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learn a function

?

Actual goal: produce p that the user really wanted and tried to specify

often easier to provide 
examples than specification

(e.g. in FlashFill)

the user may make a 
mistake in the 

examples

Key problem of synthesis: overfits, not robust to noise
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expands capabilities of
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● A general framework that handles
○ errors in training dataset
○ learns statistical models on data
○ handles synthesis with millions of examples

● Instantiated with two synthesizers
○ generalize existing works
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Input/output 
examples synthesizer

Domain
Specific

Language

p such that p( )=

...
p( )=

incorrect example
(e.g. a typo)

p( )≠
new kind of feedback

from synthesizer
● Tell user to 

remove 
suspicious 
example, or

● Ask for more 
examples

✔

❌

✔

✔
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if    return
if    return
if    return
if    return
return 

Issue: such a program makes
no errors

and it may be the only 
solution to the 
minimization problem

Handling noise: problem statement
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D: Input/output 
examples

incorrect 
examples

synthesizer pbest = arg min errors(D, p)
p∈P

Too long program, hardcodes the input/outputs.
Synthesis must penalize such answers

dataset of 
input/output 

examples

space of possible 
programs in DSL

Our problem formulation:

pbest = arg min errors(D, p) + λr(p) 
p∈P

regularizer
penalizes long 

programs

regularization constant

error rate
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encoding

err1 = if p(  )=    then 0 else 1
err2 = if p(  )=    then 0 else 1
err3 = if p(  )=    then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr  (with r instructions)

pbest = arg min errors(D, p) + λr(p) 
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number of 
instructions
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cost

Ask a number of 
SMT queries
in increasing value 
of solution cost

e.g. for

λ = 0.6
costs are

UNSAT

UNSAT

UNSAT

UNSAT

SAT

best program is 
with two 
instructions and 
makes one error

formula given 
to SMT solver
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Take an actual synthesizer and
show that we can make it handle noise
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For BitStream programs, using Z3

similar to Jha et al.[ICSE’10] and Gulwani et al.[PLDI’11]

 Example program:

function check_if_power_of_2(int32 x) {
   var o = add(x, 1)
   return bitwise_and(x, o)
}

synthesized, short loop-free programs

Question: how well does our synthesizer discover noise?
(in programs from prior work)

best area to be in. empirically pick λ here 



So far… handling noise 

● Problem statement and regularization
● Synthesis procedure using SMT
● Presented one synthesizer

Handling noise enables us to solve new classes of 
problems beyond normal synthesis
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Large number of examples:

pbest = arg min cost(D, p)

D

Millions of
input/output 

examples

computing  cost(D, p)

O( |D| )

Synthesis: practically intractable

Key idea: iterative synthesis on
fraction of examples

p∈P
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pbest = arg min cost(d, p)
p∈P

Program 
generator

Synthesizer for small number of examples
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pbest = arg min cost(d, p)
p∈P

Program 
generator

Dataset
sampler

Picks dataset d ⊆ D

Synthesizer for small number of examples

We introduce representative dataset 
sampler

Generalize a user providing input/output 
examples



In a loop

51

Representative 
dataset sampler

Program 
generator



In a loop

52

Representative 
dataset sampler

Program 
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.



In a loop

53

Representative 
dataset sampler

Program 
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program 
generator p1



In a loop

54

Representative 
dataset sampler

Program 
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program 
generator p1

Representative 
dataset samplerd



In a loop

55

Representative 
dataset sampler

Program 
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program 
generator p1

Program 
generator p1 , p2

Representative 
dataset samplerd



In a loop

56

Representative 
dataset sampler

Program 
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program 
generator p1

Program 
generator p1 , p2

Representative 
dataset sampler

Representative 
dataset samplerd



In a loop

57

Representative 
dataset sampler

Program 
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program 
generator p1

Program 
generator p1 , p2

Representative 
dataset sampler

pbest

Representative 
dataset samplerd



In a loop

58

Representative 
dataset sampler

Program 
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program 
generator p1

Program 
generator p1 , p2

Representative 
dataset sampler

pbest

Representative 
dataset samplerd

Algorithm generalizes synthesis by 
examples techniques
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Costs on small dataset d

Costs on full dataset D

p1 p2

p1 p2

Idea: pick a small dataset d for which a set of already 
generated programs p1,...,pn behave like on the full dataset

d = arg min d ⊆ D     maxi∊1..n   | cost(d, pi) - cost(D, pi) | 

Theorem: this sampler shrinks the candidate program search space
In evaluation: significant speedup of synthesis



So far... handling large datasets

● Iterative combination of synthesis and sampling

● New way to perform approximate
empirical risk minimization

● Guarantees (in the paper)
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Representative 
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sampler

Program 
generator
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1. Train machine 
learning model

2. Make predictions
with model

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to 
make predictions about programs

hard-coded model
low precision
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Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12] Learn a mapping

Model will predict slice when it 
sees it after “+ name .”

This model comes from NLP

+ name . slice

Learn a mapping

Model will predict slice when it 
sees it after “charAt”
Relies on static analysis

charAt slice

Very low precision

Low precision for JavaScript

Core problem:
Existing machine learning

models are limited and not
expressive enough



Key idea: second-order learning
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Learn a program that parametrizes a probabilistic model 
that makes predictions.
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program

describing a model

Learn a program that parametrizes a probabilistic model 
that makes predictions.
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1. Synthesize
program

describing a model

i.e. learn the mapping

2. Train model

Learn a program that parametrizes a probabilistic model 
that makes predictions.
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1. Synthesize
program

describing a model

i.e. learn the mapping

2. Train model 3. Make predictions
with this model

Learn a program that parametrizes a probabilistic model 
that makes predictions.



Key idea: second-order learning
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1. Synthesize
program

describing a model

i.e. learn the mapping

2. Train model 3. Make predictions
with this model

Learn a program that parametrizes a probabilistic model 
that makes predictions.

prior models are described by simple 
hard-coded programs

Our approach:
learn a better program



output

Training and evaluation

Training example:
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slice

input



output

Training and evaluation

Training example:
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slice

Compute context
with program p

input



output

Training and evaluation

Training example:
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slice

Learn a mapping

toUpperCase slice

Compute context
with program p

input



output

Training and evaluation

Training example:
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slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

input



output

Training and evaluation

Training example:
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slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

Compute context 
with program p

input



output

Training and evaluation

Training example:
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slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

slice

Compute context 
with program p predict completion

input



output

Training and evaluation

Training example:
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slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

slice

Compute context 
with program p predict completion

✔

input



Observation

Synthesis of probabilistic model can be done with the 
same optimization problem as before!
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Our problem formulation:

pbest = arg min errors(D, p) + λr(p) 
p∈P

regularizer
penalizes long 

programs

regularization constant

evaluation data: 
input/output 

examples



Observation

Synthesis of probabilistic model can be done with the 
same optimization problem as before!
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Our problem formulation:

pbest = arg min errors(D, p) + λr(p) 
p∈P

regularizer
penalizes long 

programs

regularization constant

evaluation data: 
input/output 

examples
cost(D, p)



So far...
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Handling noise

Synthesizing a model

Representative dataset sampler

Techniques are generally applicable to program synthesis

Next, application for “Big Code” called DeepSyn



DeepSyn: Training

Trained on 100’000 JavaScript files from GitHub
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Program synthesizer

Representative 
dataset sampler

Program 
generator

D



DeepSyn: Training

Trained on 100’000 JavaScript files from GitHub
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Program synthesizer

Representative 
dataset sampler

Program 
generator

D

Train model on full data
and best program p

pD



DeepSyn: Evaluation

50’000 evaluation files (not used in training or synthesis)

API completion task
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DeepSyn: Evaluation

50’000 evaluation files (not used in training or synthesis)

API completion task
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Conditioning program p Accuracy

Last two tokens, Hindle et al.[ICSE’12] 22.2%

Last two APIs per object, Raychev et al.[PLDI’14] 30.4%

Program synthesis with noise 46.3%

Program synthesis with noise + dataset sampler 50.4%Th
is

 w
or

k



DeepSyn: Evaluation

50’000 evaluation files (not used in training or synthesis)

API completion task
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Conditioning program p Accuracy

Last two tokens, Hindle et al.[ICSE’12] 22.2%

Last two APIs per object, Raychev et al.[PLDI’14] 30.4%

Program synthesis with noise 46.3%

Program synthesis with noise + dataset sampler 50.4%

We can explain best program. It looks at API preceding 
completion position and at tokens prior to these APIs.

Th
is

 w
or

k



Scalability

Handling noise

Second-order learning

Handling large datasets

Q&A
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Input/output examples

incorrect examples

1. synthesize
p

2. use 
probabilistic 

model
parametrized

with p

Representative 
dataset 
sampler

Program 
generator

Synthesis of 
probabilistic 

models

Extending 
synthesizers to 
handle noise



Scalability

Handling noise

Second-order learning

Handling large datasets

Q&A
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Input/output examples

incorrect examples

1. synthesize
p

2. use 
probabilistic 

model
parametrized

with p

Representative 
dataset 
sampler

Program 
generator

Synthesis of 
probabilistic 

models

Extending 
synthesizers to 
handle noise

Bridges gap between ML and PL
Advances both areas



What did we synthesize?
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Left PrevActor WriteAction WriteValue PrevActor WriteAction PrevLeaf 
WriteValue PrevLeaf WriteValue


