Learning Programs from Noisy Data

Veselin Raychev

Pavol Bielik Martin Vechev Andreas Krause

ETH Zurich

Input/output examples

often easier to provide examples than specification (e.g. in FlashFill)

Actual goal: produce p that the user really wanted and tried to specify

Actual goal: produce p that the user really wanted and tried to specify

Key problem of synthesis: overfits, not robust to noise

Handling errors in the dataset

Number of Examples

Learned program complexity

Program synthesis This paper Deep learning bridges a gap (PL) (ML) Handling errors in the dataset Bridges gap between ML and PL Number of Examples Advances both areas Learned program complexity

expands capabilities of existing synthesizers

new state-of-the-art precision for programming tasks

In this paper

- A general framework that handles
 - errors in training dataset
 - learns statistical models on data
 - handles synthesis with millions of examples

- Instantiated with two synthesizers
 - generalize existing works

Contributions

Handling noise

Input/output examples

Contributions

Input/output examples

Input/output examples

Domain Specific Language

Input/output examples

synthesizer

Domain Specific Language

Input/output examples

synthesizer

Domain Specific Language

p such that

p(●) = ■ p(●) = ■

• • •

p such that

p(•) = p(•)=

• • •

Input/output examples

O/ incorrect example (e.g. a typo)

p such that

p(<u>○</u>)≠□

from synthesizer

 Ask for more examples

Handling noise: problem statement

Noisy synthesis using SMT $p_{best} = \arg \min_{p \in P} (P, p) + \lambda r(p)$ total solution Costnumber of instructions

Noisy synthesis using SMT $p_{best} = \arg \min_{p \in P} errors(D, p) + \lambda r(p)$ total solution Cost number of instructions

Ask a number of
SMT queries
in increasing value
of solution cost

cost		ทเ	umber of	error	S
0 1 2		2	3		
1 r 2 3	0.6	1.6	2.6	3.6	
	2	1.2	2.2	3.2	4.2
	3	1.8	2.8	3.8	4.8

Ask a number of
SMT queries
in increasing value
of solution cost

cost		ทเ	umber of	error	S
CUSL		0 1 2 3		3	
1		UNSAT	1.6	2.6	3.6
r	2	1.2	2.2	3.2	4.2
	3	1.8	2.8	3.8	4.8

Ask a number of
SMT queries
in increasing value
of solution cost

cost		nı	imber of	error	S
			3		
	1	UNSAT	1.6	2.6	3.6
r	2	UNSAT	2.2	3.2	4.2
	3	1.8	2.8	3.8	4.8

Ask a number of
SMT queries
in increasing value
of solution cost

cost		ทเ	umber of	error	S
		0	1	2	3
	1	UNSAT	UNSAT	2.6	3.6
r	2	UNSAT	2.2	3.2	4.2
	3	1.8	2.8	3.8	4.8

Ask a number of
SMT queries
in increasing value
of solution cost

cost		ทเ	umber of	error	S
COSL		0	1	2	3
	1	UNSAT	UNSAT	2.6	3.6
r	2	UNSAT	2.2	3.2	4.2
	3	UNSAT	2.8	3.8	4.8

Ask a number of
SMT queries
in increasing value
of solution cost

cost		ทเ	umber of	error	S
	151	0	1	2	3
	1	UNSAT	UNSAT	2.6	3.6
r	2	UNSAT	SAT	3.2	4.2
	3	UNSAT	2.8	3.8	4.8

Ask a number of SMT queries in increasing value of solution cost

Noisy synthesizer: example

Take an actual synthesizer and show that we can make it handle noise

Implementation: BitSyn

For BitStream programs, using Z3

similar to Jha et al.[ICSE'10] and Gulwani et al.[PLDI'11]

Implementation: BitSyn

For BitStream programs, using Z3

similar to Jha et al.[ICSE'10] and Gulwani et al.[PLDI'11]

Question: how well does our synthesizer discover noise? (in programs from prior work)

Question: how well does our synthesizer discover noise? (in programs from prior work)

Question: how well does our synthesizer discover noise? (in programs from prior work)

So far... handling noise

- Problem statement and regularization
- Synthesis procedure using SMT
- Presented one synthesizer

Handling noise enables us to solve new classes of problems beyond normal synthesis

Contributions

Handling noise

Input/output examples

Contributions

Handling noise Input/output examples

Large number of examples:

p_{best} = arg min cost(D, p) p∈P

Large number of examples:

 $p_{best} = arg min cost(D, p)$ $p \in P$

D

Millions of input/output examples

Large number of examples:

computing COSt(D, p)
O(|D|)

D

Millions of input/output examples

Large number of examples:

D

Millions of input/output examples computing COSt(D, p)

Synthesis: practically intractable

Large number of examples:

computing cost(D, p)

O(|D|)

Millions of input/output examples

D

Synthesis: practically intractable

Key idea: iterative synthesis on fraction of examples

Our solution: two components

Synthesizer for small number of examples

given dataset d, finds best program

Our solution: two components

Synthesizer for small number of examples

given dataset d, finds best program

Program generator Representative dataset sampler

Program generator

Representative dataset sampler

Start with a small random sample $d \subseteq D$

Program generator

Representative dataset sampler

Start with a small random sample $d \subseteq D$

Program generator

Representative dataset sampler

Start with a small random sample $d \subseteq D$

Program generator

Representative dataset sampler

Start with a small random sample $d \subseteq D$

Program generator

Representative dataset sampler

Start with a small random sample $d \subseteq D$

Program generator

Representative dataset sampler

Start with a small random sample $d \subseteq D$

Program generator

Representative dataset sampler

Start with a small random sample $d \subseteq D$

Idea: pick a small dataset d for which a set of already generated programs $p_1,...,p_n$ behave like on the full dataset

d = arg min_{d $\subseteq D$} max_{i $\in 1..n$} | cost(d, p_i) - cost(D, p_i) |

Idea: pick a small dataset d for which a set of already generated programs $p_1,...,p_n$ behave like on the full dataset

d = arg min $d \subseteq D$ max_{i \in 1..n} | cost(d, p_i) - cost(D, p_i) |

So far... handling large datasets

• Iterative combination of synthesis and sampling

• New way to perform approximate empirical risk minimization

• Guarantees (in the paper)

Contributions

Handling noise

Input/output examples

Contributions

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to make predictions about programs

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to make predictions about programs

1. Train machine learning model

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to make predictions about programs

1. Train machine learning model

2. Make predictions with model

element.className = this.options.classN element.style.width = this.options.widt element.style. 0 height

anva

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to make predictions about programs

Existing machine learning models

Essentially remember mapping from context in training data to prediction (with probabilities)

Essentially remember mapping from context in training data to prediction (with probabilities)

Hindle et al.[ICSE'12]

```
function d3_vendorSymbol(object, name) {
    if (name in object) return name;
    name = name.charAt(0).toUpperCase() + name.slice(1);
    for (var i = 0, n = d3_vendorPrefixes.length; i < n; -
        var prefixName = d3_vendorPrefixes[i] + name:</pre>
```


Essentially remember mapping from context in training data to prediction (with probabilities)

This model comes from NLP

Learn a program that parametrizes a probabilistic model that makes predictions.

1. Synthesize program describing a model

Training and evaluation

Training example: function d3_vendorSymbol(object, name) { if (name in object) return name; name = name.charAt(0).toUpperCase() + name.

for (var i = 0, n = d3_vendorPrefixes.length; i < n; var prefixName = d3 vendorPrefixes[i] + name:</pre>

input

slice output

Evaluation example:

/)
cc, word) => {
acc + ' ' + word[0].toUpperCase() + word.

Observation

Synthesis of probabilistic model can be done with the same optimization problem as before!

Observation

Synthesis of probabilistic model can be done with the same optimization problem as before!

So far...

Handling noise

Synthesizing a model

Representative dataset sampler

Techniques are generally applicable to program synthesis

Next, application for "Big Code" called DeepSyn

DeepSyn: Training

Trained on 100'000 JavaScript files from GitHub

DeepSyn: Training

Trained on 100'000 JavaScript files from GitHub

DeepSyn: Evaluation

this.renderAction(working, value); context.addClass("has-action"); } if (! content.) { context.add get led"); }

50'000 evaluation files (not used in training or synthesis)

API completion task

DeepSyn: Evaluation

50'000 evaluation files (not used in training or synthesis)

API completion task

This work

Conditioning program p	Accuracy
Last two tokens, Hindle et al.[ICSE'12]	22.2%
Last two APIs per object, Raychev et al.[PLDI'14]	30.4%
Program synthesis with noise	46.3%
Program synthesis with noise + dataset sampler	50.4%

DeepSyn: Evaluation

50'000 evaluation files (not used in training or synthesis)

API completion task

This work

Conditioning program p	Accuracy
Last two tokens, Hindle et al.[ICSE'12]	22.2%
Last two APIs per object, Raychev et al.[PLDI'14]	30.4%
Program synthesis with noise	46.3%
Program synthesis with noise + dataset sampler	50.4%

We can explain best program. It looks at API preceding completion position and at tokens prior to these APIs.

What did we synthesize?

Left PrevActor WriteAction WriteValue PrevActor WriteAction PrevLeaf WriteValue PrevLeaf WriteValue

