
Learning Programs
from Noisy Data

Veselin Raychev
Pavol Bielik
Martin Vechev
Andreas Krause

ETH Zurich

Why learn programs from examples?

2

Input/output
examples

often easier to provide
examples than specification

(e.g. in FlashFill)

Why learn programs from examples?

3

Input/output
examples p such that

p()=

...
p()=

learn a function

?
often easier to provide

examples than specification
(e.g. in FlashFill)

Why learn programs from examples?

4

Input/output
examples p such that

p()=

...
p()=

learn a function

?
often easier to provide

examples than specification
(e.g. in FlashFill)

the user may make a
mistake in the

examples

Why learn programs from examples?

5

Input/output
examples p such that

p()=

...
p()=

learn a function

?

Actual goal: produce p that the user really wanted and tried to specify

often easier to provide
examples than specification

(e.g. in FlashFill)

the user may make a
mistake in the

examples

Why learn programs from examples?

6

Input/output
examples p such that

p()=

...
p()=

learn a function

?

Actual goal: produce p that the user really wanted and tried to specify

often easier to provide
examples than specification

(e.g. in FlashFill)

the user may make a
mistake in the

examples

Key problem of synthesis: overfits, not robust to noise

Learning Programs from Data:
Defining Dimensions

7

Number of
Examples

Handling
errors in the
dataset

Learned
program
complexity

Learning Programs from Data:
Defining Dimensions

8

Number of
Examples

Handling
errors in the
dataset

Learned
program
complexity

Program synthesis
(PL)

no

tens

interesting
programs

Learning Programs from Data:
Defining Dimensions

9

Number of
Examples

Handling
errors in the
dataset

Learned
program
complexity

Program synthesis
(PL)

no

tens

interesting
programs

Deep learning
(ML)

yes

millions

simple, but
unexplainable

functions

Learning Programs from Data:
Defining Dimensions

10

Number of
Examples

Handling
errors in the
dataset

Learned
program
complexity

Program synthesis
(PL)

no

tens

interesting
programs

Deep learning
(ML)

yes

millions

simple, but
unexplainable

functions

This paper
bridges a gap

yes

millions

interesting
programs

Learning Programs from Data:
Defining Dimensions

11

Number of
Examples

Handling
errors in the
dataset

Learned
program
complexity

Program synthesis
(PL)

no

tens

interesting
programs

Deep learning
(ML)

yes

millions

simple, but
unexplainable

functions

This paper
bridges a gap

yes

millions

interesting
programs

expands capabilities of
existing synthesizers

Learning Programs from Data:
Defining Dimensions

12

Number of
Examples

Handling
errors in the
dataset

Learned
program
complexity

Program synthesis
(PL)

no

tens

interesting
programs

Deep learning
(ML)

yes

millions

simple, but
unexplainable

functions

This paper
bridges a gap

yes

millions

interesting
programs

new state-of-the-art precision
for programming tasks

expands capabilities of
existing synthesizers

Learning Programs from Data:
Defining Dimensions

13

Number of
Examples

Handling
errors in the
dataset

Learned
program
complexity

Program synthesis
(PL)

no

tens

interesting
programs

Deep learning
(ML)

yes

millions

simple, but
unexplainable

functions

This paper
bridges a gap

yes

millions

interesting
programs

new state-of-the-art precision
for programming tasks

expands capabilities of
existing synthesizers

Bridges gap between ML and PL

Advances both areas

In this paper

14

● A general framework that handles
○ errors in training dataset
○ learns statistical models on data
○ handles synthesis with millions of examples

● Instantiated with two synthesizers
○ generalize existing works

Handling noise

New probabilistic models

Handling large datasets

Contributions

15

Input/output examples

incorrect examples

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Handling noise

New probabilistic models

Handling large datasets

Contributions

16

Handling noise

Input/output examples

incorrect examples

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Synthesis with noise: usage model

17

Input/output
examples

Synthesis with noise: usage model

18

Input/output
examples

Domain
Specific

Language

Synthesis with noise: usage model

19

Input/output
examples synthesizer

Domain
Specific

Language

Synthesis with noise: usage model

20

Input/output
examples synthesizer

Domain
Specific

Language

p such that p()=

...
p()=

Synthesis with noise: usage model

21

Input/output
examples synthesizer

Domain
Specific

Language

p such that p()=

...
p()=

incorrect example
(e.g. a typo)

Synthesis with noise: usage model

22

Input/output
examples synthesizer

Domain
Specific

Language

p such that p()=

...
p()=

incorrect example
(e.g. a typo)

p()≠

Synthesis with noise: usage model

23

Input/output
examples synthesizer

Domain
Specific

Language

p such that p()=

...
p()=

incorrect example
(e.g. a typo)

p()≠
new kind of feedback

from synthesizer

✔

❌

✔

✔

✔

Synthesis with noise: usage model

24

Input/output
examples synthesizer

Domain
Specific

Language

p such that p()=

...
p()=

incorrect example
(e.g. a typo)

p()≠
new kind of feedback

from synthesizer
● Tell user to

remove
suspicious
example, or

● Ask for more
examples

✔

❌

✔

✔

✔

if return
if return
if return
if return
return

Issue: such a program makes
no errors

and it may be the only
solution to the
minimization problem

Handling noise: problem statement

25

D: Input/output
examples

incorrect
examples

synthesizer pbest = arg min errors(D, p)
p∈P

Too long program, hardcodes the input/outputs.
Synthesis must penalize such answers

dataset of
input/output

examples

space of possible
programs in DSL

Our problem formulation:

pbest = arg min errors(D, p) + λr(p)
p∈P

regularizer
penalizes long

programs

regularization constant

error rate

Noisy synthesis using SMT

26

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Noisy synthesis using SMT

27

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ψ

Noisy synthesis using SMT

28

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

formula given
to SMT solver

cost
number of errors

0 1 2 3

r

1 0.6 1.6 2.6 3.6

2 1.2 2.2 3.2 4.2

3 1.8 2.8 3.8 4.8

Ψ

Noisy synthesis using SMT

29

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ask a number of
SMT queries
in increasing value
of solution cost

e.g. for

λ = 0.6
costs are

formula given
to SMT solver

cost
number of errors

0 1 2 3

r

1 0.6 1.6 2.6 3.6

2 1.2 2.2 3.2 4.2

3 1.8 2.8 3.8 4.8

Ψ

Noisy synthesis using SMT

30

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ask a number of
SMT queries
in increasing value
of solution cost

e.g. for

λ = 0.6
costs are

UNSAT

formula given
to SMT solver

cost
number of errors

0 1 2 3

r

1 0.6 1.6 2.6 3.6

2 1.2 2.2 3.2 4.2

3 1.8 2.8 3.8 4.8

Ψ

Noisy synthesis using SMT

31

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ask a number of
SMT queries
in increasing value
of solution cost

e.g. for

λ = 0.6
costs are

UNSAT

UNSAT

formula given
to SMT solver

cost
number of errors

0 1 2 3

r

1 0.6 1.6 2.6 3.6

2 1.2 2.2 3.2 4.2

3 1.8 2.8 3.8 4.8

Ψ

Noisy synthesis using SMT

32

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ask a number of
SMT queries
in increasing value
of solution cost

e.g. for

λ = 0.6
costs are

UNSAT

UNSAT

UNSAT

formula given
to SMT solver

cost
number of errors

0 1 2 3

r

1 0.6 1.6 2.6 3.6

2 1.2 2.2 3.2 4.2

3 1.8 2.8 3.8 4.8

Ψ

Noisy synthesis using SMT

33

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ask a number of
SMT queries
in increasing value
of solution cost

e.g. for

λ = 0.6
costs are

UNSAT

UNSAT

UNSAT

UNSAT

formula given
to SMT solver

cost
number of errors

0 1 2 3

r

1 0.6 1.6 2.6 3.6

2 1.2 2.2 3.2 4.2

3 1.8 2.8 3.8 4.8

Ψ

Noisy synthesis using SMT

34

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ask a number of
SMT queries
in increasing value
of solution cost

e.g. for

λ = 0.6
costs are

UNSAT

UNSAT

UNSAT

UNSAT

SAT

formula given
to SMT solver

cost
number of errors

0 1 2 3

r

1 0.6 1.6 2.6 3.6

2 1.2 2.2 3.2 4.2

3 1.8 2.8 3.8 4.8

Ψ

Noisy synthesis using SMT

35

encoding

err1 = if p()= then 0 else 1
err2 = if p()= then 0 else 1
err3 = if p()= then 0 else 1

errors = err1 + err2 + err3
p ∈ Pr (with r instructions)

pbest = arg min errors(D, p) + λr(p)
p∈P

number of
instructions

total solution

cost

Ask a number of
SMT queries
in increasing value
of solution cost

e.g. for

λ = 0.6
costs are

UNSAT

UNSAT

UNSAT

UNSAT

SAT

best program is
with two
instructions and
makes one error

formula given
to SMT solver

Noisy synthesizer: example

36

Take an actual synthesizer and
show that we can make it handle noise

Implementation: BitSyn

37

For BitStream programs, using Z3

similar to Jha et al.[ICSE’10] and Gulwani et al.[PLDI’11]

 Example program:

function check_if_power_of_2(int32 x) {
 var o = add(x, 1)
 return bitwise_and(x, o)
}

synthesized, short loop-free programs

Implementation: BitSyn

38

For BitStream programs, using Z3

similar to Jha et al.[ICSE’10] and Gulwani et al.[PLDI’11]

 Example program:

function check_if_power_of_2(int32 x) {
 var o = add(x, 1)
 return bitwise_and(x, o)
}

synthesized, short loop-free programs

Question: how well does our synthesizer discover noise?
(in programs from prior work)

Implementation: BitSyn

39

For BitStream programs, using Z3

similar to Jha et al.[ICSE’10] and Gulwani et al.[PLDI’11]

 Example program:

function check_if_power_of_2(int32 x) {
 var o = add(x, 1)
 return bitwise_and(x, o)
}

synthesized, short loop-free programs

Question: how well does our synthesizer discover noise?
(in programs from prior work)

Implementation: BitSyn

40

For BitStream programs, using Z3

similar to Jha et al.[ICSE’10] and Gulwani et al.[PLDI’11]

 Example program:

function check_if_power_of_2(int32 x) {
 var o = add(x, 1)
 return bitwise_and(x, o)
}

synthesized, short loop-free programs

Question: how well does our synthesizer discover noise?
(in programs from prior work)

best area to be in. empirically pick λ here

So far… handling noise

● Problem statement and regularization
● Synthesis procedure using SMT
● Presented one synthesizer

Handling noise enables us to solve new classes of
problems beyond normal synthesis

41

Handling large datasets

Handling noise

New probabilistic modelsContributions

42

Input/output examples

incorrect examples

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Handling large datasetsHandling large datasets

Handling noise

New probabilistic modelsContributions

43

Input/output examples

incorrect examples

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Fundamental problem

44

Large number of examples:

pbest = arg min cost(D, p)
p∈P

Fundamental problem

45

Large number of examples:

pbest = arg min cost(D, p)

D

Millions of
input/output

examples

p∈P

Fundamental problem

46

Large number of examples:

pbest = arg min cost(D, p)

D

Millions of
input/output

examples

computing cost(D, p)

O(|D|)

p∈P

Fundamental problem

47

Large number of examples:

pbest = arg min cost(D, p)

D

Millions of
input/output

examples

computing cost(D, p)

O(|D|)

Synthesis: practically intractable

p∈P

Fundamental problem

48

Large number of examples:

pbest = arg min cost(D, p)

D

Millions of
input/output

examples

computing cost(D, p)

O(|D|)

Synthesis: practically intractable

Key idea: iterative synthesis on
fraction of examples

p∈P

Our solution: two components

given dataset d, finds best program

49

pbest = arg min cost(d, p)
p∈P

Program
generator

Synthesizer for small number of examples

Our solution: two components

given dataset d, finds best program

50

pbest = arg min cost(d, p)
p∈P

Program
generator

Dataset
sampler

Picks dataset d ⊆ D

Synthesizer for small number of examples

We introduce representative dataset
sampler

Generalize a user providing input/output
examples

In a loop

51

Representative
dataset sampler

Program
generator

In a loop

52

Representative
dataset sampler

Program
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

In a loop

53

Representative
dataset sampler

Program
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program
generator p1

In a loop

54

Representative
dataset sampler

Program
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program
generator p1

Representative
dataset samplerd

In a loop

55

Representative
dataset sampler

Program
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program
generator p1

Program
generator p1 , p2

Representative
dataset samplerd

In a loop

56

Representative
dataset sampler

Program
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program
generator p1

Program
generator p1 , p2

Representative
dataset sampler

Representative
dataset samplerd

In a loop

57

Representative
dataset sampler

Program
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program
generator p1

Program
generator p1 , p2

Representative
dataset sampler

pbest

Representative
dataset samplerd

In a loop

58

Representative
dataset sampler

Program
generator

Start with a small random sample d⊆D

Iteratively generate programs and samples.

Program
generator p1

Program
generator p1 , p2

Representative
dataset sampler

pbest

Representative
dataset samplerd

Algorithm generalizes synthesis by
examples techniques

Representative dataset sampler

59

Idea: pick a small dataset d for which a set of already
generated programs p1,...,pn behave like on the full dataset

d = arg min d ⊆ D maxi∊1..n | cost(d, pi) - cost(D, pi) |

Representative dataset sampler

60

Costs on small dataset d

p1 p2

Idea: pick a small dataset d for which a set of already
generated programs p1,...,pn behave like on the full dataset

d = arg min d ⊆ D maxi∊1..n | cost(d, pi) - cost(D, pi) |

Representative dataset sampler

61

Costs on small dataset d

Costs on full dataset D

p1 p2

p1 p2

Idea: pick a small dataset d for which a set of already
generated programs p1,...,pn behave like on the full dataset

d = arg min d ⊆ D maxi∊1..n | cost(d, pi) - cost(D, pi) |

Representative dataset sampler

62

Costs on small dataset d

Costs on full dataset D

p1 p2

p1 p2

Idea: pick a small dataset d for which a set of already
generated programs p1,...,pn behave like on the full dataset

d = arg min d ⊆ D maxi∊1..n | cost(d, pi) - cost(D, pi) |

Representative dataset sampler

63

Costs on small dataset d

Costs on full dataset D

p1 p2

Idea: pick a small dataset d for which a set of already
generated programs p1,...,pn behave like on the full dataset

d = arg min d ⊆ D maxi∊1..n | cost(d, pi) - cost(D, pi) |

p1 p2

Representative dataset sampler

64

Costs on small dataset d

Costs on full dataset D

p1 p2

p1 p2

Idea: pick a small dataset d for which a set of already
generated programs p1,...,pn behave like on the full dataset

d = arg min d ⊆ D maxi∊1..n | cost(d, pi) - cost(D, pi) |

Theorem: this sampler shrinks the candidate program search space
In evaluation: significant speedup of synthesis

So far... handling large datasets

● Iterative combination of synthesis and sampling

● New way to perform approximate
empirical risk minimization

● Guarantees (in the paper)

65

Representative
dataset
sampler

Program
generator

Handling noise

New probabilistic models

Handling large datasets

Contributions

66

Input/output examples

incorrect examples

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Handling noise

New probabilistic models

Handling large datasets

Contributions

67

Input/output examples

incorrect examples

New probabilistic models

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Statistical programming tools

68

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to
make predictions about programs

Statistical programming tools

69

1. Train machine
learning model

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to
make predictions about programs

Statistical programming tools

70

1. Train machine
learning model

2. Make predictions
with model

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to
make predictions about programs

Statistical programming tools

71

1. Train machine
learning model

2. Make predictions
with model

A new breed of tools:

Learn from large existing codebases (e.g. Big Code) to
make predictions about programs

hard-coded model
low precision

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

72

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

73

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

74

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

75

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

76

Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

77

Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

78

Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

79

Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

80

Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12]

Existing machine learning models

Essentially remember mapping from context in training
data to prediction (with probabilities)

81

Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Learn a mapping

Model will predict slice when it
sees it after “charAt”
Relies on static analysis

charAt slice

Problem of existing systems

Precision. They rarely predict the next statement

82

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12] Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Learn a mapping

Model will predict slice when it
sees it after “charAt”
Relies on static analysis

charAt slice

Problem of existing systems

Precision. They rarely predict the next statement

83

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12] Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Learn a mapping

Model will predict slice when it
sees it after “charAt”
Relies on static analysis

charAt slice

Very low precision

Problem of existing systems

Precision. They rarely predict the next statement

84

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12] Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Learn a mapping

Model will predict slice when it
sees it after “charAt”
Relies on static analysis

charAt slice

Very low precision

Low precision for JavaScript

Problem of existing systems

Precision. They rarely predict the next statement

85

Raychev et al.[PLDI’14]

Hindle et al.[ICSE’12] Learn a mapping

Model will predict slice when it
sees it after “+ name .”

This model comes from NLP

+ name . slice

Learn a mapping

Model will predict slice when it
sees it after “charAt”
Relies on static analysis

charAt slice

Very low precision

Low precision for JavaScript

Core problem:
Existing machine learning

models are limited and not
expressive enough

Key idea: second-order learning

86

Learn a program that parametrizes a probabilistic model
that makes predictions.

Key idea: second-order learning

87

1. Synthesize
program

describing a model

Learn a program that parametrizes a probabilistic model
that makes predictions.

Key idea: second-order learning

88

1. Synthesize
program

describing a model

i.e. learn the mapping

2. Train model

Learn a program that parametrizes a probabilistic model
that makes predictions.

Key idea: second-order learning

89

1. Synthesize
program

describing a model

i.e. learn the mapping

2. Train model 3. Make predictions
with this model

Learn a program that parametrizes a probabilistic model
that makes predictions.

Key idea: second-order learning

90

1. Synthesize
program

describing a model

i.e. learn the mapping

2. Train model 3. Make predictions
with this model

Learn a program that parametrizes a probabilistic model
that makes predictions.

prior models are described by simple
hard-coded programs

Our approach:
learn a better program

output

Training and evaluation

Training example:

91

slice

input

output

Training and evaluation

Training example:

92

slice

Compute context
with program p

input

output

Training and evaluation

Training example:

93

slice

Learn a mapping

toUpperCase slice

Compute context
with program p

input

output

Training and evaluation

Training example:

94

slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

input

output

Training and evaluation

Training example:

95

slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

Compute context
with program p

input

output

Training and evaluation

Training example:

96

slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

slice

Compute context
with program p predict completion

input

output

Training and evaluation

Training example:

97

slice

Evaluation example:

Learn a mapping

toUpperCase slice

Compute context
with program p

slice

Compute context
with program p predict completion

✔

input

Observation

Synthesis of probabilistic model can be done with the
same optimization problem as before!

98

Our problem formulation:

pbest = arg min errors(D, p) + λr(p)
p∈P

regularizer
penalizes long

programs

regularization constant

evaluation data:
input/output

examples

Observation

Synthesis of probabilistic model can be done with the
same optimization problem as before!

99

Our problem formulation:

pbest = arg min errors(D, p) + λr(p)
p∈P

regularizer
penalizes long

programs

regularization constant

evaluation data:
input/output

examples
cost(D, p)

So far...

100

Handling noise

Synthesizing a model

Representative dataset sampler

Techniques are generally applicable to program synthesis

Next, application for “Big Code” called DeepSyn

DeepSyn: Training

Trained on 100’000 JavaScript files from GitHub

101

Program synthesizer

Representative
dataset sampler

Program
generator

D

DeepSyn: Training

Trained on 100’000 JavaScript files from GitHub

102

Program synthesizer

Representative
dataset sampler

Program
generator

D

Train model on full data
and best program p

pD

DeepSyn: Evaluation

50’000 evaluation files (not used in training or synthesis)

API completion task

103

DeepSyn: Evaluation

50’000 evaluation files (not used in training or synthesis)

API completion task

104

Conditioning program p Accuracy

Last two tokens, Hindle et al.[ICSE’12] 22.2%

Last two APIs per object, Raychev et al.[PLDI’14] 30.4%

Program synthesis with noise 46.3%

Program synthesis with noise + dataset sampler 50.4%Th
is

 w
or

k

DeepSyn: Evaluation

50’000 evaluation files (not used in training or synthesis)

API completion task

105

Conditioning program p Accuracy

Last two tokens, Hindle et al.[ICSE’12] 22.2%

Last two APIs per object, Raychev et al.[PLDI’14] 30.4%

Program synthesis with noise 46.3%

Program synthesis with noise + dataset sampler 50.4%

We can explain best program. It looks at API preceding
completion position and at tokens prior to these APIs.

Th
is

 w
or

k

Scalability

Handling noise

Second-order learning

Handling large datasets

Q&A

106

Input/output examples

incorrect examples

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Synthesis of
probabilistic

models

Extending
synthesizers to
handle noise

Scalability

Handling noise

Second-order learning

Handling large datasets

Q&A

107

Input/output examples

incorrect examples

1. synthesize
p

2. use
probabilistic

model
parametrized

with p

Representative
dataset
sampler

Program
generator

Synthesis of
probabilistic

models

Extending
synthesizers to
handle noise

Bridges gap between ML and PL
Advances both areas

What did we synthesize?

108

Left PrevActor WriteAction WriteValue PrevActor WriteAction PrevLeaf
WriteValue PrevLeaf WriteValue

