@ CHAINSECURITY 83 centere ETH

Declarative Static Analysis of Smart Contracts

securify.ch

Quentin Hibon
Blockchain Security Engineer, ChainSecurity

Smart Contract Bugs in the News

ShCeNBC T

ode CYBERSECURITY

$60 Million Ether Theﬂ TECH MOBILE SOCIAL MEDIA ENTERPRISE CYBERSECURITY TECH GUIDE
$32 million worth of digital

eum - News - Enereum | currency ether stolen by

L Y VS "
LS elN Wallet bug freezes more than $150

114 ither tokens worth $32.6 million were taken by hackers on
The DAO, the distributed autonomous organization that had collec| mllllon Worth Of Ethereum

ether, has reportedly been hacked, sparking a broad market sell-of _— Parity's multisi ire wallet was loited by hackers.

A leaderless organization comprised of a series of smart contracts|
DAO has lost 3.6m ether, which is currently sitting in a separateﬂ

*>? The DAO Falls Victim to Cy
" Attack Leading Ethereum |
Crash Over 20%

The event is still ongoing as hackers have alr¢
stolen over 3.5 million ETH from the DAO's col

bllows an incident on Monday where $7 million worth of ether
n.

eWGraham
| 20 July 2017 | Updated 10:51 AM ET Thu, 20 July 2017

r

Friday, 17/06/2016[12:45 GN

Over $30 million worth of ethereum
stolen in another hacker attack

Over $30 million worth of ethereum have been

Abugin Parity, a popular walletfor the cryptocurrency and decentraiized appiication platform stolen in another hacking attack targeting a
Ethereum, may have resuted in more than $150 millon worth of ether being permanently blockchain startup, Coindesk has reported.
frozen.
Smart contract coding company Parity yesterday
svsmw Thebug affects Parity mult-sig (mult signature) walets, which require more than one owner to

SCHROEDER “sign" a transaction before it can go through. An unknown attacker (or a careless developer) has issued a security alert, warning of a vulnerability

‘Photo: Finance Magnates Sharethisarticle ¥ exploited it to effectively destroy a piece of Parity's code, effectively rendering all multi-sig wallets in version 1.5 or later of its wallet software.
| that were created after July 20 completely unusable. According to the company, so far 150,000 ethers

have been stolen, worth nearly $35 million at
current price levels. The amount of the stolen
ether has been confirmed by Etherscan.io.

Low-level Code

Solidity \Vyper High-level languages

l compilation | v level code

e Stack-based

e Untyped

e No functions

e Not designed with
formal analysis in mind

EVM code

Ethereum Virtual Machine (EVM)

Operation type

Arithmetic
Control-flow
Cryptography
Environment
Memory / storage

System

Description OPCodes

Encode calculations Add, Mul, Sub, Div, LT, EQ
Encode conditional jumps Jump, Jumpl

Compute hash functions SHA3

Fetch transaction information Balance, Caller, Gas, Timestamp...
Read and write, memory and MStore, MLoad, SStore, SLoad
storage

Message call into a contract Call

https://ethereum.github.io/yellowpaper/paper.pdf

System State
Storage (S)

Memory (M)

Stack (Q)

Block Information (B)

Persistent
Initially defined by the constructor

Non-persistent
Reinitialized before every transaction

Limited to 1024 256-bit elements

Number, timestamp
Fixed for a given transaction

Contract Semantics
State: o=(S, M, Q,B)

Transaction: T = (caller,{"op},...)

Trace: @

0,—0, =Top0(00)—>. .0 —>on=Topn(0n_1)

Semantics: set of all traces for this contra@

Unrestricted Writes

Intuition
Anybody can execute owner = msg.sender

Formalization
A write to o is unrestricted iff for any address a, there is

e T=(a, _)
e 0,—0,='0p,(0,)—...—0_ —0="op(0_)—...

with op, = SStore(o,_)

Locked Ether

Intuition
Payable function(s), but no transfer
Formalization
There is a transaction increasing the balance:
e 3IT. 'o,(Balance) < 'c_(Balance)
No transaction extracts ether:
o VT. Topi =Call(, x,)=x=0

More Security Properties

Unexpected ether flows

Insecure coding, such as unprivileged writes

Use of unsafe inputs (e.g., reflection, hashing, ...)

Reentrant method calls (e.g., DAO bug)

00| 23| %

Manipulating ether flows via transaction reordering

Automated Techniques

Testing Dynamic Analysis Automated Verification
Report true bugs Report true bugs Can report false alarms
Can miss bugs Can miss bugs No missed bugs

Properties like unrestricted writes
cannot be checked on a single trace

Demo

Under the Hood

-

/ A
00: x = Balance MemTag(0x20, Balance) Length
02:y =0x20 MemTag(0x40, Const) o e e
D) 04: If (x == 0x00) Static VarTag(z, Const) © e ot Origin st et
ecompile . g
06 MStore(y1 X) AnaIySIS VarTag(k, GaS) ® Missing Input Validation
08: z=y Assign(s, 0x20) PRERCebe
Oa gOtO OX42 Ca”(S{OXZO}, k{GaS}) Unexpected Ether Flows
K @ © Locked Ether

EVM Securify Securify
Intermediate Semantic

Binary Representation Representation

Securify Report

Compliance and Violation Patterns

Insecure behaviors
with respect to a property

\

/

Secure behaviors with
respect to a property

Compliance and Violation Patterns

Violation pattern
? (under-approximates insecure behaviors)

\

Compliance pattern
(under-approximates secure behaviors)

Under the Hood: First Step

EVM
Binary

Decompile

-

-

00: x = Balance
02:y = 0x20
04: If (x == 0x00) Static
06: MStore(y, x) RRaUEVEE
08: z=y

Oa: goto 0x42

Securify
Intermediate
Representation

\

-

MemTag(0x20, Balance)
MemTag(0x40, Const)
VarTag(z, Const)
VarTag(k, Gas)
Assign(s, 0x20)
Call(s{0x20}, k{Gas})

Securify
Semantic
Representation

Insecure Coding Patterns
© Unchecked Transaction Data
Length

® Unhandled Exception
Matched lines: L 10

© Use of Origin Instruction

@® Missing Input Validation
Matched lines: L6

Unexpected Ether Flows
© Locked Ether

Securify Report

From EVM to CFG over SSA

00: 60

: —— k
01: 2(7) 00: Push 0x07 00: Push 0x07
. 02: Push 0x42 R Susti0x 42
e 04: Push 0x09 0 usn 0x09

: 06: Jump 06: Jump
05: 09 y
06: 56 |assembly 07: Jutpbest CFG 09: JumpDest| g5 A
07:5b | Sep1 | > P St 0a: Dupl

h €p 09: JumpDest €ps X Step 4
08: 00 2,3 0b: Mul
09: 5b o Oc: Swapl

5 0b: Mul 4
0a: 80 0d: Jump
0b: 02 Oc:Swapl | | SNe--- £
o 3 %0 0d: Jump 107‘ JunpDest

c: —
08: Stop

o @

()

Control flow graph (CFG)

e Node: a basic block

1 09: square(x):\-
10b:y=x*x |
| 0d: return(y) |

ST

O

optimizations

I

Step 5

e Edge: jump from one basic block to another

Static single assignment form (SSA)
Each variable assigned exactly once

02: b = 0x42 [b: 0x42)

06: d = square(b) [d: 0x1104]

! 09: square(x):

1
1ob:y=x*x 1
1 0d: return(y) |

N
1

®)

Under the Hood: Second Step

EVM
Binary

Decompile

-

-

00: x = Balance
02:y = 0x20
04: If (x == 0x00) Static
06: MStore(y, x) RaUEVEE
08: z=y

Oa: goto 0x42

Securify
Intermediate
Representation

\

-

MemTag(0x20, Balance)
MemTag(0x40, Const)
VarTag(z, Const)
VarTag(k, Gas)
Assign(s, 0x20)
Call(s{0x20}, k{Gas})

Securify
Semantic
Representation

Insecure Coding Patterns
© Unchecked Transaction Data
Length

® Unhandled Exception
Matched lines: L 10

© Use of Origin Instruction

@® Missing Input Validation
Matched lines: L6

Unexpected Ether Flows
© Locked Ether

Securify Report

Semantic Facts

Semantic fact Description

Flow dependencies
MayFollow(pc, pc’) The instruction at pc may follow that at pc’

MustFollow(pc, pc’) The instruction at pc must follow that at pc’

Data dependencies

A tag can be

MayDepOn(x, t) The value of x may depend on tag t an instruction

MustDepOn(x, t) The value of x must depend on tag t or a variable

DetBy(x, t) For different values of t the value of x is different

Inference Rules: MayFollow

MayFollow(i, j) « Follows(i, j)
MayFollow(i, j) < Follows(i, k), MayFollow(k, j)

Derive input by declaring a predicate Follows(i, j) for:
e Edge (i, j)inthe CFG
e Consecutive instructions in basic blocks

1: x:=10 Follows(1,2)
2:y:=x+20 Follows(2,3)

Follows(3,4)
MayFollow(1,4)
3:y-- 5:y=0 Follows(2,5)

4: return

6: return

Additional Input Facts

Follows(1,2)
Follows(2,3)
Follows(3,4)

Assign(x, Balance)
1: x = Balance

2: Mstore(0x20, x) » IsConst(0x20)

3: y = MLoad(0x20)

4:z=x+y MStore(2,0x20,x)
MLoad(3,y,0x20)
Op(4,z,x)
Op(4.z.y)

Code Input Facts

Partial Inference Rules: MayDepOn

MayDepOn(x,t) « Assign(x,t)

MayDepOn(x,t) < Op(_,x,x"), MayDepOn(x',t)
MayDepOn(x,t) < MLoad(l,x,0), isConst(o), MemTag(l,o,t)
MayDepOn(x,t) < MLoad(l,x,0),misConst(o), MemTag(l,_,t)

e No label in MayDepOn
o SSA form
e Labelin MemTag
o Offset dependencies evolve

Derived Semantic Facts

MayDepOn(x, Balance)
MayDepOn(y, Balance)

1: x = Balance
2: MStore(0x20, X) » MayDepOn(z, Balance)

2 y f Ml;oad(0x20) MemTag(2, 0x20, Balance)
LT XTY MemTag(3, 0x20, Balance)
MemTag(4, 0x20, Balance)

Code Derived semantic facts

Under the Hood: Final Step

EVM
Binary

Decompile

-

-

00: x = Balance
02:y = 0x20
04: If (x == 0x00) Static
06: MStore(y, x) RRaUEVEE
08: z=y

Oa: goto 0x42

Securify
Intermediate
Representation

\

-

MemTag(0x20, Balance)
MemTag(0x40, Const)
VarTag(z, Const)
VarTag(k, Gas)
Assign(s, 0x20)
Call(s{0x20}, k{Gas})

Securify
Semantic
Representation

Insecure Coding Patterns
© Unchecked Transaction Data
Length

® Unhandled Exception
Matched lines: L 10

© Use of Origin Instruction

@® Missing Input Validation
Matched lines: L6

Unexpected Ether Flows
© Locked Ether

Securify Report

Example Patterns: Restricted Write

Compliance pattern all SStore(l,0,_).DetBy(o, Caller)

: : some SStore(l,0,).
Violation pattem I MayDepOn(o, Caller) && ! MayDepOn(l, Caller)

- Remaining patterns are encoded similarly

- Proofs formally relate patterns and security properties

Summary

-

/ Insecure Coding Patterns
© Unchecked Transaction Data
00: x = Balance MemTag(0x20, Balance) Length
02:y =0x20 MemTag(0x40, Const) o e e
D o 04 If (X == OXOO) Stath VarTag(Z, ConSt) © Use of Origin Instruction
ecompile . g
06: MStore(y, X) AnaIySIS VarTag(k, GaS) @® Missing Input Validation
08: z=y Assign(s, 0x20) Hartelnes LS
Oa gOtO OX42 Ca”(S{OXZO}, k{GaS}) Unexpected Ether Flows
K @ © Locked Ether

EVM Securify Securify
Intermediate Semantic

Binary Representation Representation

Securify Report

Research

il SRL €3 centere ETH

SOFTWARE RELIABILITY LAB

'i- https://securify.ch

LIFZUARD | https://apk-deguard.co
m
JS HUMR https://jsnice.org
PSI ;
https://psisolver.org

BlliN5] https://eventracer.org

Start-ups

@ CHAINSECURITY

https://chainsecurity.com

The first automated formal audit
platform for smart contracts

/ \ We are looking for strong
business people and crypto
m experts to help our mission:
jobs@chainsecurity.com

P contact@chainsecurity.com

u @chain_security

Partial Evaluation

x:=10 x:=10 x =10

y = x + 20) | =10+20) ,-10+20
if (y > 0) goto L1 goto L1
<else branch> L1 <then branch> l
Return Return
L1 <then branch> <then branch>
Return Return
Code Code

_ _ Constructed CFG
(partial evaluation)

e Resolve jumps
o Improve the precision of the CFG

e Resolve write offsets to storage / memory
o Improve analysis precision

Securify Pattern Language

Labels
Vars
Tags
Instr
Facts

Patterns

(labels)

(variables)

I'| x

Instr(l,x,...,X)

MayFollow(l,I) | MustFollow(l,]) | MayDepOn(x,t) | MustDepOn(x,t) | DetBy(x,t)

flalln.p|somenp|p&&p|pllpl|!'p

