

Adversarial Robustness for Code

Pavol Bielik, Martin Vechev pavol.bielik@inf.ethz.ch, martin.vechev@inf.ethz.ch

Department of Computer Science

Adversarial Robustness

Explaining and Harnessing Adversarial Examples. Goodfellow et. al. ICLR'15

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. Carlini et. al. ICML'18 workshop

IN Sound

Adversarial Robustness for Code

gibbon

Explaining and Harnessing Adversarial Examples. Goodfellow et. al. ICLR'15

IN Sound

Sision

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. Carlini et. al. ICML'18 workshop

Deep Learning + Code

Prior Works

Accuracy

Adversarial Robustness for Code

Adversarial Robustness for Code

Adversarial Robustness Example

Goal (Adversarially Robustness):

Model is correct for all label preserving program transformations

• • •	• • •
v = parseInt(<pre>v = parseInt(</pre>
<pre>color.substr(1),</pre>	hex.substr(42)
radix	radix
))

variable renaming

constant replacement

...
v = parseInt(
 hex.substr(1),
 radix + 0
)
...

```
...
parseInt(
    hex.substr(1),
    radix
)
...
```

semantic equivalence

remove assignment

v = parseInt(
<pre>hex^{abs}.substr^{abs}(1),</pre>
radix ^{abs}
)
• • •

Allows model not to make a prediction if uncertain

Learning to Abstain

Leads to a simpler optimization problem

Property prediction problem is undecidable

Learning to Abstain

Main InsightCombine Robustness + Learning to AbstainHow to Abstain?Deep Gamblers: Learning to Abstain with Portfolio Theory.
Liu et. al. NeurIPS'19

Leads to a simpler optimization problem

Property prediction problem is undecidable

Adversarial Training

Label Preserving Program Transformations

Adversarial Training

program transformations

Yefet et. al. ArXiv'20

Limitations

same or worse robustness

Discrete and disruptive changes

Highly structured and large programs

hard optimization problem

no structural transformations

Refine S

min [max loss(θ , **x** + δ , **y**)] $\delta \in \mathbf{S}(\alpha(\mathbf{x}))$

Refine S

min [max loss(θ , **x** + δ , **y**)] $\delta \in \mathbf{S}(\alpha(\mathbf{x}))$

Representation Learning

nodes attributes G = $\langle V, E, \xi \rangle$ edges

Programs as Graphs

1

Learning to Represent Programs with Graphs. Allamanis et. al. ICLR'18 Generative Code Modeling with Graphs. Brockschmidt et. al. ICLR'19 $\alpha: \\ \langle V, E, \xi \rangle \rightarrow \langle V, E' \subseteq E, \xi \rangle$

Define Refinement

2

Remove Graph Edges

Representation Learning

$$\arg\min_{\alpha} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} |\alpha(\mathbf{x})|$$

subject to $loss(\theta, \mathbf{x}, \mathbf{y}) \approx loss(\theta, \alpha(\mathbf{x}), \mathbf{y})$

nodes attributes G = $\langle V, E, \xi \rangle$ edges

Programs as Graphs

1

Learning to Represent Programs with Graphs. Allamanis et. al. ICLR'18 Generative Code Modeling with Graphs. Brockschmidt et. al. ICLR'19 $\alpha: \\ \langle V, E, \xi \rangle \rightarrow \langle V, E' \subseteq E, \xi \rangle$

Define Refinement

2

Remove Graph Edges

Minimize Graph Size

Evaluation

Evaluation		GNN _{Transformer}		
		Accuracy	Robustness	
	Standard Training	89.3%	54.9%	
	Adversarial Training	90.3%	54.3%	
	All Components	88.4%	83.8%	
		-1% Accuracy	+29% Robustness	

Evalu	lation	GNN _{Transformer}			
		Accuracy	Robustness	Abstain	
	Standard Training	89.3%	54.9%	-	
	Adversarial Training	90.3%	54.3%	-	
0%	All Components	88.4%	83.8%	-	
99%	All Components	99.0%	99.6%	61.3%	
100%	All Components	99.9%	99.9%	75.9%	
Target Accuracy	Allows training highly accurate & robust models				

Adversarial Robustness for Code

For more experiments and results, please refer to the extended version of our paper

We only scratched the surface, more work in domain of code is needed and is being done, e.g.:

Adversarial Examples for Models of Code. Yefet et. al. ArXiv

Optimization-guided binary diversification to mislead neural networks for malware detection. Sharif et. al. ArXiv Semantic Robustness of Models of Source Code. Ramakrishnan et. al., ArXiv