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Adversarial Examples

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples.“  

arXiv preprint arXiv:1412.6572 (2014).
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Neural Network Verification
• Robustness property:

𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ℎ 𝑥 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ℎ 𝑥′ 𝑖

∀𝑥′ ∈ B𝜖
∞ 𝑥
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Problem Statement
• Adversarial accuracy requires increased network capacity

• Verification gets increasingly difficult with network depth

➔ Small, provably trained networks have low standard accuracy

➔ ACE: Compose networks with different strengths
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ACE – Compositional Architecture

• For every sample decide whether to 
use core- or certification-network

• Key components:

• Deep standard network

• Shallow provable network

• Selection mechanism

• Train network to predict certification 
difficulty

• Evaluate certification network entropy

Select
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Effectiveness of Selection

• Strong separation of samples based on 
certifiability

• Significantly increased accuracy of the 
certification-network on the selected 
sample subset
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ACE Results

• Significant reduction in certified 
accuracy loss, for gains in natural 
accuracy

• Effect observed across:

 Network architectures

 Perturbation sizes

 Datasets

 Certification and training methods
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Thank you for your attention!

Poster Session 10

Paper and Code:

https://www.sri.inf.ethz.ch/publications/mueller2021boosting 
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