

String imsi = getSubscriberId(); // source (IMSI)
// imsi	↦	"310152843957264"
HttpGet request = new HttpGet("analytics.com?id=" + imsi);
// request.uri	↦	"analytics.com?id=310152843957264"

Character-level	Tracking	for	Strings

Value-based	Tracking	for	Primitives Each	character	
is	mapped	to	
label												aIMSILocation l = getLastKnownLocation(GPS);

// l.lat	↦	37.3876, l.lon	↦	122.0575
Each	value	is	mapped	
to	label																aLocation

Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)

16

Sink

Source Functionality
Constraints

Safe	values
synthesizer

Two	Kinds	of	Functionality	Constraints

17

Generic
§ Specified	once	for	all	apps
§ Capture	sink	pre-conditions

Example:	“URI	strings	must	be	valid”
<Uri> ::= “http” “s”? “://”

<Chars> “.” <Dom> <Args>
<Chars> ::= [a-zA-Z0-9]+

<Dom> ::= “com” | “net” | ...

Application-specific
§ Specified	by	developers
§ Captured	in	a	designated	DSL

Example:	“First	6	chars	of	IMSI	must	be	kept
intact	when	sent	to	analytics.com”

if uri.startsWith(“analytics.com”)
constrain uri< >
to val.substr(0,6).[0-9]9

IMSI

Fine-grained	Data	Flow	
Tracking

Functionality-Aware	Security	Enforcement	(FASE)

18

Sink

Source Functionality
Constraints

Safe	values
synthesizer

Synthesizer

19

Generic	constraint
<Uri> ::= [a-zA-Z0-9]+ . <Dom>

App-specific	constraint
if uri.startsWith(“analytics.com”)
constrain uri< >
to val.substr(0,6).[0-9]9

Labeled	string
"analytics.com?id= "

Derived	regular	expression
"analytics.com?id=310152".[0-9]9

310152843957264

IMSI

Constraint-compliant	string
"analytics.com?id=31015200000000"

20

Implementation	&	Experiments

FASE	System	Implementation

21

Data	Flow	Tracking
§ Instruments	Android	Libraries	(String,	StringBuilder,	...)	as	well	as	

sources	and	sinks	(>10K)
§ Efficiency	achieved	by	locality-aware	memory	allocation	for	labels

App-level	Instrumentation
§ Rewrites	source	and	sink	calls	to	invoke	synthesizer

Synthesizer
§ Uses	the	ACLA	framework	for	analysis	context-free	and	regular	

languages
§ Efficiency	achieved	by	combination	of	caching	and	short-circuiting	

heuristics

Experiments

22

Benchmark	Applications
§ 20	apps	used	in	prior	studies
§ On	average,	these	apps	have	500	source/sink	call	
sites	and	10	security-relevant	flows

Robustness
Can	the	FASE	system	secure	apps	while	preserving	functionality?

Overhead
What	is	the	overhead	caused	by	the	FASE	system?

Robustness	Experiment

23

Coarse
Tracking

No
Constraints

Generic
Constraints

FASE
System

Fine-grained	
Tracking

Generic	
Constraints

App-specific
Constraints

Robustness	Experiment

24

Coarse
Tracking

No
Constraints

Generic
Constraints

FASE
System

0

4

8

#	of	applications

Crash

Major	side	effects

Minor	side	effects

No	crashes
Only	1	app	shows	
a	minor	side	effect

The	FASE	system	secures	apps	in	a	robust	way

25

Overhead	Experiment

Applications
0

1

2

3

Task	completion	time	(in	seconds)
Stock	Android	device

With	FASE

Roughly	10%	overhead

Summary

26

Existing	enforcement	
solutions	often	break

functionality

Data	Flow	Tracking

Sink

Source

Safe	values
synthesizer

Functionality
Constraints

Functionality-aware	
security	enforcement

Coarse	
Tracking

FASE	
System

Robust security	
enforcement	with	
low	overhead

