DP-Finder: Finding Differential Privacy Violations by Sampling and Optimization

Benjamin Bichsel Timon Gehr Dana Drachsler-Cohen Petar Tsankov Martin Vechev

SRILAB ETH Zürich
Differential Privacy – Basic Setting
Differential Privacy – Basic Setting

What about my privacy?
Differential Privacy - Intuition

Change my data

- # disease + noise

7.3

or

7.6
Differential Privacy – More Abstractly

Neighboring x x'

Attacker check $F(x) \in \Phi$?

Attacker check $F(x') \in \Phi$?
Differential Privacy - Definition

\[\Pr[F(x) \in \Phi] \leq \exp(\varepsilon) \approx 1 + \varepsilon \]

Challenges induced by DP:

- Proving/checking \(\varepsilon \)-DP is hard (buggy algorithms)
- Proof strategies not complete
- Proofs only provide upper bounds
\(\varepsilon\)-DP Counterexamples

that violate \(\varepsilon\)-DP:

\[
\frac{\Pr[F(x) \in \Phi]}{\Pr[F(x') \in \Phi]} > \exp(\varepsilon)
\]

\[
\Leftrightarrow
\]

\[
\log \frac{\Pr[F(x) \in \Phi]}{\Pr[F(x') \in \Phi]} > \varepsilon
\]
\(\varepsilon \)-DP Counterexamples

that violate \(\varepsilon \)-DP:

\[
\frac{\Pr[F(x) \in \Phi]}{\Pr[F(x') \in \Phi]} > \exp(\varepsilon)
\]

\[
\iff \log \frac{\Pr[F(x) \in \Phi]}{\Pr[F(x') \in \Phi]} > \varepsilon
\]

Maximize \(\varepsilon(x, x', \Phi) \)
Bounds on "true" ε

Evaluation: We get precise and large ε, close to known upper bounds.

- Counterexample: 5%-DP
- Counterexample: 9.9%-DP
- Counterexample: 15%-DP

Proven: 10%-DP ($\varepsilon = 10\% = 0.1$)
ε-DP Counterexamples

Goal: Maximize $\varepsilon(x, x', \Phi)$

Challenge 1: Expensive to compute ε precisely

Challenge 2: Search space is sparse: Few x, x', Φ lead to large $\varepsilon(x, x', \Phi)$

Estimate ε by sampling

Make $\hat{\varepsilon}$ differentiable
Step 1: Estimate ε
Estimating ε

$$
\varepsilon(x, x', \Phi) := \log \frac{\Pr[F(x) \in \Phi]}{\Pr[F(x') \in \Phi]}
$$
Estimating ε

$$\varepsilon(x, x', \Phi) := \log \frac{\Pr[F(x) \in \Phi]}{\Pr[F(x') \in \Phi]}$$

Estimate

$$\hat{\Pr}[F(x) \in \Phi] = \frac{1}{n} \sum_{i=1}^{n} \text{check}^i_{F,\Phi}(x)$$

x

$F(x)$

$\text{check}^i_{F,\Phi}(x)$

<table>
<thead>
<tr>
<th>x</th>
<th>$F(x)$</th>
<th>$\text{check}^i_{F,\Phi}(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>yes</td>
<td>$33%$</td>
</tr>
<tr>
<td>7.6</td>
<td>no</td>
<td>$33%$</td>
</tr>
<tr>
<td>6.8</td>
<td>yes</td>
<td>$67%$</td>
</tr>
</tbody>
</table>
How precise is our estimate?

Counterexample: 9.9% ± 10%-DP

VS

Counterexample: 9.9% ± 2 · 10^{-3}-DP

Precision of ε

Precision of $\Pr[F(x) \in \Phi]$ and $\Pr[F(x') \in \Phi]$

Sampling effort n

Exponential search
Estimating precisely is expensive

Estimating ε up to an error of $2 \cdot 10^{-3}$ with confidence of 90%
Applying the M-CLT (Correlation)

\[
\frac{1}{n} \sum_{i=1}^{n} \text{check}_{F,\Phi}^i(x)
\]

Follows 2D Gaussian distribution

\[
\frac{1}{n} \sum_{i=1}^{n} \text{check}_{F,\Phi}^i(x')
\]
Obtaining a Confidence Interval for ε

Joint likelihood of
\[
\left(\Pr\left[F(x) \in \Phi \right] \right) / \left(\Pr\left[F(x') \in \Phi \right] \right)
\]

Likelihood of $\varepsilon(x, x', \Phi)$

Confidence Interval for $\varepsilon(x, x', \Phi)$

Distribution of Gauss (correlated):

How precise is our estimate?

Counterexample:
9.9% ± 10% - DP

VS

Counterexample:
9.9% ± 2 \cdot 10^{-3} - DP

![Graph showing sampling effort vs. probability of \(F(x) \in \Phi \).]
Step 2: Finding Counterexamples

Make $\hat{\xi}$ differentiable
How can we optimize our estimate?

\[\hat{\epsilon}(x, x', \Phi) = \log \frac{1}{n} \sum_{i=1}^{n} \text{check}_{F, \Phi}^i (x') \]

maximize

Goals

- Make differentiable
- Preserve semantics

\[\neg B \sim 1 - B \]

\[B_1 \land B_2 \sim B_1 \cdot B_2 \]

if \(B \): \(\{ x = E_1 \} \) else : \(\{ x = E_2 \} \sim x = B \cdot E_1 + (1 - B) \cdot E_2 \]
How can we optimize our estimate?

\[
\hat{e}(x, x', \Phi) = \log \frac{1}{n} \sum_{i=1}^{n} \text{check}_{F,\Phi}^i (x')
\]

Maximize using SLSQP (supports hard constraints for neighborhood)

Random starting point (+ restart)

What about division by zero?

What about very small denominators?
Main differences to Ding et al.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Ding et al.</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem statement</td>
<td>$\varepsilon(x, x', \Phi) > \varepsilon_0$?</td>
<td>Maximize $\varepsilon(x, x', \Phi)$</td>
</tr>
<tr>
<td>Approach</td>
<td>Statistical tests</td>
<td>Estimate + confidence interval</td>
</tr>
<tr>
<td>Search</td>
<td>By patterns</td>
<td>Gradient descent (incremental)</td>
</tr>
</tbody>
</table>
Evaluation

- How **precise** is the differentiable estimate?
- How **efficient** is DP-Finder in finding violations compared to random search?
Precision of Differentiable Estimate

![Graph showing precision of differentiable estimate for various algorithms: AT1, AT2, AT3, AT4, AT5, expMech, noisyMax, sum. The x-axis represents the algorithms, and the y-axis shows the precision values.
Random vs Optimized

[Graph showing comparisons between random and optimized start processes]

Random start vs Optimized
Conclusion

Differential Privacy

Estimate ε

Finding Counterexamples

ε-DP Counterexamples