Fast and Precise Transformer Certification

Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, Martin Vechev Department of Computer Science ETH Zürich, Switzerland

Adversarial Examples for Images

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

Adversarial Examples for NLP

Morris, John, et al. "TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP." Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2020.

Certification pipeline

Threat models

1. Embeddings $(\ell^p \text{ ball})$

Represented as a Multi-Norm Zonotope

Goal: certify robustness against embedding attacks

Goal: certify robustness against synonym attacks

2. Synonyms

Perfectperformanceby theactorSpotlessactingcomedianImpeccableperformer

Transformer networks: architecture & embeddings

Transformer networks: encoder layer

Single attention head

Transformer networks: encoder layer

Multiple attention heads

where $\sigma = \mathrm{softmax}$

Challenges of Transformer network verification

1. Dot Products

Challenges:

- Both terms under perturbation (first,
 Q and K, second softmax(·) and V)
- Quadratic number of dot products

Attention(**Q**, **K**, **V**) = softmax
$$\begin{pmatrix} \mathbf{Q}\mathbf{K}^{\mathsf{T}} \\ \sqrt{d_k} \end{pmatrix} \mathbf{V}$$

Goal: Create a fast and precise dot product abstract transformer

Challenges of Transformer network verification

2. Softmax

Challenges:

- Exponential and Division abstract transformers cause great precision loss
- Concrete output represents a probability distribution, but this information is lost during abstraction

Attention(Q, K, V) = softmax
$$\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)$$
 V

$$ext{softmax}_i(
u_1,\dots,
u_N) = rac{e^{
u_i}}{\sum_{j=1}^N e^{
u_j}}$$

Goal: Create a fast and precise softmax abstract transformer

Classical Zonotopes

$$egin{cases} x=&-\epsilon_1+2\epsilon_2\ y=&\epsilon_1+\epsilon_2\ \epsilon_1,\epsilon_2\in [-1,\,1] \end{cases}$$

$$egin{cases} x=&-5\epsilon_1+3\epsilon_2\ y=&-\epsilon_1+3\epsilon_2\ \epsilon_1,\epsilon_2\in [-1,\,1] \end{cases}$$

Classical Zonotopes

ℓ^p ball representation in Classical Zonotopes

Challenge:

 Classical zonotopes precisely encode ℓ∞ balls but over-approximate other ℓ_p balls, because they have ℓ∞ bounded terms

Goal: Create a zonotope that precisely captures an ℓ_p ball

Multi-Norm Zonotopes

One variable

$$\begin{aligned} x_k &= c_k + \sum_{i=1}^{\mathcal{E}_p} \alpha_k^i \phi_i + \sum_{j=1}^{\mathcal{E}_\infty} \beta_k^j \epsilon_j = c_k + \vec{\alpha}_k \cdot \vec{\phi} + \vec{\beta}_k \cdot \vec{\epsilon} \\ c_k, \alpha_k^i, \beta_k^j \in \mathbb{R}, \quad \|\vec{\phi}\|_p \le 1, \quad \|\epsilon_j\|_\infty \le 1 \end{aligned}$$

Matrix form

$$\vec{x} = \vec{c} + A\vec{\phi} + B\vec{\epsilon}$$
$$\vec{c} \in \mathbb{R}^N, A \in \mathbb{R}^{N \times \mathcal{E}_p}, B \in \mathbb{R}^{N \times \mathcal{E}_\infty}$$
$$\|\vec{\phi}\|_p \le 1, \quad \|\epsilon_j\|_\infty \le 1$$

Abstract Transformer - Dot product

$$\vec{v_1} = (\vec{c_1} + A_1\vec{\phi} + B_1\vec{\epsilon})$$
$$\vec{v_2} = (\vec{c_2} + A_2\vec{\phi} + B_2\vec{\epsilon})$$

Developing the equations

$$\vec{v_1} \cdot \vec{v_2} = (\vec{c_1} + A_1 \vec{\phi} + B_1 \vec{\epsilon}) \cdot (\vec{c_2} + A_2 \vec{\phi} + B_2 \vec{\epsilon})$$

$$= \vec{c_1} \cdot \vec{c_2} + (\vec{c_1}^{\mathsf{T}} A_2 + \vec{c_2}^{\mathsf{T}} A_1) \vec{\phi} + (\vec{c_1}^{\mathsf{T}} B_2 + \vec{c_2}^{\mathsf{T}} B_1) \vec{\epsilon} + (A_1 \vec{\phi} + B_1 \vec{\epsilon}) \cdot (A_2 \vec{\phi} + B_2 \vec{\epsilon})$$
Multi-Norm Zonotope Form
Needs to be developed

Goal: find a Multi-norm Zonotope representation for the last term

Abstract Transformer - Dot product

Challenge:

• Putting bounds on the interaction between noise symbols

$$(A_1\vec{\phi} + B_1\vec{\epsilon}) \cdot (A_2\vec{\phi} + B_2\vec{\epsilon}) = (A_1\vec{\phi}) \cdot (A_2\vec{\phi}) + (A_1\vec{\phi}) \cdot (B_2\vec{\epsilon}) + (B_1\vec{\epsilon}) \cdot (A_2\vec{\phi}) + (B_1\vec{\epsilon}) \cdot (B_2\vec{\epsilon})$$

Idea: Use dual norm to concretize one term, then again to concretize the 2nd term

$$(A_1\vec{\phi} + B_1\vec{\epsilon}) \cdot (A_2\vec{\phi} + B_2\vec{\epsilon}) = (A_1\vec{\phi}) \cdot (A_2\vec{\phi}) + (A_1\vec{\phi}) \cdot (B_2\vec{\epsilon}) + (B_1\vec{\epsilon}) \cdot (A_2\vec{\phi}) + (B_1\vec{\epsilon}) \cdot (B_2\vec{\epsilon})$$

Idea: Use dual norm to concretize one term, then again to concretize the 2nd term

$$(A_1\vec{\phi})\cdot(B_2\vec{\epsilon})$$

$$A_1 \vec{\phi} = \begin{bmatrix} 2\phi_1 + 3\phi_2 \\ 4\phi_1 - 5\phi_2 \end{bmatrix}$$
$$B_2 \vec{\epsilon} = \begin{bmatrix} 2\epsilon_1 - 3\epsilon_2 + 4\epsilon_3 \\ 4\epsilon_1 + 5\epsilon_2 + 5\epsilon_3 \end{bmatrix}$$

Idea: Use dual norm to concretize one term, then again to concretize the 2nd term

$$\begin{aligned} \left| \begin{bmatrix} 2\phi_1 + 3\phi_2 \\ 4\phi_1 - 5\phi_2 \end{bmatrix} \cdot \begin{bmatrix} 2\epsilon_1 - 3\epsilon_2 + 4\epsilon_3 \\ 4\epsilon_1 + 5\epsilon_2 + 5\epsilon_3 \end{bmatrix} \right| &\leq \left| \begin{bmatrix} 2\phi_1 + 3\phi_2 \\ 4\phi_1 - 5\phi_2 \end{bmatrix} \right| \cdot \left| \begin{bmatrix} 2\epsilon_1 - 3\epsilon_2 + 4\epsilon_3 \\ 4\epsilon_1 + 5\epsilon_2 + 5\epsilon_3 \end{bmatrix} \right| \\ &\leq \left| \begin{bmatrix} 2\phi_1 + 3\phi_2 & 4\phi_1 - 5\phi_2 \end{bmatrix} \right| \begin{bmatrix} |2\epsilon_1 - 3\epsilon_2 + 4\epsilon_3| \\ |4\epsilon_1 + 5\epsilon_2 + 5\epsilon_3| \end{bmatrix} \\ &\leq \left| \begin{bmatrix} 2\phi_1 + 3\phi_2 & 4\phi_1 - 5\phi_2 \end{bmatrix} \right| \begin{bmatrix} ||2 & -3 & 4||_1 \\ ||4 & 5 & 5||_1 \end{bmatrix} \\ &\leq \left| \begin{bmatrix} 2\phi_1 + 3\phi_2 & 4\phi_1 - 5\phi_2 \end{bmatrix} \right| \begin{bmatrix} ||2 & -3 & 4||_1 \\ ||4 & 5 & 5||_1 \end{bmatrix} \end{aligned}$$

$$\begin{split} \left| \begin{bmatrix} 2\phi_1 + 3\phi_2 & 4\phi_1 - 5\phi_2 \end{bmatrix} \right| \begin{bmatrix} 9\\ 14 \end{bmatrix} &= \begin{bmatrix} 9 & 14 \end{bmatrix} \left| \begin{bmatrix} 2\phi_1 + 3\phi_2\\ 4\phi_1 - 5\phi_2 \end{bmatrix} \right| \\ &= \begin{bmatrix} 9 & 14 \end{bmatrix} \left| \begin{bmatrix} 2 & 3\\ 4 & -5 \end{bmatrix} \left| \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \right| \\ &\leq \begin{bmatrix} 9 & 14 \end{bmatrix} \left| \begin{bmatrix} 2 & 3\\ 4 & -5 \end{bmatrix} \right| \left| \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \right| \\ &= \begin{bmatrix} 9 & 14 \end{bmatrix} \left[\begin{bmatrix} 2 & 3\\ 4 & -5 \end{bmatrix} \left| \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \right| \\ &= \begin{bmatrix} 60 & 106 \end{bmatrix} \left| \begin{bmatrix} \phi_1\\ \phi_2 \end{bmatrix} \right| \\ &= \begin{bmatrix} 60\phi_1 + 106\phi_2 \end{bmatrix} \right| \\ &\leq \| 60\phi_1 + 106\phi_2 \|_q \\ &= 106 \end{split}$$

Idea: Use dual norm to concretize one term, then again to concretize the 2nd term

$$egin{aligned} |(Vec{\xi}_{p_1}) \cdot (Wec{\xi}_{p_2})| &\leq \left\| igg(egin{aligned} \|ec{w}_1\|_{q_2} \ dots \ \|ec{w}_N\|_{q_2} \end{array} igg)^T \ |V|
ight\|_{q_1} \ p_1, p_2 \in \{1, 2, \infty\} \end{aligned}$$

Q: Which of the 2 terms should be concretized first in practice?

A: The order was chosen empirically.

Challenge:

• Putting bounds on the interaction between noise symbols

$$(A_1\vec{\phi} + B_1\vec{\epsilon}) \cdot (A_2\vec{\phi} + B_2\vec{\epsilon}) = (A_1\vec{\phi}) \cdot (A_2\vec{\phi}) + (A_1\vec{\phi}) \cdot (B_2\vec{\epsilon}) + (B_1\vec{\epsilon}) \cdot (A_2\vec{\phi}) + (B_1\vec{\epsilon}) \cdot (B_2\vec{\epsilon})$$

Idea: use standard interval analysis to bound the ($\ell_{\infty} imes \ \ell_{\infty}$) dot product

$$\begin{bmatrix} 2\epsilon_1 - 3\epsilon_2 \\ -1\epsilon_1 + \epsilon_2 \end{bmatrix} \begin{bmatrix} 3\epsilon_1 - 4\epsilon_2 \\ 1\epsilon_1 + 2\epsilon_2 \end{bmatrix} = (2\epsilon_1 - 3\epsilon_2)(3\epsilon_1 - 4\epsilon_2) + (-1\epsilon_1 + \epsilon_2)(1\epsilon_1 + 2\epsilon_2)$$

$$= 5\epsilon_1^2 - 10\epsilon_1\epsilon_2 - 8\epsilon_2\epsilon_1 + 14\epsilon_2^2$$

$$= 5\epsilon_1^2 - 18\epsilon_1\epsilon_2 + 14\epsilon_2^2$$

$$\in 5[0, 1] - 18[-1, 1] + 14[0, 1]$$

$$\in [0, 5] + [-18, 18] + [0, 14]$$

$$\in [-18, 37]$$

Goubault, Eric, and Sylvie Putot. "Static analysis of numerical algorithms." International Static Analysis Symposium. Springer, Berlin, Heidelberg, 2006.

Idea: use standard interval analysis to bound the ($\ell_{\infty} imes \ \ell_{\infty}$) dot product

$$(V\vec{\epsilon})\cdot(W\vec{\epsilon})\in\sum_{i=1}^{\mathcal{E}_{\infty}}(\vec{v}_i\cdot\vec{w}_i)[0,1]+\sum_{i\neq j}^{\mathcal{E}_{\infty}}(\vec{v}_i\cdot\vec{w}_j)[-1,1]$$

Goubault, Eric, and Sylvie Putot. "Static analysis of numerical algorithms." International Static Analysis Symposium. Springer, Berlin, Heidelberg, 2006.

Abstract Transformer - Softmax

Challenge:

• Exponential and Division abstract transformers cause great precision loss

Improvement: softmax re-formulation

Advantages:

- 1. Noise symbol cancellation
- 2. No multiplication (only reciprocal)
- 3. Output always in [0, 1]

softmax_i(v₁,..., v_N) = $\frac{e^{v_i}}{\sum_{j=1}^N e^{v_j}} = \frac{1}{\sum_{j=1}^N e^{v_j-v_i}}$

Abstract Transformer - Softmax

Challenges

 Concrete output represents a probability distribution, but this information is lost during abstraction

Improvement 2: enforcing softmax properties

- Enforce output zonotope variables to be positive (by construction of our abstract transformers)
- Enforce output zonotope variables to sum to 1 (based on previous work on linear constraints on zonotopes [1])

Experimental setup

Task: verifying Transformer Networks performing binary classification **Baseline :** CROWN-BaF and CROWN-Backward [1] **Dasaset:** SST/Yelp sentiment polarity datasets (output = *positive/negative* sentiment)

Example: "Offers a breath of the fresh air of true sophistication." \rightarrow Positive sentiment

Challenge: considerably bigger networks than previous work

- Deeper networks (up to 12 layers, previous maximum was 3 layers)
- Large embedding sizes (up to 256 dimensions)
- Large hidden size of feed-forward-networks in the encoder layer (up to 512 dimensions)

[1] Shi, Zhouxing, et al. "Robustness Verification for Transformers." In: 8th International Conference on Learning Representations (ICLR) 2020

Evaluation - Embedding attack (ℓ_{∞})

M	DeepT-Fast			CR	OWN-H	BaF	DeepT-Precise CROWN-			N-Bacl	J-Backward	
IVI	Min	Avg	Time	Min	Avg	Time	Min	Avg	Time	Min	Avg	Time
3	0.013	0.034	17.2	0.013	0.033	3.9	0.013	0.038	432.2	0.013	0.037	65.4
6	0.014	0.031	33.8	0.014	0.025	10.6	0.014	0.036	1195.1	0.015	0.033	215.5
12	9.3e-3	0.021	69.0	1.9e-3	6.3e-3	44.9	8.8e-3	0.024	2676.5	9.9e-3	0.022	839.9
				<u>.</u>								

Evaluation - Embedding attack (ℓ_{∞})

	DeepT-Fast			CR	OWN-H	BaF	Dee	epT-Pre	ecise	CROWN-Backward		
IVI	Min	Avg	Time	Min	Avg	Time	Min	Avg	Time	Min	Avg	Time
3	0.013	0.034	17.2	0.013	0.033	3.9	0.013	0.038	432.2	0.013	0.037	65.4
6	0.014	0.031	33.8	0.014	0.025	10.6	0.014	0.036	1195.1	0.015	0.033	215.5
12	9.3e-3	0.021	69.0	1.9e-3	6.3e-3	44.9	8.8e-3	0.024	2676.5	9.9e-3	0.022	839.9
20												

Evaluation - Embedding attack (all norms)

11	ℓ_p	D	eepT-Fas	t	CI	Datio		
111		Min	Avg	Time	Min	Avg	Time	Ratio
	ℓ_1	0.036	1.808	28.8	0.036	1.686	9.7	1.07
3	ℓ_2	6.4e-3	0.330	29.2	6.2e-3	0.328	10.6	1.01
	ℓ_{∞}	2.1e-3	0.032	26.2	6.0e-4	0.033	9.7	0.99
	ℓ_1	0.089	1.191	63.6	0.070	0.470	29.8	2.53
6	ℓ_2	0.015	0.212	64.5	0.012	0.083	29.8	2.56
	ℓ_{∞}	1.2e-3	0.021	57.1	1.1e-3	8.0e-3	27.0	2.56
	ℓ_1	0.358	0.512	125.9	1.3e-3	0.018	100.7	28.4
12	ℓ_2	0.074	0.107	129.4	2.6e-4	3.7e-3	106.3	29.3
	ℓ_∞	7.3e-3	0.011	113.4	2.5e-5	3.5e-4	87.4	29.8

Embedding attack - combining the verifiers

м	Combin	ned Deep	Г verifier	CROW	N-Backy	ward
/ VI	Min	Avg	Time	Min	Avg	Time
6	0.014	0.034	227.0	0.015	0.033	289.4
12	9.1e-3	0.023	423.7	9.9e-3	0.022	818.8

Synonym attack example:

Tokens	#Synonyms	Synonyms
No	3	no, not, without
reason	1	reasons
for	0	Ø
	(sombody, someone, anybody,
anyone	0	everyone, person, nobody
to	0	Ø
invest	0	Ø
their	0	Ø
hard-earned	0	Ø
bucks	1	money
into	5	at, towards, toward, in, for
a	0	Ø
movie	3	film, films, cinema
which	0	Ø
abrianaly	F	clearly, naturally, apparently,
obviously	5	plainly, definitely
did	4	did, could, got, do, does
n't	0	Ø
invest	0	Ø
much	5	very, many, highly, greatly, heavily
into	6	at, under, towards, in, for
ite alf	(himself, themselves, ourselves,
itsen	0	myself, yourself, herself
either	0	Ø
	0	Ø

Evaluation - Synonym attacks

DeepT has similar performance compared to CROWN, which is expected given that the Transformer Network:

- was certifiability pretrained for CROWN [1]
- is shallow (3 layers)

	Certified Sentences	Certified Percentage	Time (s)
CROWN-BaF	121	89%	2.60
DeepT-fast	120	88%	2.41

Future work: Improve scalability of certifiable training methods for Transformer Networks.

[1] Xu, Kaidi, et al. "Automatic perturbation analysis for scalable certified robustness and beyond." NeuIPS (2020).

Comparing DeepT and CROWN

	DeepT	CROWN [1]	
Precision	Abstract transformers tailored for the attention (softmax, dot product)	Abstract transformers composed of the transformers for *, /, exp.	
Speed/memory vs Precision Trade-off	Precisely tunable	Coarsely tunable	
Computational Cost w.r.t. depth	O(d)	O(d^2)	
Memory Usage w.r.t. depth	O(1)	O(d)	

[1] Shi, Zhouxing, et al. "Robustness Verification for Transformers." In: 8th International Conference on Learning Representations (ICLR) 2020

Summary

- Introduced the **Multi-norm Zonotope domain** alongside its abstract transformers.
- Constructed precise and fast **dot-product** and **softmax** abstract transformers for Transformer networks.
- Implemented a verifier called **DeepT** that scales certification to significantly **deeper** Transformer networks.
- Developed the **first** robustness certifier for **synonym** attacks on Transformer networks.

Thank you!