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Adversarial Attack

Example of FGSM attack produced by Goodfellow et al. (2014)
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L∞ Adversarial Ball

Many developed attacks: Goodfellow et al. (2014); Madry et al. (2018); Evtimov et al.
(2017); Athalye & Sutskever (2017); Papernot et al. (2017); Xiao et al. (2018); Carlini
& Wagner (2017); Yuan et al. (2017); Tramèr et al. (2017)

Ballε(input) = {attack | ‖input − attack‖∞ 6 ε}

A net is ε-robust at x if it classifies every example in Ballε(x) the same and correctly
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Adversarial Ball
Is attack ∈ Ballε(panda)?

attack

ε

0.1 ∈ /∈ /∈

0.5 ∈ ∈ /∈
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Prior Work

Increase Network Robustness
Defense: Train a network so that most inputs are mostly robust.

I Madry et al. (2018); Tramèr et al. (2017); Cisse et al. (2017); Yuan et al. (2017);
Gu & Rigazio (2014)

I Network still attackable

Certify Robustness
Verification: Prove that a network is ε-robust at a point

I Huang et al. (2017); Pei et al. (2017); Katz et al. (2017); Gehr et al. (2018)
I Experimentally robust nets not very certifiably robust
I Intuition: not all correct programs are provable
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Problem Statement

Train a Network to be Certifiably Robust1

Given:
I Netθ with weights θ
I Training inputs and labels

Find:
I θ that maximizes number of inputs we can certify are ε-robust

Challenge
I At least as hard as standard training!

1Also addressed by: Raghunathan et al. (2018); Kolter & Wong (2017); Dvijotham et al. (2018)
6 / 27



Problem Statement

Train a Network to be Certifiably Robust1

Given:
I Netθ with weights θ
I Training inputs and labels

Find:
I θ that maximizes number of inputs we can certify are ε-robust

Challenge
I At least as hard as standard training!

1Also addressed by: Raghunathan et al. (2018); Kolter & Wong (2017); Dvijotham et al. (2018)
6 / 27



High Level
Make certification the training goal

I Abstract Interpretation: certify by over-approximating output 2

I Use Automatic Differentiation on Abstract Interpretation

2Cousot & Cousot (1977); Gehr et al. (2018)
Image Credit: Petar Tsankov
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Abstract Interpretation
Cousot & Cousot (1977)

Abstract Interpretation is heavily used in industrial large-scale program analysis to
compute over-approximation of program behaviors 3

Provide
I abstract domain D of abstract points d
I concretization function γ : D → P(Rn)
I concrete function f : Rn → Rn

Develop a sound4 abstract transformer f # : D → D

I ReLU : Rn → Rn becomes ReLU# : D → D

3For example by Astrée: Blanchet et al. (2003)
4f [γ(d)] ⊆ γ(f #(d)) where f [s] is the image of s under f
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Abstract Optimization Goal
Given

I mx(d): a way to compute upper bounds for γ(d).
I ball(x) ∈ D: a ball abstraction s.t. Ballε(x) ⊆ γ(ball(x))
I Losst : an abstractable traditional loss function for classification target t

Errt,Net(x)= Losst ◦Net(x) classical error
AbsErrt,Net(x)= mx◦Loss#

t ◦Net# ◦ ball(x) abstract error

9 / 27

Concrete

Abstract

P(Rn)

P(Rn)
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Using Abstract Goal

Theorem
Errt,Net(y) 6AbsErrt,Net(x) for all points y ∈ Ballε(x)
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Abstract Domains
I Many abstract domains D with different speed/accuracy tradeoffs
I Transformers must be parallelizable, and work well with SGD

z

y

x

Box Domain
I p dimension axis-aligned boxes
I Ballε: perfect
I (·M)#: uses abs
I ReLU#: 6 linear operations, 2 ReLUs

z

y

x

Zonotope Domain
I Affine transform of k-cube onto p dims
I k increases with non-linear transformers
I Ballε: perfect
I (·M)#: perfect
I ReLU#: zBox, zDiag, zSwitch, zSmooth,
I Hybrid: hSwitch, hSmooth
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Implementation
DiffAI Framework

I Can be found at: safeai.ethz.ch
I Implemented in PyTorch5

I Tested with modern GPUs

5Paszke et al. (2017)
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Scalability
CIFAR10

Train 1 Epoch (s) Test 2k Pts (s)

Model #Neurons #Weights Base Attack6 Box Box hSwitch
ConvSuper7 ∼124k ∼16mill 23 149 74 0.09 40

I Can use a less precise domain for training than for certification
I Can test/train Resnet188: 2k points tested on ∼500k neurons in ∼1s with Box
I tldr: can test and train with larger nets than prior work

65 iterations of PGD Madry et al. (2018) for both training and testing
7ConvSuper: 5 layers deep, no Maxpool.
8like that described by He et al. (2016) but without pooling or dropout.
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Robustness Provability
MNIST with ε = 0.1 on ConvSuper

Training Method %Correct %Attack Success %hSwitch Certified
Baseline 98.4 2.4 2.8
Madry et al. (2018) 98.8 1.6 11.2
Box 99.0 2.8 96.4

I Usually loses only small amount of accuracy (sometimes gains)
I Significantly increases provability9

9Much more thorough evaluation in appendix of Mirman et al. (2018).
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hSmooth Training
FashionMNIST with ε = 0.1 on FFNN

Method Train Total (s) %Correct %zSwitch Certified
Baseline 119 94.6 0
Box 608 8.6 0
hSmooth 4316 84.4 21.0

I Training unexpectedly fails with Box (very rare)
I Training slow but reliable with hSmooth
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Conclusion

First application of automatic differentiation to abstract interpretation (that we know of)

Trained and verified the largest verifiable neural networks to date

A way to train networks on regions, not just points10

10Further examples of this use-case in paper
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Box Domain

I Interval for each of the p nodes in network graph
I Represented by center c ∈ Rp and radius b ∈ Rp

+

I Concretization11:
γI(〈c, b〉) = {c + b � β | β ∈ [−1, 1]p}

I Constant matrix multiply transformer12:
(·M)#(〈c, b〉) = 〈c ·M, b · abs(M)〉

I ReLU#: 6 linear operations, 2 ReLUs

11� is pointwise multiply
12p = m × n and M ∈ Rn×w
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c ·M
(·M)#

cM + b · abs(M)

c

c + b · β

Concretization of a Box
red dot where β = (1, 1, 1)



Zonotope Domain
Goubault & Putot (2006)

I Affine transform of k-dimensional unit-cube onto the p network graph nodes
I Represented by center c ∈ Rp×1 and k error terms r ∈ Rp×k

I Concretization:
γZ (〈c, r〉) = {c + re | e ∈ [−1, 1]k×1}

I Constant matrix multiply transformer13:
(·M)#(〈c, r〉) = 〈c ∗M, r ∗M〉

I ReLU#: zBox, zDiag, zSwitch, zSmooth

13for p = m × n and M ∈ Rn×w and ∗ is batched matrix multiply
Zonotope Image uploaded to Wikipedia by user Tomruen and licensed under CC
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Zonotope Domain
SGD Suitable ReLU Transformers

I zBox: Treat as Box when surrounding zero
I zDiag: Add possible error when surrounding zero

mximni mximni mximni

Three examples of zBox (blue) and zDiag (red), with in (i) visualized on X and out on Y axis.
Dashed line is ReLU(in)

I zSwitch: Choose between zBox and zDiag to use based on volume heuristic
I zSmooth: Linear combination of zBox and zDiag based on volume heuristic
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Hybrid Zonotope

I Zonotope ReLU transformers all introduce a new error terms for every node
I Hybrid Zonotope: minkowski sum of a p-box with k-zonotope
I k fixed to be number of pixels
I ReLU#: hSwitch, hSmooth
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Prior Results

System Model #Neurons #Weights Train 1 Epoch (s)

DiffAI
ConvSuper ∼124k ∼16mill 74
Resnet18 ∼500k ∼15mill 93
ConvHuge ∼500k ∼65mill 142

Wong et al. (2018) Large ∼62k ∼2.5mill 466
Resnet ∼107k ∼4.2mill 1685

Wong & Kolter (2018) MNIST Conv ∼4k ∼10k 180
Raghunathan et al. (2018) MNIST 2 layer FFNN ∼1k ∼650k -
Dvijotham et al. (2018) Convnets ∼21k ∼650k -

I Numbers as reported by prior work and not rerun on our hardware
I When hidden unit numbers and weight numbers were included, they were

approximated using the network specifications in the paper with
over-approximations where the specifications were not complete as in Dvijotham
et al. (2018); Raghunathan et al. (2018)
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Ongoing Work

I More provability for deeper networks
I Sound testing w/ respect to floating point
I Inferring maximal provability ε
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