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Neural architectures with stochastic behavior
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(i) Probabilistic forecasting model

(ii) Bayesian neural network

• Multiple sources of noise: (i) each timestep, (ii) each weight1

• Complex resulting output distribution, approximated via
Monte-Carlo sampling

1Blundell et al., Weight Uncertainty in Neural Networks, ICML 2015
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Focus of this work: probabilistic forecasting models

• Stochastic sequence model
• Generates several prediction
traces
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Traditionally used as a generative model

WaveNet for raw audio Handwriting generation
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Probabilistic forecasting models for decision-making2

• Allows to predict volatility of the time-series.
• Useful with low signal-to-noise ratio.

Key idea: use generated traces as Monte-Carlo samples to estimate
the evolution of the time-series

Stock prices Electricity consumption Business sales

Integrated in Amazon Sagemaker (DeepAR architecture)

2Salinas et al., DeepAR: Probabilistic forecasting with autoregressive recurrent
networks, International Journal of Forecasting, 2020
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Contributions

• New class of attack objectives based on output statistics

• Adaptation of gradient-based adversarial attacks to these new
attack objectives for stochastic models

• Main technical aspect: developing estimators for propagating
the objective gradient through the Monte-Carlo approximation

We aim at providing an off-the-shelf methodology for these attacks
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Class of attack objectives



Stochastic model with input x, and output y ∼ qx(·).
Previously considered attack objectives:

Untargeted attacks on information
divergence D with the original

predicted distribution

max
δ
D (qx+δ∥qx)

Untargeted/Targeted attacks on
the mean of the distribution

min
δ

distance
(
Eqx+δ

[y], target
)
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Framework

We perform a targeted attack on a statistic χ(y) of the output.

This corresponds to minimizing

distance
(
Eqx+δ

[χ(y)], target
)

Extensions:

• Bayesian setting qx(y|z).
• Generalization to simultaneous attack of several statistics.
• Statistics depending on x.
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Motivation 1: option pricing in finance

Consider a stock with

• past prices x = (p1, . . . ,pt−1)
• predicted future prices y = (pt, . . . ,pT).

Name χ(y) Observation z
European call option max(0, yh)
Asian call option averagei(yi)
Limit sell order 1

[
maxi yi ≥ threshold

]
Barrier option yh maxi yi ≥ threshold

Our framework allows to specifically target one of these options

8
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Motivation 2: attacking model uncertainty

Some defenses use prediction uncertainty
to detect adversarial examples.

New attacks bypass these defenses by enforcing
uncertainty constraints for the adversarial example.

Our framework allows to express these constraints, with

• The entropy Eqx [− log(q[y|x])].
• The distribution’s moments Eqx [yk].
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Details about the estimators



Technical challenge

Gradient-based attacks require computing

The expectation and its gradient have no analytical closed form

We provide two different estimators to approximate the gradient

10



Technical challenge

Gradient-based attacks require computing

The expectation and its gradient have no analytical closed form

We provide two different estimators to approximate the gradient

10



Technical challenge

Gradient-based attacks require computing

The expectation and its gradient have no analytical closed form

We provide two different estimators to approximate the gradient

10



Approach 1: REINFORCE

• A.k.a as log-derivative trick and score-function estimator.
• Based on interversion of expectation and derivative.

REINFORCE estimator

.
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Approach 2: Reparametrization

• Mitigates the high-variance of REINFORCE.
• Typically used for variational inference.
• Assumes a reparametrization y ∼ g(x, η), where g is
deterministic.

Reparametrization estimator

.
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Comparison

Respective advantages of gradient estimators.

Method REINFORCE Reparametrization

Applies to non-differentiable statistics 4

Requires no reparametrization 4

Applies to Bayesian setting 4

Yields best gradient estimates 4

Detailed comparison and conditions in the paper!
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Experimental evaluation



Experiments: stock prices

Algorithmic trading scenario, standard additive threat model,
maximum Euclidean norm of 0.13 for the perturbation.

• Attack is successful on 90% of test inputs.
• The network incurs a daily financial loss of −13%.

3Corresponds to perturbing one value by 10%, 10 values by 3.3%, 100 values by 1%. 14
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Experiments: electricity

Original test samples (red) and adversarial examples (blue) for
prediction of electricity consumption.
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Thanks for listening

Code and trained models are available at

github.com/eth-sri/
probabilistic-forecasts-attacks

Contact at

dangnhur@ethz.ch
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