
Differentiable Abstract Interpretation for
Provably Robust Neural Networks

safeai.ethz.ch

Matthew Mirman Timon Gehr Martin Vechev

ICML 2018

1 / 27

http://safeai.ethz.ch/
https://www.mirman.com/
https://www.mirman.com/
https://www.sri.inf.ethz.ch/tg.php
https://www.sri.inf.ethz.ch/tg.php
https://www.sri.inf.ethz.ch/vechev.php
https://www.sri.inf.ethz.ch/vechev.php
https://www.sri.inf.ethz.ch/
https://www.ethz.ch/
https://icml.cc/Conferences/2018/Schedule


Adversarial Attack

Example of FGSM attack produced by Goodfellow et al. (2014)
2 / 27



L∞ Adversarial Ball

Many developed attacks: Goodfellow et al. (2014); Madry et al. (2018); Evtimov et al.
(2017); Athalye & Sutskever (2017); Papernot et al. (2017); Xiao et al. (2018); Carlini
& Wagner (2017); Yuan et al. (2017); Tramèr et al. (2017)

Ballε(input) = {attack | ‖input − attack‖∞ 6 ε}

A net is ε-robust at x if it classifies every example in Ballε(x) the same and correctly

3 / 27



L∞ Adversarial Ball

Many developed attacks: Goodfellow et al. (2014); Madry et al. (2018); Evtimov et al.
(2017); Athalye & Sutskever (2017); Papernot et al. (2017); Xiao et al. (2018); Carlini
& Wagner (2017); Yuan et al. (2017); Tramèr et al. (2017)

Ballε(input) = {attack | ‖input − attack‖∞ 6 ε}

A net is ε-robust at x if it classifies every example in Ballε(x) the same and correctly

3 / 27



Adversarial Ball
Is attack ∈ Ballε(panda)?

attack

ε

0.1 ∈ /∈ /∈

0.5 ∈ ∈ /∈
4 / 27



Prior Work

Increase Network Robustness
Defense: Train a network so that most inputs are mostly robust.

I Madry et al. (2018); Tramèr et al. (2017); Cisse et al. (2017); Yuan et al. (2017);
Gu & Rigazio (2014)

I Network still attackable

Certify Robustness
Verification: Prove that a network is ε-robust at a point

I Huang et al. (2017); Pei et al. (2017); Katz et al. (2017); Gehr et al. (2018)
I Experimentally robust nets not very certifiably robust
I Intuition: not all correct programs are provable

5 / 27



Prior Work

Increase Network Robustness
Defense: Train a network so that most inputs are mostly robust.

I Madry et al. (2018); Tramèr et al. (2017); Cisse et al. (2017); Yuan et al. (2017);
Gu & Rigazio (2014)

I Network still attackable

Certify Robustness
Verification: Prove that a network is ε-robust at a point

I Huang et al. (2017); Pei et al. (2017); Katz et al. (2017); Gehr et al. (2018)
I Experimentally robust nets not very certifiably robust
I Intuition: not all correct programs are provable

5 / 27



Problem Statement

Train a Network to be Certifiably Robust1

Given:
I Netθ with weights θ
I Training inputs and labels

Find:
I θ that maximizes number of inputs we can certify are ε-robust

Challenge
I At least as hard as standard training!

1Also addressed by: Raghunathan et al. (2018); Kolter & Wong (2017); Dvijotham et al. (2018)
6 / 27



Problem Statement

Train a Network to be Certifiably Robust1

Given:
I Netθ with weights θ
I Training inputs and labels

Find:
I θ that maximizes number of inputs we can certify are ε-robust

Challenge
I At least as hard as standard training!

1Also addressed by: Raghunathan et al. (2018); Kolter & Wong (2017); Dvijotham et al. (2018)
6 / 27



High Level
Make certification the training goal

I Abstract Interpretation: certify by over-approximating output 2

I Use Automatic Differentiation on Abstract Interpretation

2Cousot & Cousot (1977); Gehr et al. (2018)
Image Credit: Petar Tsankov

7 / 27

http://www.ptsankov.com/


High Level
Make certification the training goal

I Abstract Interpretation: certify by over-approximating output 2

I Use Automatic Differentiation on Abstract Interpretation

2Cousot & Cousot (1977); Gehr et al. (2018)
Image Credit: Petar Tsankov

7 / 27

http://www.ptsankov.com/


Abstract Interpretation
Cousot & Cousot (1977)

Abstract Interpretation is heavily used in industrial large-scale program analysis to
compute over-approximation of program behaviors 3

Provide
I abstract domain D of abstract points d
I concretization function γ : D → P(Rn)
I concrete function f : Rn → Rn

Develop a sound4 abstract transformer f # : D → D

I ReLU : Rn → Rn becomes ReLU# : D → D

3For example by Astrée: Blanchet et al. (2003)
4f [γ(d)] ⊆ γ(f #(d)) where f [s] is the image of s under f

8 / 27



Abstract Interpretation
Cousot & Cousot (1977)

Abstract Interpretation is heavily used in industrial large-scale program analysis to
compute over-approximation of program behaviors 3

Provide
I abstract domain D of abstract points d
I concretization function γ : D → P(Rn)
I concrete function f : Rn → Rn

Develop a sound4 abstract transformer f # : D → D

I ReLU : Rn → Rn becomes ReLU# : D → D

3For example by Astrée: Blanchet et al. (2003)
4f [γ(d)] ⊆ γ(f #(d)) where f [s] is the image of s under f

8 / 27



Abstract Interpretation
Cousot & Cousot (1977)

Abstract Interpretation is heavily used in industrial large-scale program analysis to
compute over-approximation of program behaviors 3

Provide
I abstract domain D of abstract points d
I concretization function γ : D → P(Rn)
I concrete function f : Rn → Rn

Develop a sound4 abstract transformer f # : D → D

I ReLU : Rn → Rn becomes ReLU# : D → D

3For example by Astrée: Blanchet et al. (2003)
4f [γ(d)] ⊆ γ(f #(d)) where f [s] is the image of s under f

8 / 27



Abstract Optimization Goal
Given

I mx(d): a way to compute upper bounds for γ(d).
I ball(x) ∈ D: a ball abstraction s.t. Ballε(x) ⊆ γ(ball(x))
I Losst : an abstractable traditional loss function for classification target t

Errt,Net(x)= Losst ◦Net(x) classical error
AbsErrt,Net(x)= mx◦Loss#

t ◦Net# ◦ ball(x) abstract error

9 / 27

Concrete

Abstract

P(Rn)

P(Rn)

D

⊆

γ

P(Rn)

P(Rn)

D

⊆

γ

Net

Net#

P(Rn)

P(Rn)

D

⊆

γ

Losst

Loss#
t

x

Ballε

ballε

Errt,Net

AbsErrt,Netmx

6



Using Abstract Goal

Theorem
Errt,Net(y) 6AbsErrt,Net(x) for all points y ∈ Ballε(x)

10 / 27

Concrete

Abstract

P(Rn)

P(Rn)

D

⊆

γ

P(Rn)

P(Rn)

D

⊆

γ

Net

Net#

P(Rn)

P(Rn)

D

⊆

γ

Losst

Loss#
t

x

Ballε

ballε

Errt,Net

AbsErrt,Netmx

6



Abstract Domains
I Many abstract domains D with different speed/accuracy tradeoffs
I Transformers must be parallelizable, and work well with SGD

z

y

x

Box Domain
I p dimension axis-aligned boxes
I Ballε: perfect
I (·M)#: uses abs
I ReLU#: 6 linear operations, 2 ReLUs

z

y

x

Zonotope Domain
I Affine transform of k-cube onto p dims
I k increases with non-linear transformers
I Ballε: perfect
I (·M)#: perfect
I ReLU#: zBox, zDiag, zSwitch, zSmooth,
I Hybrid: hSwitch, hSmooth

11 / 27



Abstract Domains
I Many abstract domains D with different speed/accuracy tradeoffs
I Transformers must be parallelizable, and work well with SGD

z

y

x

Box Domain
I p dimension axis-aligned boxes
I Ballε: perfect
I (·M)#: uses abs
I ReLU#: 6 linear operations, 2 ReLUs

z

y

x

Zonotope Domain
I Affine transform of k-cube onto p dims
I k increases with non-linear transformers
I Ballε: perfect
I (·M)#: perfect
I ReLU#: zBox, zDiag, zSwitch, zSmooth,
I Hybrid: hSwitch, hSmooth

11 / 27



Abstract Domains
I Many abstract domains D with different speed/accuracy tradeoffs
I Transformers must be parallelizable, and work well with SGD

z

y

x

Box Domain
I p dimension axis-aligned boxes
I Ballε: perfect
I (·M)#: uses abs
I ReLU#: 6 linear operations, 2 ReLUs

z

y

x

Zonotope Domain
I Affine transform of k-cube onto p dims
I k increases with non-linear transformers
I Ballε: perfect
I (·M)#: perfect
I ReLU#: zBox, zDiag, zSwitch, zSmooth,
I Hybrid: hSwitch, hSmooth

11 / 27



Implementation
DiffAI Framework

I Can be found at: safeai.ethz.ch
I Implemented in PyTorch5

I Tested with modern GPUs

5Paszke et al. (2017)
12 / 27

http://safeai.ethz.ch/


Scalability
CIFAR10

Train 1 Epoch (s) Test 2k Pts (s)

Model #Neurons #Weights Base Attack6 Box Box hSwitch
ConvSuper7 ∼124k ∼16mill 23 149 74 0.09 40

I Can use a less precise domain for training than for certification
I Can test/train Resnet188: 2k points tested on ∼500k neurons in ∼1s with Box
I tldr: can test and train with larger nets than prior work

65 iterations of PGD Madry et al. (2018) for both training and testing
7ConvSuper: 5 layers deep, no Maxpool.
8like that described by He et al. (2016) but without pooling or dropout.

13 / 27



Robustness Provability
MNIST with ε = 0.1 on ConvSuper

Training Method %Correct %Attack Success %hSwitch Certified
Baseline 98.4 2.4 2.8
Madry et al. (2018) 98.8 1.6 11.2
Box 99.0 2.8 96.4

I Usually loses only small amount of accuracy (sometimes gains)
I Significantly increases provability9

9Much more thorough evaluation in appendix of Mirman et al. (2018).
14 / 27



hSmooth Training
FashionMNIST with ε = 0.1 on FFNN

Method Train Total (s) %Correct %zSwitch Certified
Baseline 119 94.6 0
Box 608 8.6 0
hSmooth 4316 84.4 21.0

I Training unexpectedly fails with Box (very rare)
I Training slow but reliable with hSmooth

15 / 27



Conclusion

First application of automatic differentiation to abstract interpretation (that we know of)

Trained and verified the largest verifiable neural networks to date

A way to train networks on regions, not just points10

10Further examples of this use-case in paper
16 / 27



Bibliography I

Athalye, A. and Sutskever, I. Synthesizing robust adversarial examples. arXiv preprint
arXiv:1707.07397, 2017.

Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
and Rival, X. A static analyzer for large safety-critical software. In Programming
Language Design and Implementation (PLDI), 2003.

Carlini, N. and Wagner, D. A. Adversarial examples are not easily detected: Bypassing
ten detection methods. CoRR, abs/1705.07263, 2017. URL
http://arxiv.org/abs/1705.07263.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and Usunier, N. Parseval networks:
Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854–863, 2017.

Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Symposium on
Principles of Programming Languages (POPL), 1977.

17 / 27

http://arxiv.org/abs/1705.07263


Bibliography II
Dvijotham, K., Gowal, S., Stanforth, R., Arandjelovic, R., O’Donoghue, B., Uesato, J.,

and Kohli, P. Training verified learners with learned verifiers. arXiv preprint
arXiv:1805.10265, 2018.

Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A.,
and Song, D. Robust physical-world attacks on deep learning models. arXiv preprint
arXiv:1707.08945, 2017.

Gehr, T., Mirman, M., Tsankov, P., Drachsler Cohen, D., Vechev, M., and Chaudhuri, S.
Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In Symposium on Security and Privacy (SP), 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Goubault, E. and Putot, S. Static analysis of numerical algorithms. In International
Static Analysis Symposium (SAS), 2006.

18 / 27



Bibliography III
Gu, S. and Rigazio, L. Towards deep neural network architectures robust to adversarial

examples. arXiv preprint arXiv:1412.5068, 2014.
He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In

Computer Vision and Pattern Recognition (CVPR), 2016.
Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety verification of deep neural

networks. In International Conference on Computer Aided Verification (CAV), 2017.
Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. Reluplex: An

efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, 2017.

Kolter, J. Z. and Wong, E. Provable defenses against adversarial examples via the
convex outer adversarial polytope. arXiv preprint arXiv:1711.00851, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning
models resistant to adversarial attacks. 2018.

19 / 27



Bibliography IV

Mirman, M., Gehr, T., and Vechev, M. Differentiable abstract interpretation for
provably robust neural networks. In International Conference on Machine Learning
(ICML), 2018.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and Swami, A.
Practical black-box attacks against machine learning. In Asia Conference on
Computer and Communications Security. ACM, 2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., and Lerer, A. Automatic differentiation in pytorch. 2017.

Pei, K., Cao, Y., Yang, J., and Jana, S. Deepxplore: Automated whitebox testing of
deep learning systems. In Symposium on Operating Systems Principles, 2017.

Raghunathan, A., Steinhardt, J., and Liang, P. Certified defenses against adversarial
examples. arXiv preprint arXiv:1801.09344, 2018.

20 / 27



Bibliography V

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel, P.
Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Wong, E. and Kolter, Z. Provable defenses against adversarial examples via the convex
outer adversarial polytope. 2018.

Wong, E., Schmidt, F., Metzen, J. H., and Kolter, J. Z. Scaling provable adversarial
defenses. arXiv preprint arXiv:1805.12514, 2018.

Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., and Song, D. Generating adversarial
examples with adversarial networks. arXiv preprint arXiv:1801.02610, 2018.

Yuan, X., He, P., Zhu, Q., Bhat, R. R., and Li, X. Adversarial examples: Attacks and
defenses for deep learning. arXiv preprint arXiv:1712.07107, 2017.

21 / 27



Box Domain

I Interval for each of the p nodes in network graph
I Represented by center c ∈ Rp and radius b ∈ Rp

+

I Concretization11:
γI(〈c, b〉) = {c + b � β | β ∈ [−1, 1]p}

I Constant matrix multiply transformer12:
(·M)#(〈c, b〉) = 〈c ·M, b · abs(M)〉

I ReLU#: 6 linear operations, 2 ReLUs

11� is pointwise multiply
12p = m × n and M ∈ Rn×w

22 / 27

c ·M
(·M)#

cM + b · abs(M)

c

c + b · β

Concretization of a Box
red dot where β = (1, 1, 1)



Zonotope Domain
Goubault & Putot (2006)

I Affine transform of k-dimensional unit-cube onto the p network graph nodes
I Represented by center c ∈ Rp×1 and k error terms r ∈ Rp×k

I Concretization:
γZ (〈c, r〉) = {c + re | e ∈ [−1, 1]k×1}

I Constant matrix multiply transformer13:
(·M)#(〈c, r〉) = 〈c ∗M, r ∗M〉

I ReLU#: zBox, zDiag, zSwitch, zSmooth

13for p = m × n and M ∈ Rn×w and ∗ is batched matrix multiply
Zonotope Image uploaded to Wikipedia by user Tomruen and licensed under CC

23 / 27

c + r1

c − r1

c

https://en.wikipedia.org/wiki/Zonohedron#/media/File:Acute_golden_rhombohedron.png


Zonotope Domain
SGD Suitable ReLU Transformers

I zBox: Treat as Box when surrounding zero
I zDiag: Add possible error when surrounding zero

mximni mximni mximni

Three examples of zBox (blue) and zDiag (red), with in (i) visualized on X and out on Y axis.
Dashed line is ReLU(in)

I zSwitch: Choose between zBox and zDiag to use based on volume heuristic
I zSmooth: Linear combination of zBox and zDiag based on volume heuristic

24 / 27



Hybrid Zonotope

I Zonotope ReLU transformers all introduce a new error terms for every node
I Hybrid Zonotope: minkowski sum of a p-box with k-zonotope
I k fixed to be number of pixels
I ReLU#: hSwitch, hSmooth

25 / 27



Prior Results

System Model #Neurons #Weights Train 1 Epoch (s)

DiffAI
ConvSuper ∼124k ∼16mill 74
Resnet18 ∼500k ∼15mill 93
ConvHuge ∼500k ∼65mill 142

Wong et al. (2018) Large ∼62k ∼2.5mill 466
Resnet ∼107k ∼4.2mill 1685

Wong & Kolter (2018) MNIST Conv ∼4k ∼10k 180
Raghunathan et al. (2018) MNIST 2 layer FFNN ∼1k ∼650k -
Dvijotham et al. (2018) Convnets ∼21k ∼650k -

I Numbers as reported by prior work and not rerun on our hardware
I When hidden unit numbers and weight numbers were included, they were

approximated using the network specifications in the paper with
over-approximations where the specifications were not complete as in Dvijotham
et al. (2018); Raghunathan et al. (2018)

26 / 27



Ongoing Work

I More provability for deeper networks
I Sound testing w/ respect to floating point
I Inferring maximal provability ε

27 / 27


	Appendix
	Box Domain
	Zonotope Domain



