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Robustness of Neural Networks
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Background

Given input x, we define convex region Sy(x) as a set of all inputs that
attacker can obtain under the specified threat model

We represent neural network as a function hg = hf o h§ ™t o+ 0 hj
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hg hg hy

x' € Sy(x) x3 = he(x')



Background

The goal Is to prove a property on the output of the network:

cTho(x") +d < 0,Vx’ € Sy(x)

x' € Sy(x) X5 —  x3 =hg(x)



Certification via convex relaxations

Check output condition:
cTxt +d <0,Vx} € C5(x)

Co(x) = Sp(x) C1(x) Co(x) C3(x)

Guarantees: cThg(x") +d < 0,Vx' € Sy(x)



Min-max optimization problem

To train a model which satisfies the constraint, we can define surrogate
loss £ and solve the following min-max formulation (Madry et al. 2017):

min Ey,y)~p x'rens%)((x)L(he (x'),y)

This optimization problem can not be solved exactly, so the inner max is
usually replaced with an approximation based on lower or upper bound.



Existing work

Adversarial training Provable defenses

* Replaces inner loss with a » Replaces inner loss with an upper
lower bound bound

« Szegedy et al. (2014), « Wong et al (2017)., Ragunathan et
Goodfellow et al. (2014), Madry al. (2018), Mirman et al. (2018)
et al. (2017) * Provides guaranetees on

* Lacks guarantees on robustness, but models have
robustness of the resulting lower accuracy
model

Our work: Can we combine benefits of both approaches
to obtain provably robust networks with high accuracy?



Latent Adversarial Examples

hg h

Co(x) = Sp(x) C1(x) Co(x) C3(x)

c'x3 +d < 0 - certification fails



Key idea

We can find latent adversarial examples and use them for training (an
instance of adversarial training)

In the first phase, we search for adversarial examples in the region Sy(x)

and perform adversarial training on those, which is equivalent with Madry
et al. (2017)

In the next phases, we search for latent adversarial examples in regions
C1(x), C,(x), C3(x) and perform adversarial training using those examples



Fixing Latent Adversarial Examples

hg

Co(x) = So(x) C1(x) Co(x)

Backpropagate the loss at the output
through all intermediate layers




Convex Layerwise Adversarial Training (COLT)

Algorithm 1: Convex layerwise adversarial training via convex relaxations

Data: k-layer network hy, training set (X', )), learning rate 7, step size «, inner steps n
Result: Certifiably robust neural network hg
1 for I < k do

2 for i < ngpocns do

3 Sample mini-batch {(x1,v1), (x2,92), ..., (b, yp) } ~ (X, V);

4 Compute convex relaxations C;(x1), C;(x2)., ....Ci(xp);

5 Initialize x| ~ Ci(x1), x,, ~ Ci(x2), ..., x| ~ Ci(xp);

6 for j < bdo

7 Update in parallel n times: ; < T, (o) () + &Vmgﬁ(}ﬁﬂ k(. AR

8 end

9 Update parameters ) «— 6 — 7 - 1 Z VoL (hLTHF (x )5 i)

10 end ]
11 Freeze parameters ;1 of layer function hifl;

12 end




Instantianting the framework

Algorithm 1 can be instantiated using any convex relaxation, for example:

- Box (Mirman et al. 2018, Gowal et al. 2018]
- Zonotope/FastLin (Wong et al. 2018, Zhang et al. 2018, Singh et al. 2018)
- CROWN/DeepPoly (Zhang et al. 2019, Singh et al. 2020]

To apply our algorithm in practice, we need to perform projection on the
convex set induced by the relaxation



Zonotope relaxation

Each convex region is represented as a set

C,(x) ={a; + Ae| e €[-1,1]™}
a; - center of the convex set
A; - affine transformation matrix

L, threat model (with radius €): ag = x and 4, = €l

Above formulation is from Singh et al. (2018), other variants with same
precision are in Wong et al. (2017) and Zhang et al. (2018]



Projection on Zonotope

Key idea: projection on Zonotope can be performed
efficiently using change of variables x" = a; + A4;e

X, = 2eq — ey
X, =eqt ey




Experimental results, CIFAR-10 with 2/255 perturbation

m Accuracy (%) Certified Robustness (%]

Our work 78.4 60.5
Zhang et al. (2020] 71.5 54.0
Wong et al. (2018] 68.3 53.9
Gowal et al. (2018) 70.2 50.0
Xiao et al. (2019) 61.1 45.9

Mirman et al. (2019) 62.3 45.5



Experimental results, CIFAR-10 with 8/255 perturbation

m Accuracy (%) Certified Robustness (%]

Our work 51.7 27.5
Zhang et al. (2020) 54.5 30.5
Mirman et al. (2019) 46.2 27.2
Wong et al. (2018) 28.7 21.8

Xiao et al. (2019) 40.5 20.3



Conclusion
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