Adversarial Attacks on Probabilistic Autoregressive Forecasting Models

ICML 2020

Raphaël Dang-Nhu

Gagandeep Singh

Pavol Bielik

Martin Vechev

Department of Computer Science, ETH Zürich dangnhur@ethz.ch

(i) Probabilistic forecasting model

¹Blundell et al., Weight Uncertainty in Neural Networks, ICML 2015

(i) Probabilistic forecasting model

(ii) Bayesian neural network

¹Blundell et al., Weight Uncertainty in Neural Networks, ICML 2015

(i) Probabilistic forecasting model

(ii) Bayesian neural network

· Multiple sources of noise: (i) each timestep, (ii) each weight¹

¹Blundell et al., Weight Uncertainty in Neural Networks, ICML 2015

(i) Probabilistic forecasting model

- (ii) Bayesian neural network
- Multiple sources of noise: (i) each timestep, (ii) each weight¹
- Complex resulting output distribution, approximated via Monte-Carlo sampling

¹Blundell et al., Weight Uncertainty in Neural Networks, ICML 2015

Focus of this work: probabilistic forecasting models

- · Stochastic sequence model
- Generates several prediction traces

Focus of this work: probabilistic forecasting models

- · Stochastic sequence model
- Generates several prediction traces

Traditionally used as a generative model

WaveNet for raw audio

Handwriting generation

Probabilistic forecasting models for decision-making²

- Allows to predict volatility of the time-series.
- Useful with low signal-to-noise ratio.

Key idea: use generated traces as Monte-Carlo samples to estimate the evolution of the time-series

²Salinas et al., DeepAR: Probabilistic forecasting with autoregressive recurrent networks, International Journal of Forecasting, 2020

Probabilistic forecasting models for decision-making²

- Allows to predict volatility of the time-series.
- · Useful with low signal-to-noise ratio.

Key idea: use generated traces as Monte-Carlo samples to estimate the evolution of the time-series

Stock prices

Electricity consumption

Business sales

Integrated in Amazon Sagemaker (DeepAR architecture)

²Salinas et al., DeepAR: Probabilistic forecasting with autoregressive recurrent networks, International Journal of Forecasting, 2020

New class of attack objectives based on output statistics

- · New class of attack objectives based on output statistics
- Adaptation of gradient-based adversarial attacks to these new attack objectives for stochastic models

- · New class of attack objectives based on output statistics
- Adaptation of gradient-based adversarial attacks to these new attack objectives for stochastic models
- Main technical aspect: developing estimators for propagating the objective gradient through the Monte-Carlo approximation

- New class of attack objectives based on output statistics
- Adaptation of gradient-based adversarial attacks to these new attack objectives for stochastic models
- Main technical aspect: developing estimators for propagating the objective gradient through the Monte-Carlo approximation

- · New class of attack objectives based on output statistics
- Adaptation of gradient-based adversarial attacks to these new attack objectives for stochastic models
- Main technical aspect: developing estimators for propagating the objective gradient through the Monte-Carlo approximation

We aim at providing an off-the-shelf methodology for these attacks

Class of attack objectives

Stochastic model with input x, and output $y \sim q_x(\cdot)$. Previously considered attack objectives:

Stochastic model with input x, and output $y \sim q_x(\cdot)$. Previously considered attack objectives:

Untargeted attacks on information divergence *D* with the original predicted distribution

$$\max_{\delta} D\left(q_{\mathsf{X}+\delta} \| q_{\mathsf{X}}\right)$$

Stochastic model with input x, and output $y \sim q_x(\cdot)$. Previously considered attack objectives:

Untargeted attacks on information divergence *D* with the original predicted distribution

$$\max_{\delta} D\left(q_{x+\delta} \| q_x\right)$$

Untargeted/Targeted attacks on the mean of the distribution

 $\min_{\delta} \operatorname{distance} \left(\mathbb{E}_{q_{\mathsf{x}+\delta}}[y], \operatorname{target} \right)$

Framework

We perform a targeted attack on a **statistic** $\chi(y)$ of the output.

Framework

We perform a targeted attack on a **statistic** $\chi(y)$ of the output. This corresponds to minimizing

distance
$$(\mathbb{E}_{q_{x+\delta}}[\chi(y)], \text{target})$$

Framework

We perform a targeted attack on a **statistic** $\chi(y)$ of the output. This corresponds to minimizing

distance
$$(\mathbb{E}_{q_{x+\delta}}[\chi(y)], \text{target})$$

Extensions:

- Bayesian setting $q_x(y|z)$.
- · Generalization to simultaneous attack of several statistics.
- Statistics depending on x.

Motivation 1: option pricing in finance

Consider a stock with

- past prices $x = (p_1, \ldots, p_{t-1})$
- predicted future prices $y = (p_t, \dots, p_T)$.

Motivation 1: option pricing in finance

Consider a stock with

- past prices $x = (p_1, \ldots, p_{t-1})$
- predicted future prices $y = (p_t, \dots, p_T)$.

Name	$\chi(y)$	Observation z
European call option	$\max(0, y_h)$	
Asian call option	$average_i(y_i)$	
Limit sell order	$1 [\max_i y_i \ge \text{threshold}]$	
Barrier option	Уh	$\max_i y_i \ge \text{threshold}$

Motivation 1: option pricing in finance

Consider a stock with

- past prices $x = (p_1, \ldots, p_{t-1})$
- predicted future prices $y = (p_t, \dots, p_T)$.

Name	$\chi(y)$	Observation z
European call option	$\max(0, y_h)$	
Asian call option	$average_i(y_i)$	
Limit sell order	$1 [\max_i y_i \ge \text{threshold}]$	
Barrier option	Уh	$\max_i y_i \ge \text{threshold}$

Our framework allows to specifically target one of these options

Motivation 2: attacking model uncertainty

Some defenses use **prediction uncertainty** to detect adversarial examples.

Motivation 2: attacking model uncertainty

Some defenses use **prediction uncertainty** to detect adversarial examples.

New attacks bypass these defenses by enforcing uncertainty constraints for the adversarial example.

Motivation 2: attacking model uncertainty

Some defenses use **prediction uncertainty** to detect adversarial examples.

New attacks bypass these defenses by enforcing uncertainty constraints for the adversarial example.

Our framework allows to express these constraints, with

- The entropy $\mathbb{E}_{q_x}[-\log(q[y|x])]$.
- The distribution's moments $\mathbb{E}_{q_x}[y^k]$.

Details about the estimators

Technical challenge

Gradient-based attacks require computing

$$\nabla_{\boldsymbol{\delta}} \mathbb{E}_{q[\boldsymbol{y}|\boldsymbol{x}+\boldsymbol{\delta},z]}[\chi(\boldsymbol{y})]$$

Technical challenge

Gradient-based attacks require computing

$$\nabla_{\boldsymbol{\delta}} \mathbb{E}_{q[\boldsymbol{y}|\boldsymbol{x}+\boldsymbol{\delta},z]}[\chi(\boldsymbol{y})]$$

The expectation and its gradient have no analytical closed form

Technical challenge

Gradient-based attacks require computing

$$\nabla_{\boldsymbol{\delta}} \mathbb{E}_{q[\boldsymbol{y}|\boldsymbol{x}+\boldsymbol{\delta},z]}[\chi(\boldsymbol{y})]$$

The expectation and its gradient have no analytical closed form

We provide two different estimators to approximate the gradient

Approach 1: REINFORCE

- A.k.a as log-derivative trick and score-function estimator.
- Based on interversion of expectation and derivative.

Approach 1: REINFORCE

- A.k.a as log-derivative trick and score-function estimator.
- · Based on interversion of expectation and derivative.

$$\nabla_{\boldsymbol{\delta}} \mathbb{E}_{q[\boldsymbol{y}|\boldsymbol{x}+\boldsymbol{\delta},z]}[\chi(\boldsymbol{y})]$$

$$\simeq \frac{\sum_{l=1}^{L} \chi(\boldsymbol{y}^{l}) q[z|\boldsymbol{x}+\boldsymbol{\delta},\boldsymbol{y}^{l}] \nabla_{\boldsymbol{\delta}} \log(q[\boldsymbol{y}^{l}|\boldsymbol{x}+\boldsymbol{\delta},z])}{\sum_{l=1}^{L} q[z|\boldsymbol{x}+\boldsymbol{\delta},\boldsymbol{y}^{l}]}$$

REINFORCE estimator

•

Approach 2: Reparametrization

- Mitigates the high-variance of REINFORCE.
- Typically used for variational inference.
- Assumes a reparametrization $y \sim g(x, \eta)$, where g is deterministic.

Approach 2: Reparametrization

- Mitigates the high-variance of REINFORCE.
- · Typically used for variational inference.
- Assumes a reparametrization $y \sim g(x, \eta)$, where g is deterministic.

$$\begin{split} & \nabla_{\pmb{\delta}} \mathbb{E}_{q[\pmb{y}|\pmb{x}+\pmb{\delta},z]}[\chi(\pmb{y})] \\ \simeq & \nabla_{\pmb{\delta}} \left(\frac{\sum_{l=1}^{L} \chi(g_{\pmb{x}}(\pmb{\delta},\pmb{\eta}^l))q[z|\pmb{x}+\pmb{\delta},g_{\pmb{x}}(\pmb{\delta},\pmb{\eta}^l)]}{\sum_{l=1}^{L} q[z|\pmb{x}+\pmb{\delta},g_{\pmb{x}}(\pmb{\delta},\pmb{\eta}^l)]} \right) \end{split}$$

Reparametrization estimator

Comparison

Respective advantages of gradient estimators.

Method	REINFORCE	Reparametrization
Applies to non-differentiable statistics	✓	
Requires no reparametrization	V	
Applies to Bayesian setting		✓
Yields best gradient estimates		✓

Comparison

Respective advantages of gradient estimators.

Method	REINFORCE	Reparametrization
Applies to non-differentiable statistics	✓	
Requires no reparametrization Applies to Bayesian setting	✓	
Yields best gradient estimates		

Detailed comparison and conditions in the paper!

Experimental evaluation

³Corresponds to perturbing one value by 10%, 10 values by 3.3%, 100 values by 1%.

Algorithmic trading scenario, standard additive threat model, maximum Euclidean norm of 0.1³ for the perturbation.

Attack is successful on 90% of test inputs.

³Corresponds to perturbing one value by 10%, 10 values by 3.3%, 100 values by 1%.

- Attack is successful on 90% of test inputs.
- The network incurs a daily financial loss of -13%.

³Corresponds to perturbing one value by 10%, 10 values by 3.3%, 100 values by 1%.

- Attack is successful on 90% of test inputs.
- The network incurs a daily financial loss of -13%.

³Corresponds to perturbing one value by 10%, 10 values by 3.3%, 100 values by 1%.

- Attack is successful on 90% of test inputs.
- The network incurs a daily financial loss of -13%.

³Corresponds to perturbing one value by 10%, 10 values by 3.3%, 100 values by 1%.

Experiments: electricity

Original test samples (red) and adversarial examples (blue) for prediction of electricity consumption.

Thanks for listening

Code and trained models are available at

github.com/eth-sri/
probabilistic-forecasts-attacks

Contact at

dangnhur@ethz.ch