Adversarial Training and Provable Defenses: Bridging the Gap

Mislav Balunović, Martin Vechev ETH Zurich

Robustness of Neural Networks

Original image

Background

Given input x, we define convex region $S_0(x)$ as a set of all inputs that attacker can obtain under the specified threat model

We represent neural network as a function $h_{\theta} = h_{\theta}^k \circ h_{\theta}^{k-1} \circ \cdots \circ h_{\theta}^1$

Background

The goal is to prove a property on the output of the network:

$$c^T h_{\theta}(x') + d < 0, \forall x' \in S_0(x)$$

Certification via convex relaxations

Guarantees: $c^T h_{\theta}(x') + d < 0, \forall x' \in S_0(x)$

Min-max optimization problem

To train a model which satisfies the constraint, we can define surrogate loss \mathcal{L} and solve the following min-max formulation (Madry et al. 2017):

$$\min_{\theta} E_{(x,y)\sim D} \max_{x'\in S_0(x)} \mathcal{L}(h_{\theta}(x'), y)$$

This optimization problem can not be solved exactly, so the inner max is usually replaced with an approximation based on **lower** or **upper** bound.

Existing work

Adversarial training

- Replaces inner loss with a lower bound
- Szegedy et al. (2014), Goodfellow et al. (2014), Madry et al. (2017)
- Lacks guarantees on robustness of the resulting model

Provable defenses

- Replaces inner loss with an upper bound
- Wong et al (2017)., Ragunathan et al. (2018), Mirman et al. (2018)
- Provides guaranetees on robustness, but models have lower accuracy

Our work: Can we combine benefits of both approaches to obtain provably robust networks with high accuracy?

Latent Adversarial Examples

 $c^T x_3' + d < 0 \rightarrow \text{certification fails}$

Key idea

We can find latent adversarial examples and use them for training (an instance of adversarial training)

In the first phase, we search for adversarial examples in the region $S_0(x)$ and perform adversarial training on those, which is equivalent with Madry et al. (2017)

In the next phases, we search for latent adversarial examples in regions $C_1(x)$, $C_2(x)$, $C_3(x)$ and perform adversarial training using those examples

Fixing Latent Adversarial Examples

Backpropagate the loss at the output through all intermediate layers

Convex Layerwise Adversarial Training (COLT)

Algorithm 1: Convex layerwise adversarial training via convex relaxations

```
Data: k-layer network h_{\theta}, training set (\mathcal{X}, \mathcal{Y}), learning rate \eta, step size \alpha, inner steps n
     Result: Certifiably robust neural network h_{\theta}
 1 for l \leq k do
           for i \leq n_{epochs} do
                  Sample mini-batch \{(x_1, y_1), (x_2, y_2), ..., (x_b, y_b)\} \sim (\mathcal{X}, \mathcal{Y});
  3
                  Compute convex relaxations \mathbb{C}_l(\boldsymbol{x}_1), \mathbb{C}_l(\boldsymbol{x}_2), ..., \mathbb{C}_l(\boldsymbol{x}_b);
                  Initialize x_1' \sim \mathbb{C}_l(x_1), x_2' \sim \mathbb{C}_l(x_2), ..., x_b' \sim \mathbb{C}_l(x_b);
                  for j \leq b do
                        Update in parallel n times: \mathbf{x}_i' \leftarrow \Pi_{\mathbb{C}_l(\mathbf{x}_i)}(\mathbf{x}_i' + \alpha \nabla_{\mathbf{x}_i'} \mathcal{L}(h_{\theta}^{l+1:k}(\mathbf{x}_i'), y_j));
                  end
 8
                  Update parameters \theta \leftarrow \theta - \eta \cdot \frac{1}{b} \sum_{i=1}^{b} \nabla_{\theta} \mathcal{L}(h_{\theta}^{l+1:k}(\boldsymbol{x}_{j}'), y_{j});
 9
           end
10
           Freeze parameters \theta_{l+1} of layer function h_{\theta}^{l+1};
11
12 end
```

Instantianting the framework

Algorithm 1 can be instantiated using any convex relaxation, for example:

- Box (Mirman et al. 2018, Gowal et al. 2018)
- Zonotope/FastLin (Wong et al. 2018, Zhang et al. 2018, Singh et al. 2018)
- CROWN/DeepPoly (Zhang et al. 2019, Singh et al. 2020)

To apply our algorithm in practice, we need to perform **projection** on the convex set induced by the relaxation

Zonotope relaxation

Each convex region is represented as a set

$$C_l(x) = \{a_l + A_l e \mid e \in [-1, 1]^{m_l}\}$$

 a_l - center of the convex set

 A_l - affine transformation matrix

 L_{∞} threat model (with radius ϵ): $a_0 = x$ and $A_0 = \epsilon I$

Above formulation is from Singh et al. (2018), other variants with same precision are in Wong et al. (2017) and Zhang et al. (2018)

Projection on Zonotope

Key idea: projection on Zonotope can be performed efficiently using change of variables $x' = a_l + A_l e$

Experimental results, CIFAR-10 with 2/255 perturbation

Method	Accuracy (%)	Certified Robustness (%)
Our work	78.4	60.5
Zhang et al. (2020)	71.5	54.0
Wong et al. (2018)	68.3	53.9
Gowal et al. (2018)	70.2	50.0
Xiao et al. (2019)	61.1	45.9
Mirman et al. (2019)	62.3	45.5

Experimental results, CIFAR-10 with 8/255 perturbation

Method	Accuracy (%)	Certified Robustness (%)
Our work	51.7	27.5
Zhang et al. (2020)	54.5	30.5
Mirman et al. (2019)	46.2	27.2
Wong et al. (2018)	28.7	21.8
Xiao et al. (2019)	40.5	20.3

Conclusion

Code:

http://www.sri.inf.ethz.ch