
Certifying functional correctness of
Ethereum smart contracts

Dr. Petar Tsankov
Co-founder and Chief scientist, ChainSecurity
Senior researcher, ICE center, ETH Zurich
@ptsankov

Inter-disciplinary research center at
the #1 CS department in Europe

Security
and privacy

Blockchain
security

Safety of AI

Next-generation blockchain security
using automated reasoning

https://chainsecurity.com
@chain_security

contract Token {

mapping(addr=>uint) balances;

function balanceOf(address a){

return balances[a];

}

function transfer(address to,

uint n){

balances[msg.sender] -= n;

balances[to] += n;

}

Must not fail!

What do these have in common?

Certified using formal verification

contract Token {

mapping(addr=>uint) balances;

function balanceOf(address a){

return balances[a];

}

function transfer(address to,

uint n){

balances[msg.sender] -= n;

balances[to] += n;

}

Best-effort

What sets them apart?

Certified using formal verification

contract Token {

mapping(addr=>uint) balances;

function balanceOf(address a){

return balances[a];

}

function transfer(address to,

uint n){

balances[msg.sender] -= n;

balances[to] += n;

}

Best-effort

What sets them apart?

- Mathematically model all behaviors of smart contracts
- Prove that no bugs can occur
- Scale via automation and state-of-the-art research

Our mission

Bring formal security guarantees to contracts

- Mathematically model all behaviors of smart contracts
- Prove that no bugs can occur
- Scale via automation and state-of-the-art research

Our mission

Bring formal security guarantees to contracts

Formal verifier for certifying custom functional
specifications of Ethereum contracts

VerX

Why is it hard to certify the custom
behavior of smart contracts?

Certify custom behavior
Find generic vulnerabilities
Note:

- Sum of all deposits equals the escrow’s ether balance
- Investors cannot claim refunds after the goal is reached

Escrow
mapping(address => uint) deposits;

function deposit() { .. }
function withdraw() { .. }
function claimRefund() { .. }

Crowdsale
uint raised;
uint goal;
uint closeTime;

function invest() { .. }
function close(){ .. }

Requirements

Functional correctness

Step 1: Formalize requirements

”Sum of all deposits equals the escrow’s
ether balance”

always sum(Escrow.deposits) == Escrow.balance)

Formal property

(Informal) requirement:

Initial state

invest(0) invest(9999)

invest (0) invest(9999) claimRefund()

...

Unbounded depth

Infeasible to brute-force width

...

claimRefund()

Step 2: Check formal property

Manual review

RE
LIA

BI
LIT

Y
Methods and guarantees

- Time consuming
- Can miss errors

Automated testing

Manual review

RE
LIA

BI
LIT

Y
Methods and guarantees

- Time consuming
- Can miss errors

- Fuzzing
- Symbolic execution
- Can miss errors

Initial state

invest(0) invest(9999)

invest (0) invest(9999) claimRefund()

......

claimRefund()

Fuzzing Checked states

Missed states

Tools: ChainFuzz, Echidna, ContractFuzzer, Harvey, …

Initial state

invest(0) invest(9999)

invest (0) invest(9999) claimRefund()

......

claimRefund()

Symbolic execution

Tools: Oyente, Manticore, Mythril, MAIAN, …

Checked states

Missed states

Formal
verification

Automated testing

Manual review

RE
LIA

BI
LIT

Y
Methods and guarantees

- Time consuming
- Can miss errors

- Fuzzing
- Symbolic execution
- Can miss errors

- Automated program
verification

- Proves absence of errors

invest(0) invest(9999)

invest (0) invest(9999) claimRefund()

......

claimRefund()

Formal verification

invest(0) invest(9999)

invest (0) invest(9999) claimRefund()

......

claimRefund()

Checked states

VerX

Automated formal verification with VerX
“Investors can claim refunds only if the sum
of deposits never exceeded 10,000 ether “

Smart contract

mapping(address => uint) deposits;

function claimRefund(){..}
(always Escrow.claimRefund

==> !before(sum(deposits) >= 10000)

Formal property

Verified May not hold

Expressive and intuitive specifications

Access control always Escrow.deposit(address)
==> (msg.sender == Escrow.owner)

Expressive and intuitive specifications

Access control always Escrow.deposit(address)
==> (msg.sender == Escrow.owner)

always (now > Vault.refundTime + 1 week)
==> ! Vault.refund(uint256)

State-based
properties

Expressive and intuitive specifications

Access control always Escrow.deposit(address)
==> (msg.sender == Escrow.owner)

always (now > Vault.refundTime + 1 week)
==> ! Vault.refund(uint256)

State-based
properties

always !(once(state == REFUND)
&& once(state == FINALIZED)

State machine
properties

Expressive and intuitive specifications

Access control always Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

always (now > Vault.refundTime + 1 week)

==> ! Vault.refund(uint256)

State-based
properties

always totalSupply == sum(balances)
Invariants over
aggregates

always !(once(state == REFUND)

&& once(state == FINALIZED)

State machine
properties

Expressive and intuitive specifications

Access control always Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

always (now > Vault.refundTime + 1 week)

==> ! Vault.refund(uint256)

State-based
properties

always totalSupply == sum(balances)
Invariants over
aggregates

always !(once(state == REFUND)

&& once(state == FINALIZED)

State machine
properties

always Token.totalSupply >= Sale.issuance
Multi-contract
invariants

Expressive and intuitive specifications

Access control always Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

always (now > Vault.refundTime + 1 week)

==> ! Vault.refund(uint256)

State-based
properties

always totalSupply == sum(balances)
Invariants over
aggregates

always (! once(state == REFUND)

&& once(state == FINALIZED)

State machine
properties

always Token.totalSupply >= Sale.issuance
Multi-contract
invariants

Solid formal foundation
(Temporal logic)

Dealing with unbounded state spaces

Initial state

invest(X) claimRefund(Y)

Use symbolic
(not concrete)

values

invest(X) claimRefund(Y)

Bounded depth

Feasible width

Use program
abstraction

Sound symbolic reasoning

- Hash-based storage allocation

- Gas mechanics

- Calls to untrusted contracts

- Dynamically constructed contracts

Impact and experience

Benefits:
- Certify what works (go beyond bug finding)
- Re-use libraries of common specifications
- Re-certification is cheap

Fast and scalable formal verification of Ethereum contracts
(157+ contracts, 100+ properties, ~1 min / property)

How to get access to VerX?

Demo: http://verx.ch

VerX as a service: contact@chainsecurity.com

One more announcement…

First automated framework for
testing Solidity compilers

First automated framework for
testing Solidity compilers

First automated framework for
testing Solidity compilers

https://github.com/eth-sri/soltix

https://discord.gg/XKSVavS

“Investors can claim refunds only if the sum of
deposits never exceeded 10,000 ether “

Smart contract

mapping(address => uint) deposits;

function claimRefund(){..}
(always Escrow.claimRefund

==> !before(sum(deposits) >= 10000)

Formal property

Verified May not hold

Initial state

invest(X) claimRefund(Y)

invest(X) claimRefund(Y)

Bounded depth

Feasible width

Formal
verification

Automated testing

Manual review

RE
LIA

BI
LIT

Y

- Time consuming

- Can miss errors

- Fuzzing

- Symbolic execution

- Can miss errors

- Automated program

verification

- Proves absence of errors

contract Token {

mapping(addr=>uint) balances;

function balanceOf(address a){

return balances[a];

}

function transfer(address to,

uint n){

balances[msg.sender] -= n;

balances[to] += n;

}

Must not fail!

Safety certification of contracts

Methods and techniques

VerX: Automated formal verification

Symbolic reasoning + abstraction

