/2> CHAINSECURITY center@e ETH

Certifying functional correctness of
Ethereum smart contracts

Dr. Petar Tsankov

Co-founder and Chief scientist, ChainSecurity
Senior researcher, ICE center, ETH Zurich
@ptsankov

[MA centereo ETH

Inter-disciplinary research center at
the #1 CS department in Europe

Blockchain Saf
security

ety of Al

Security
and privacy

@[CHAINSEEURITY

Next-generation blockchain security
using automated reasoning

https://chainsecurity.com
@chain_security

ethereum
V foundation

What do these have in common?

contract Token {

@‘:EHAINSECURITY 3 centereem

What sets them apart?

Certified using formal verification Best-effort

> CHAINSECURITY &3 centeroem

What sets them apart?

anyone can Kill your contract #€

devops199 opened this issue a day ago - 12 comments

devops199 commented a day ago « edited

| accidentally killed it.

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

@’jCHAINSECURITY center@Eni

Our mission

Bring formal security guarantees to contracts

- Mathematically model all behaviors of smart contracts
- Prove that no bugs can occur
- Scale via automation and state-of-the-art research

@ 'CHAINSECURITY center@ErH

CS) VerX

Formal verifier for certifying custom functional
specifications of Ethereum contracts

Why is it hard to certify the custom
behavior of smart contracts?

Note:
Find generic vulnerabilities
=2 Certify custom behavior

@‘:EHAINSECURITY 3 centereem

Functional correctness

Crowdsale Escrow
uint raised; mapping(address => uint) deposits;
uint goal;
uint closeTime; function deposit() { .. }

function withdraw() { .. }
function invest() { .. } function claimRefund() { .. }
function close(){ .. }

Requirements

Sum of all deposits equals the escrow’s ether balance
- Investors cannot claim refunds after the goal is reached

@ 'CHAINSECURITY center@ErH

Step 1: Formalize requirements

(Informal) requirement:

“Sum of all deposits equals the escrow’s
ether balance”

Formal property

always sum(Escrow.deposits) == Escrow.balance)

@ 'CHAINSECURITY Center@ErH

Step 2: Check formal property

Initial state
invest(0) invest(9999) claimRefund()
s r'd ~
7\
invest (0) invest(9999) claimRefund()

Unbounded depth

)

Infeasible to brute-force width

@‘:EHAINSEEURITY 3 centereem

Methods and guarantees

RELIABILITY

Time consuming

Manual review .
Can miss errors

@‘:EHAINSEEURITY 3 centereem

Methods and guarantees

Fuzzing
Symbolic execution
Can miss errors

RELIABILITY

Automated testing

- Time consuming

Manual review .
- Can miss errors

@‘:EHAINSEEURITY 3 centereem

Checked states

Fuzzing
B Missed states
invest invest(9999) clai und()
P
H B
H E B J- B]

Tools: ChainFuzz, Echidna, ContractFuzzer, Harvey, ...

@':DHAINSECURITY center@ErH

Checked states

Symbolic execution
B Missed states

infest(9999) clai und()

invest

Tools: Oyente, Manticore, Mythril, MAIAN, ...

@‘:EHAINSEEURITY 3 centereem

Methods and guarantees

- Automated program

Formal L
> P verification
= veritication - Proves absence of errors
(aa)]
< .
E - Fuzzing
o Automated testing - Symbolic execution

- Can miss errors

- Time consuming

Manual review .
- Can miss errors

@‘:EHAINSEEURITY 3 centereem

. [: ¥ 4a Checked states
Formal verification <

CS/) VerX

@ 'CHAINSECURITY center@ErH

Automated formal verification with VerX

“Investors can claim refunds only if the sum
of deposits never exceeded 10,000 ether “

Smart contract Formal property
mapping(address => uint) deposits; (always Escrow.claimRefund
function claimRefund(){..} ==> lbefore(sum(deposits) >= 10000)

Verified May not hold

@ 'CHAINSECURITY center@ErH

Expressive and intuitive specifications

always Escrow.deposit(address
Access control y P ()

==> (msg.sender == Escrow.owner)

@ 'CHAINSECURITY center@ErH

Expressive and intuitive specifications

always Escrow.deposit(address
Access control y P ()

==> (msg.sender == Escrow.owner)
State-based always (now > Vault.refundTime + 1 week)
properties ==> | Vault.refund(uint256)

@‘:EHAINSEEURITY 3 centereem

Expressive and intuitive specifications

Access control

always Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

State-based
properties

always (now > Vault.refundTime + 1 week)

==> | Vault.refund(uint256)

State machine
properties

@' ' CHAINSECURITY

always !(once(state == REFUND)
&& once(state == FINALIZED)

3 centereem

Expressive and intuitive specifications

Access control

always Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

State-based
properties

always (now > Vault.refundTime + 1 week)
==> | Vault.refund(uint256)

State machine
properties

always !(once(state == REFUND)
&& once(state == FINALIZED)

Invariants over
aggregates

@’,CHAINSECURITY

always totalSupply == sum(balances)

3 centereem

Expressive and intuitive specifications

Access control

always Escrow.deposit(address)

==> (msg.sender == Escrow.owner)

State-based
properties

always (now > Vault.refundTime + 1 week)
==> | Vault.refund(uint256)

State machine
properties

always !(once(state == REFUND)
&& once(state == FINALIZED)

Invariants over
aggregates

always totalSupply == sum(balances)

Multi-contract
Invariants

@"CHAINSECURITY

always Token.totalSupply >= Sale.issuance

3 centereem

Expressive and intuitive specifications

li‘;“s’:’;?;éséﬁims Solid formal foundation
(Temporal logic)

@ 'CHAINSECURITY center@ErH

Dealing with unbounded state spaces

Use symbolic
(not concrete)

Initial state
values
invest(X)/\claim Refund(Y)

Bounded depth _

invest(X) claimRefund(Y) Use program
B - abstraction

)

Feasible width

@':DHAINSECURITY center@ErH

Sound symbolic reasoning

1K

| GLIPPERY
WETL (SHEN WIEY

@ ' CHAINSECURITY

Hash-based storage allocation

Gas mechanics
Calls to untrusted contracts

Dynamically constructed contracts

center@ErH

Impact and experience

Fast and scalable formal verification of Ethereum contracts
(157+ contracts, 100+ properties, ~1 min / property)

Benefits:
- Certify what works (go beyond bug finding)
- Re-use libraries of common specifications

- Re-certification is cheap

@ CHAINSECURITY center@ErH

How to get access to VerX?

L

Tell us how to improve

@ Formal Verification Results @

Share this report:

ttp://localhost:5000/report/49fbffc7dcdc50ffd2d6021f2124296b079346548a9621474a

Properties verified

Property: sumDepositsEqualsBalance
® Specification: 8
Property: noRefundAfterGoalReached

® Specification:1
Properties failed to verify

Property: exclusiveRefundsAndWithdraw

® Specification: 12

Demo: http://verx.ch

VerX as a service: contact@chainsecurity.com

@ 'CHAINSECURITY center@ErH

One more announcement...

@ 'CHAINSECURITY center@ErH

SOLTIX

contract A {
uint x, y:
function foo(uint z){
x=2z+1;

if (x < 10) {

b
I3

Seed Solidity contract

Tx1: foo(10)
Tx2: foo(15)

Transactions

@’,CHAINSECURITY

First automated framework for
testing Solidity compilers

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Execution profile

contract A {
uint x, y;
function foo(uint z){
x =z +1;
/! always true
if (x/2 > y) {
if (x < 10) {

}

&

SOLTIX

solc

Pr}

L4: contract A {
x in {11,16} uint x, y:;
y in {0} function foo(uint z){
sea tmp = y;
y=x+ 2z;
if (x < z)
y = tmp:
} solc
x =z +1;
/! always true
if (x/2 > y) {
if (x < 10) {

}
Pr}

Generated semantically
equivalent contracts

ethereum
foundation
grants

v

6080604052350436106
083f576000357c010000
0000012312312310000
0000000000000090046
3ffffff22222223ddbe
000001231231231000a
aaaaafffefe00009800
bd3814604457aaa6008
8fd5b348815604F5760
080...

6080604852aaaa3f5760
00357c010000000060000
00000000000000000000
0000000000009 FFFFff
0000000000000090046a
3ffffff22222223ddbea
bd38146084457aaa6608a
0fd5b348015684f5760a
00600000000600090646a
3ffffff22222223ddbae
aaaabfofefeffffffaff
1680632fbebd38575b66
0088fd5b348015600080
fd5b50686c60084810190
8080..

EVM bytecodes

evm

evm

x =16
y=2=8
x =16
y=28
Storage
states

T g A S

== 0K
I|= Compiler error
centere ETH

First automated framework for

Lo el C 1. .

ot
g Internal compiler error for call to unimplemented "super” 'S
function

(G4 Il nweller opened this issue on 2 Oct 2018 - 10 comments

\
50436106 |
nweller commented on 2 Oct 2018 « edited ~ z;g:gggg :
00096046 | :
The follow 223ddhe I h | x = 16 [.H
| t buil . . . o .
e =t Exponentiation producing inconsistent results b
C°"t;ac' (G4 .1l nweller opened this issue on 4 Sep 2018 - 6 comments E
un
}
contrac
} fun|
. b nweller commented on 4 Sep 2018 « edited ~ Eiler error
It does cor

Across multiple unsigned integer types I've tried - e.g. uint8 - the exponentiation operator can produce
(This repol a result which is outside of the range of that type in some contexts, but exhibits the truncation behavior

the Ethere I'd expect in other contexts.
| | get different failure modes in the truffle-based test framework I'm using (with ganache-cli, Linux,

solc-js 0.4.24 - this produces unexpected values) and http://remix.ethereum.org/ (this produces a VM
error).

See:

ethereum
: & foundation
@'_EHAINSEEURITY V' grants Center@Enl

@ First automated framework for

coitix Lesting Solidity compilers

0 https://github.com/eth-sri/soltix

a https://discord.gg/XKSVavS

: & foundation
S CHAINSECURITY V¥ grants 3 centereem

Safety certification of contracts VerX: Automated formal verification

“Investors can claim refunds only if the sum of
deposits never exceeded 10,000 ether “

Smart contract Formal property
xxxxxxxxxxxxx {
mapping(address => uint) deposits; (always Escrow.claimRefund
function claimRefund(){..} ==> lbefore(sum(deposits) >= 10000)
(D VerX

" 4)’

Verified May not hold
Methods and techniques Symbolic reasoning + abstraction
Initial state

invest(X) /\claimRefund(Y)

- Automated program -
Formal

verification
verification - Proves absence of errors

invest(X) claimRefund(Y)

RELIABILITY

Fuzzing

Automated testing - Symbolic execution - -
Can miss errors
- Time consuming
Manual review = G Bounded depth ()

Feasible width

