

Certifying functional correctness of Ethereum smart contracts

Dr. Petar Tsankov

Co-founder and Chief scientist, ChainSecurity Senior researcher, ICE center, ETH Zurich @ptsankov

Inter-disciplinary research center at the #1 CS department in Europe

Blockchain Safety of AI Security security and privacy

Next-generation blockchain security using automated reasoning

https://chainsecurity.com @chain_security

What do these have in common?

Must not fail!

contract Token {

mapping(addr=>uint) balances; function balanceOf(address a){ return balances[a];

function transfer(address to, uint n){ balances[msg.sender] -= n; balances[to] += n;

What sets *them apart*?

Certified using formal verification

contract Token {
mapping(addr=>uint) balances;
function balanceOf(address a){
return balances[a];

Best-effort

balances[msg.sender] -= n; balances[to] += n;

What sets *them apart*?

anyone can kill your contract #6

() Open

devops199 opened this issue a day ago · 12 comments

devops199 commented a day ago • edited

I accidentally killed it.

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

Our mission

Bring formal security guarantees to contracts

- Mathematically model **all** behaviors of smart contracts
- **Prove** that no bugs can occur
- Scale via **automation** and state-of-the-art research

Our mission

Bring formal sectors guarantees to contracts

Formal verifier for certifying *custom functional* s
 Prov*specifications* of Ethereum contracts

- Scale via **automation** and state-of-the-art research

Why is it hard to *certify* the custom behavior of smart contracts?

Note:

Find generic vulnerabilities

Functional correctness

uint raised; uint goal; uint closeTime;

```
function invest() { .. }
function close(){ .. }
```



```
mapping(address => uint) deposits;
function deposit() { ... }
function withdraw() { ... }
function claimRefund() { ... }
```

Requirements

- Sum of all deposits equals the escrow's ether balance
- Investors cannot claim refunds after the goal is reached

Step 1: *Formalize* requirements

(Informal) requirement:

"Sum of all deposits equals the escrow's ether balance"

Formal property

always sum(Escrow.deposits) == Escrow.balance)

Step 2: Check formal property

Methods and guarantees

RELIABILITY Time consuming _ **Manual review** Can miss errors _

Methods and guarantees

Tools: ChainFuzz, Echidna, ContractFuzzer, Harvey, ...

Symbolic execution

Checked states

Missed states

Tools: Oyente, Manticore, Mythril, MAIAN, ...

Methods and guarantees

Formal verification

Checked states

Automated formal verification with VerX

"Investors can claim refunds only if the sum of deposits never exceeded 10,000 ether "

Access control

always Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

State-based properties

always (now > Vault.refundTime + 1 week)
 ==> ! Vault.refund(uint256)

Access control	always Escrow.deposit(address) ==> (msg.sender == Escrow.owner)
State-based properties	always (now > Vault.refundTime + 1 week) ==> ! Vault.refund(uint256)
State machine properties	always !(once(state == REFUND) && once(state == FINALIZED)

Invariants over aggregates	always totalSupply == sum(balances)
State machine properties	always !(once(state == REFUND) && once(state == FINALIZED)
State-based properties	always (now > Vault.refundTime + 1 week) ==> ! Vault.refund(uint256)
Access control	always Escrow.deposit(address) ==> (msg.sender == Escrow.owner)

Access control	always Escrow.deposit(address) ==> (msg.sender == Escrow.owner)
State-based properties	always (now > Vault.refundTime + 1 week) ==> ! Vault.refund(uint256)
State machine properties	always !(once(state == REFUND) && once(state == FINALIZED)
Invariants over aggregates	always totalSupply == sum(balances)
Multi-contract invariants	always Token.totalSupply >= Sale.issuance

Access control

lways Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

stuays (now > Vault.refundTime + 1 week)
==> ! Vault.refund(uint256)
Solid formal foundation

(Temporal logic)

always totalSupply == sum(balances)

Multi-contract invariants

always Token.totalSupply >= Sale.issuance

Dealing with *unbounded* state spaces

Sound symbolic reasoning

- Hash-based storage allocation
- Gas mechanics
- Calls to untrusted contracts
- Dynamically constructed contracts

Impact and experience

Fast and *scalable* formal verification of Ethereum contracts (157+ contracts, 100+ properties, ~1 min / property)

Benefits:

- Certify what works (go beyond bug finding)
- *Re-use* libraries of common specifications
- Re-certification is cheap

How to get access to VerX?

Share this report: http://localhost:5000/report/49fbffc7dcdc50ffd2d6021f2124296b079346548a9e21474aa9b05b71f2a432 [i]				
IsBalance	^			
IReached				
ndWithdraw	^			
	dcdc50ffd2d6021f2124296b079346548a9e21474aa9b05b71f2			

Demo:

http://verx.ch

VerX as a service: <u>contact@chainsecurity.com</u>

One more announcement...

First automated framework for testing Solidity compilers

First automated framework for testing Solidity compilers

https://github.com/eth-sri/soltix

https://discord.gg/XKSVavS

ethereum foundation grants

Safety certification of contracts

VerX: Automated formal verification

"Investors can claim refunds only if the sum of deposits never exceeded 10,000 ether "

Methods and techniques

Symbolic reasoning + abstraction

