DP-Sniper: Black-Box Discovery of Differential
Privacy Violations using Classifiers

Benjamin Bichsel, Samuel Steffen, llija Bogunovic, Martin Vechev

Contact us via firstname.lastname@inf.ethz.ch

ETHziirich =SRILAR



Differential Privacy - Intuition

#patients with disease

#patients with disease + 0‘ /\

Floating-point vulnerability

Mironoy, |. On significance of the least
significant bits for differential privacy. CCS'12

import numpy as np

epsilon = 0.1
def laplace_mechanism(n_with_disease):

noise = np.random.laplace(scale=1/epsilon)

return n_with_disease + noise

Icons: https://fontawesome.com



Detecting Floating-Point Vulnerabilities

Existing DP verifiers

import numpy as np

epsilon = 0.1

def laplace_mechanism(n_with_disease): EXIStmg DP testers
noise = np.random.laplace(scale=1/epsilon)

return n_with_disease + noise

DP-Sniper (this work)

& © O
® ® O

Not restricted to floating-point

Also covers other vulnerabilities

Icons: https://fontawesome.com



Differential Privacy

#patients with disease + .
g 0‘ /\ Differential Privacy

e 0
ZANMAVAN

Pr[M(g) € S| ~ Pr[M(8) € 5]

b

Icons: https://fontawesome .com

#patients with disease + 0‘ /\




Differential Privacy

M is € differentially private (e-DP) M is & differentially distinguishable (§-DD)

For all (a,a’) € N and for every attack S : There exist (a,a’) € N'and an attack S with:

In(Pr[M(a) € S]) — In(Pr[M(a’) € S]) < e In(Pr[M(a) € S]) — In(Pr[M(a’) € S]) > &



Search Problem

’ Challenging

Needed for floating-point attack

(agl,‘?}ecN max In(Pr[M(a) € S]) — In(Pr[M(a") € S])

« Exhaustive
v/ Sampling

& Heuristics

Ding, Z., Wang, Y., Wang, G., Zhang, D. & Kifer, D.
Detecting Violations of Differential Privacy.
Ccs18

Icons: https://fontawesome.com



N Finding an optimal attack

’ Cannot quantify tiny

probabilities accurately

max In(Pr[M(a) € S]) — In(Pr[M(a") € S))
o O

@ beS <= Pr[A=a| M(A)=>5] is high (cp. Neyman-Pearson)

9 Train a classifier
Generate training data automatically

Icons: https://fontawesome .com



DP-Sniper Overview

A

Train a classifier for

Pr[A=a | M(A) = b

Evaluation: Neural networks

and logistic regression

;b

Transform classifier to attack

besS
<~
PrlA=a| M(A)=0] >t

A) [A

Select ¢ such that

Pr[M(a") € S] =¢

Icons: https://fontawesome.com



Guarantees

Quantified mathematically

Theorem (informal): DP-Sniper finds an approximately optimal attack.

Assumptions

e Cannot estimate tiny probabilities
e The learned classifier is perfect

Degrades gracefully

Icons: https://fontawesome.com



Related Work

Tool Black-box sufficient

Tpriv

StatDP

DP-Finder

DiPC
DP-Stochastic-Tester
CheckDP

This work: DP-Sniper

v

& Only 1D outputs

& Black-box approaches

are more convenient
And use floating-point arithmetic

import numpy as np
epsilon = 0.1

def laplace_mechanism(n_with_disease):

noise = np.random.laplace(scale=1/epsilon)
return n_with_disease + noise

Icons: https://fontawesome.com



Evaluation @D 15x faster

i

I DP-Sniper
5 0.098 B StatDP-Fixed
NoisyHistl i B DP-Sniper
' . 0.097 BN StDP-Fixed
LaplaceMechanism
. . 4.602 0.100
NoisyHist2 5
} 0.035
LaplaceParallel
: 0.013
ReportNoisyMax 1
0.034
NumericalSVT . e
ReportNoisyMax2 ey
0.598
ReportNoisyMax3 0.060
PrefixSum e
ReportNoisyMax4
RAPPOR @
SVT1 :
svm2 e
SVT3
SVT34Parallel
SVT4
TruncatedGeometric
SVT5
1 1 1 1 1 1 1
SVT6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 €

Icons: https://fontawesome.com



Summary

New approach to discover DD

Optimality guarantees

Code available

https://github.com/eth-sri/dp-sniper

import numpy as np
epsilon = 0.1

def laplace_mechanism(n_with_disease):
noise = np.random.laplace(scale=1/epsilon)
return n_with_disease + noise

Icons: https://fontawesome.com



