Certified Training: Small Boxes are All You Need

Standard Classification

Adversarial Examples

Exact Propagation

Exact Propagation

Standard Training

Adversarial Training (PGD)

Adversarial Training (PGD)

Certified Training (IBP)

Gowal, et al. "On the effectiveness of interval bound propagation for training verifiably robust models." arXiv 2018 Mirmann et al. "Differentiable abstract interpretation for provably robust neural networks." ICML 2018

SABR – This Work

Regularisation Comparison

Worst-Case Loss Approximation Precision

Growth rate
$$\kappa = \frac{\mathbb{E}\left[\text{Output Box Size}\right]}{\text{Input Box Size}} = \frac{\left|\begin{array}{c} \bullet & \end{array}\right|}{\left|\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array}\right|} \delta_{\text{out}}$$

Linear layers: κ is independent of input box scale:

= W + b

κ ~ [10, 100]

Growth rate
$$\kappa = \frac{\mathbb{E}\left[\text{Output Box Size}\right]}{\text{Input Box Size}} = \frac{\left|\begin{array}{c} \bullet & \bullet \end{array}\right|^{\delta_{\text{out}}}}{\left|\begin{array}{c} \bullet & \bullet \end{array}\right|^{\delta_{\text{out}}}}$$

Linear layers:
$$\kappa$$
 is independent of input box scale:
 $\kappa \sim [10, 100]$
ReLU layers: κ depends on box scale and box centre:
 $\kappa \sim [0, 1]$
 $\kappa \sim [0, 1]$

Growth rate
$$\kappa = \frac{\mathbb{E} \left[\text{Output Box Size} \right]}{\text{Input Box Size}} = \frac{\left| \begin{array}{c} \\ \end{array} \right|^{\delta_{\text{out}}}}{\left| \begin{array}{c} \\ \end{array} \right|^{\delta_{\text{in}}}}$$

Linear layers:
$$\kappa$$
 is independent of input box scale:
 $\kappa \sim [10, 100]$
ReLU layers: κ depends on box scale and box centre:
 $\kappa \sim [0, 1]$
 $= \max(\ 0, 0)$

Full Network Loss Growth

Certified Training: Small Boxes are All You Need - ICLR 2023 - Mark Müller - ETH Zurich

Certified Training: Small Boxes are All You Need – ICLR 2023 – Mark Müller – ETH Zurich

Empirical Results

Empirical Results

MNIST CIFAR-10 TinyImageNet Cert. Acc. [%] 95 98.5 65 36 21 -+5 × 98 33 60 + 90 19-97.5 55 30 × × 17-27 44 97 98 85 90 50 65 99.5 98.5 99 95 100 25 75 53 70 80 47 50 27 29 Std. Acc. [%] $\epsilon = 0.1$ $\epsilon = 0.3$ $\epsilon = 2/255$ $\epsilon = 8/255$ $\epsilon = 1/255$

Conclusion

Thank You For Your Attention!

Paper & Code:

https://www.sri.inf.ethz.ch/publications/mueller2022sabr

https://github.com/eth-sri/SABR

