
Learning to Solve
SMT Formulas

Mislav Balunović, Pavol Bielik, Martin Vechev

Department of Computer Science

SAT

SMT

SMT Formula

φ = (b ∨ -x2 ≥ 2.3y ∨ sin(x)3 = cos(log(y) • x)) ∧

(¬b ∨ y < -34.4 ∨ exp(y) > y/x)
where b ∊ {true, false}, x, y ∊ ℝ

Theories Booleans, Reals, Integers, Arrays, BitVectors, Strings, ...

Does there exist a valid assignment to b, x, y?

b = true

x = 14.32

y = -37.2

SMT Solvers

φ = (b ∨ -x2 ≥ 2.3y ∨ sin(x)3 = cos(log(y) • x)) ∧

(¬b ∨ y < -34.4 ∨ exp(y) > y/x)

φ SMT Solver

Find an assignment to all free variables
in φ such that φ evaluates to true

SAT + model

UNSAT + unsat core

First-order
logic formula

where b ∊ {true, false}, x, y ∊ ℝ

Does there exist a valid assignment to b, x, y?

SMT Solvers

φ SMT Solver

Find an assignment to all free variables
in φ such that φ evaluates to true

Software & Hardware Verification

Neural Networks Verification

Type Inference

Symbolic Execution

Planning

Static Program Analysis

Scheduling

Graph Problems Program Synthesis

Applications

SAT + model

UNSAT + unsat core

First-order
logic formula

Solving SMT Formulas is Hard

φ SMT Solver SAT + model

UNSAT + unsat core

Theory Complexity
Quantifier Free Booleans (SAT) NP-Complete O(nk)

Linear Real Arithmetic 2-EXPTIME O(22)

Linear Integer Arithmetic 3-EXPTIME O(22)

Non-linear Integer Arithmetic undecidable

nk

nk2

First-order
logic formula

Solving SMT Formulas is Hard

φ Set of Handcrafted
Strategies

SAT + model

UNSAT + unsat core

Theory Complexity
Quantifier Free Booleans (SAT) NP-Complete O(nk)

Linear Real Arithmetic 2-EXPTIME O(22)

Linear Integer Arithmetic 3-EXPTIME O(22)

Non-linear Integer Arithmetic undecidable

nk

nk2

First-order
logic formula

Solving SMT Formulas is Hard

φ Set of Handcrafted
Strategies

State-of-the-art SMT Solvers
✘ Easily perform badly on new problems
✘ Require expert knowledge to fix

SAT + model

UNSAT + unsat core

First-order
logic formula

Learning to Solve SMT Formulas

φ Learned Strategies

Fast

✔ Learn fast strategies
✔ No prior knowledge

Our Work:

SAT + model

UNSAT + unsat core

First-order
logic formula

State-of-the-art SMT Solvers
✘ Easily perform badly on new problems
✘ Require expert knowledge to fix

Action
Space

SMT Formula Solving

apply transformation
(tactic)

Constant Folding

x + 0 x

Bit Blasting

x = 5 x
3
 = 0 ∧ x

2
 = 1 ∧

x
1
 = 0 ∧ x

0
 = 10101

2

φ φ φ φ
1

Decision Procedure

Reals, Integers, BitVectors, ...

2 3

true (SAT)

false (UNSAT)

t
1

t
2

t
3

Normalize Bounds

k ≤ x 0 ≤ x’
x’ = x - k

Handcrafted strategies determine which path to take

SMT Formula Solving

φ φ φ φ

532 s

φ

φ

φ

φ

TIMEOUT

12 s

TIMEOUT

TIMEOUT

1

2

2

2

3

3

3

1

2

3

2

3

1
apply transformation

(tactic)

Learning to Solve Formula

SMT
Strategy

t
1
; …; t

n
Modelφ

SAT + model

UNSAT + unsat core

Predict Strategy
φ

Hard to Learn

Handcrafted strategies determine which path to take

Learning to Solve Formula

φ φ φ φ

532 s

φ

φ

φ

φ

TIMEOUT

12 s

TIMEOUT

TIMEOUT

1

2

2

2

3

3

3

1

2

3

2

3

1
apply transformation

(tactic)

Learning to Solve Formula

s s s s

s

s

s

s

a
1

a
1

a
2

a
3

a
2

a
1

a
3

532 s

TIMEOUT

12 s

TIMEOUT

TIMEOUT

1

2

2

2

3

3

3

1

2

3

2

3

1

Learn path with lowest runtime

SMT Formula Solving

Modelφ
SMT

Strategy
t
1
; …; t

n

SAT + model

UNSAT + unsat core

φ Policy SMTt
1 φ1 Policy SMTt

2

SAT

UNSAT
...

Predict Strategy
φ

Predict Single Transformations

Hard to Learn

Internal SMT State Lost Model Not AvailableRuntime Overhead

Easier to Learn

Bit Blasting

x = 5 x
3
 = 0 ∧ x

2
 = 1 ∧

x
1
 = 0 ∧ x

0
 = 10101

2

Learning to Solve SMT Formulas

Learning Policy

Dataset of
Formulas

Learn a policy to
select next tactic

Policy

SMT solved?

Tactic

φ

no

yes

SAT

UNSAT

Learning to Solve SMT Formulas

Learning Policy ExtractionPolicy

Dataset of
Formulas

Learn a policy to
select next tactic

Use the learned policy to
synthesize a Strategy program

Policy

SMT solved?

Tactic

φ

no

yes

SAT

UNSAT

SMT +

✔ No runtime overhead
✔ Integration with existing SMT Solvers

φ SAT + model

UNSAT + unsat core

Program with
Branches

Neural Network Policy

Prior Actions
[simplify, bit_blast, …]

Formula Measures
[num_consts, is_pb, …]

Formula Representation
BOW | Skip-Gram | AST

Embedding

Embedding

[1733, 0, …]

eval on φ

eval on φ

Neural Network Policy

Embedding

Embedding

[1733, 0, …]

ReLU
ReLU

ReLU

SoftM
ax

Sigm
oid

Tactics
0.70: pb2bv

0.15: smt

...

Parameters
0.20: flat

0.75: som

 95: factor

...

Probability distribution
over tactics

Regression to predict
each parameter

eval on φ

eval on φ

Prior Actions
[simplify, bit_blast, …]

Formula Measures
[num_consts, is_pb, …]

Formula Representation
BOW | Skip-Gram | AST

Training

Dataset of Formulas

= {φ, ψ, …, χ}

Training

Sample Policy

Policy

SMT solved?

Tactic

φ

no

yes

SAT

UNSAT

Dataset of Formulas

= {φ, ψ, …, χ}

Training

Training Dataset

Sample Policy

Policy

SMT solved?

Tactic

φ

no

yes

SAT

UNSAT

Dataset of Formulas

= {φ, ψ, …, χ}

Training

Training DatasetRetrain Policy

tactic
 weighted average of cross-entropy loss

+
mean-square-error

 parameters

=

Sample Policy

Policy

SMT solved?

Tactic

φ

no

yes

SAT

UNSAT

Dataset of Formulas

= {φ, ψ, …, χ}

Training

Training DatasetRetrain Policy

tactic
 weighted average of cross-entropy loss

+
mean-square-error

 parameters

=

Sample Policy

Policy

SMT solved?

Tactic

φ

no

yes

SAT

UNSAT

= {φ, ψ, …, χ}

Evaluate

 Learning

Sequential Strategies

𝜋(a | s)

φ
a
1 a

2 a
3

a
1

a
4

a
5

a
1

a
4

a
5

ψ

χ

 Learning Policy Extraction

φ

ψ

χ

𝜋(a | s)

a
1

a
4

a
5

a
1 a

2 a
3

a
1

a
4

a
5

Strategy with Branches

if expr then a
2
 else a

4

a
1

a
4

a
5

a
3

a
2

{φ, ψ, …, χ}

Sequential Strategies

Evaluation
state-of-the-art SMT Solver

Z3
Industrial Benchmarks

AProVE Sage2
Academic Benchmarks

leipzig core hycomp

Learning

Policy Extraction

+
Learning

Policy Extraction

+
Learning

Policy Extraction

+
Learning

Policy Extraction

+
Learning

Policy Extraction

+

Speed-up over Z3

Z3 handcrafted
strategy

Speed-up
log scale

0.1

1

10

100

1000

0 20 40 60 80 100

faster

slower

Formulas

Speed-up over Z3

Z3 handcrafted
strategy

Speed-up
log scale

0.1

1

10

100

1000

0 20 40 60 80 100

faster

slower

Synthesized
Strategy10x Sage2

Formulas

Speed-up over Z3

Z3 handcrafted
strategy

Speed-up
log scale

0.1

1

10

100

1000

0 20 40 60 80 100

faster

slower

Synthesized
Strategy10x

100x

1000x

Sage2

AProVE

Formulas

Speed-up over Z3

Z3 handcrafted
strategy

Formulas

Speed-up
log scale

0.1

1

10

100

1000

0 20 40 60 80 100

faster

slower

Synthesized
Strategy10x

100x

1000x

Sage2

AProVE

leipzig

core

hycomp

Learning to Solve SMT Formulas
http://fastsmt.ethz.ch/

Learning Policy ExtractionPolicy

Dataset of
Formulas

Learn a policy to
select next tactic

Use the learned policy to
synthesize a Strategy program

SMT +

✔ No runtime overhead
✔ Integration with existing SMT Solvers

Policy

SMT solved?

Tactic

φ

no

yes

SAT

UNSAT

φ SAT + model

UNSAT + unsat core

Program with
Branches

http://fastsmt.ethz.ch/

