
Learning to Explore Paths
for Symbolic Execution

Jingxuan He, Gishor Sivanrupan, Petar Tsankov, Martin Vechev

@ ACM CCS 2021



Symbolic Execution

A powerful technique widely adopted in security

Can be used to generate “good” tests

Analyzing
Protocol
Implementations

Validating
Hardware
Design

Securing
Smart
Contracts

SAGE Symbolic
PathFinder

Apollo

1Icons made by Kiranshastry from www.flaticon.com

https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/


Path Exploration and Explosion
a

b c

d e f

g

Candidate States:
a0

Tests Generated:

b0 c0 d0 e0

a0-b0-e0

Coverage Objective of Symbolic Execution:

arg max
!"#!#

| ⋃!∈!"#!# coverage(𝑡) |
𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

Path Explosion:

Need a Good Strategy to Select Promising States!

#states is exponential in #branches

2

#states explodes at deep branches

e.g., 10k-100k states for coreutils



State Selection Strategies

3

Coverage Objective of Symbolic Execution: arg max
!"#!#

| ⋃!∈!"#!# coverage(𝑡) |
𝑡𝑜𝑡𝑎𝑙𝑇𝑖𝑚𝑒

The Ideal State Selection Strategy?

Selection with an Ideal Reward Function: reward 𝑠 =
|⋃!∈#$%#%&'()(+) coverage(𝑡) |
∑-∈%#.#$%&'()(+) stateTime(𝑑)

Cannot Calculate testsFrom and statesFrom!

State Selection Strategies:
(can be deterministic or probabilistic)

State Strategy

Importance
Score

Icons made by Kiranshastry from www.flaticon.com

https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/


Existing State Selection Heuristics

4

Existing Heuristics: select states based on certain property of the states. Often 
get stuck in program parts favoring the property but fail to explore other parts 

17

17 12

10

499
1911

Line Coverage
(585 in total)

3

7 3

3

62
31

UBSan Violations
(82 in total)

rps

nurs:depth

sgs

Running KLEE on coreutils (1h)

Expectation for Learning: an adaptive strategy subsuming individual heuristics



Learch: our Learned Strategy

5

State Feedforward
Networks

Predicted
Reward

| ⋃!∈#$%#%&'()(+) coverage(𝑡) |
∑-∈%#.#$%&'()(+) stateTime(𝑑)

Training
Dataset

Features

Icons made by Kiranshastry from www.flaticon.com

Manuel
Heuristics

https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/


Learch: Line Coverage on coreutils

6

rps

nurs:depth

sgs

porfolio

Learch

10 535 79 14 523 91

21 519 95 21 551 62



Learch: UBSan Violations on coreutils

7

rps

nurs:depth

sgs

porfolio

Learch

9 66 22 6 67 21

7 64 24 10 67 21



Obtaining a Supervised Dataset

8

a

b c

d e f

g

Time Spent by Each State

a0 c0 f0 g0 c1 f1 g1 b0 d0
1 2 2 2 1 1 2 2 2

States Cov NewCov
a0-c0-f0-g0 a, c, f, g a, c, f, g1

a0-c0-f0-c1-f1-g1 a, c, f, g ∅2

a0-b0-d0 b, da, b, d3



Obtaining a Supervised Dataset

9

States Cov NewCov
a0-c0-f0-g0 a, c, f, g a, c, f, g1

a0-c0-f0-c1-f1-g1 a, c, f, g ∅2

a0-b0-d0 b, da, b, d3

a0

c0 b0

f0 d0

g0 c1

f1

g1

Tests Tree

4

2

0



Obtaining a Supervised Dataset

10

a0

c0 b0

f0 d0

g0 c1

f1

g1

4

2

0

State Time TotalCov TotalTime Reward

a0 1 6 15 0.4

c0 2 4 10 0.4

f0 2 4 8 0.5

g0 2 4 2 2

c1 1 0 4 0

f1 1 0 3 0

g1 2 0 2 0

b0 2 2 4 0.5

d0 2 2 2 1



Obtaining a Supervised Dataset

11

Procedure genData

Input: a set of training programs
a set of strategies

Output: a supervised dataset

← ∅

Obtain new data on with

For each and

Add to

Return

Icons made by Kiranshastry from www.flaticon.com

https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/


Final Iterative Learning Algorithm

12

genData

Manual Heuristics

Training Programs Supervised Data Learned Strategy
(iteration 1)

Iteration 1:

Icons made by Kiranshastry from www.flaticon.com

https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/


Final Iterative Learning Algorithm

13

genData

Training Programs Supervised Data Learned Strategy
(iteration j)

Iteration j:
(j > 1)

Learned Strategy
(iteration j-1)

Icons made by Kiranshastry from www.flaticon.com

https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/


Instantiation Learch on KLEE

14

Features: stack, successor, testCase, coverage, constraint, 
depth, cpicnt, icnt, covNew, subpath

UBSan Violations: Integer overflow, oversized shift, out-of-
bound array reads/writes, pointer overflow, null deference

Run 4 learned strategies, each taking a quarter of the total 
time limit, and combine all generated tests



Evaluation: Line Coverage (8h runs)

15

1136
1791

portfolio

Learch

diff
2003
2421

portfolio

Learch

grep
2885
3097

sgs

Learch

gawk
1412
1502

sgs

Learch

patch

2131
2827

rss

Learch

objcopy
1192
1179

portfolio

Learch

readelf
2353
2398

portfolio

Learch

make
5204
5590

nurs:cpicnt

Learch

sqlite

3142
2927

portfolio

Learch

find
551
541

portfolio

Learch

cjson
On Average, >20% increase 
than all heuristics



Evaluation: UBSan Violations (8h run)

16

rss rps nurs:cpicnt nurs:depth sgs portfolio Learch

18 17 20 19
24 23 24

46 reports to developers, 13 confirmed, 11 fixed



Evaluation: Seeding AFL (8h runs)

17

2489
2882

sgs

Learch

objcopy
4133
4531

nurs:depth

Learch

readelf
5582
5689

rps

Learch

make
4243
4364

sgs

Learch

sqlite

Discovering Paths

Detecting UBSan Violations

rss rps nurs:cpicnt nurs:depth sgs portfolio Learch

66 68
100 98

118
97

128



Evaluation: Design Choices (1h runs)

18

Line Coverage

566 566 560 563
4 individual strategies

618
Learch

UBSan Violations

71 75 70 93
4 individual strategies

88
Learch

517 541
linear rnn

618
Learch

62 70
linear rnn

88
Learch



Summary

19

eth-sri/learch

https://www.sri.inf.ethz.ch/

https://github.com/eth-sri/learch
https://www.sri.inf.ethz.ch/

