DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers

Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin Vechev

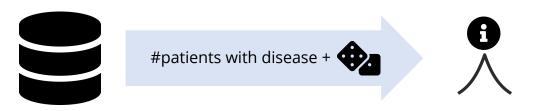
Contact us via firstname.lastname@inf.ethz.ch

Differential Privacy - Intuition

#patients with disease

Floating-point vulnerability

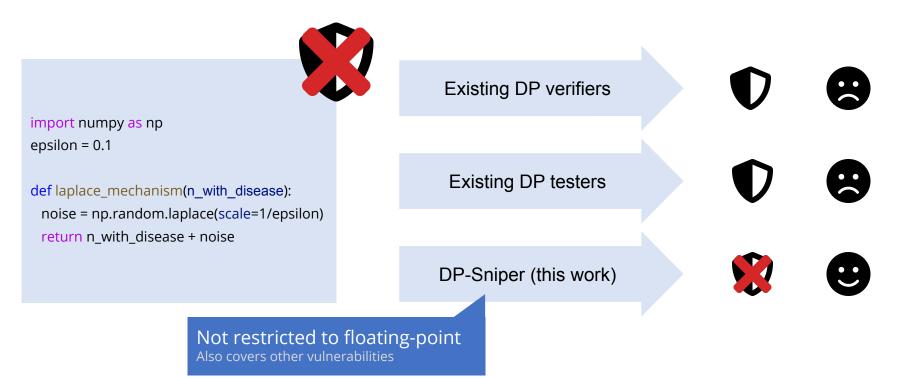
Mironov, I. On significance of the least significant bits for differential privacy. CCS'12



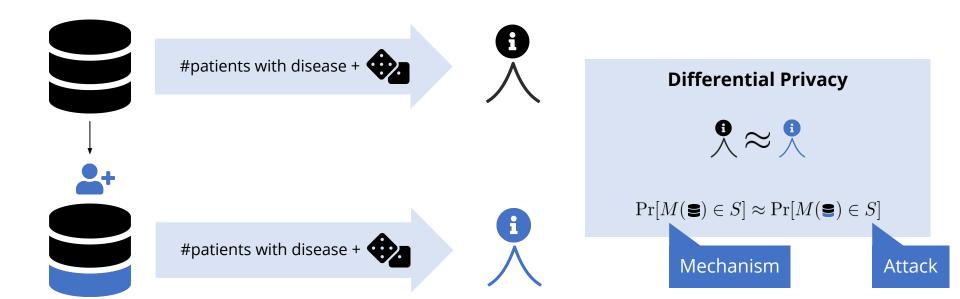
import numpy as np epsilon = 0.1

def laplace_mechanism(n_with_disease):
noise = np.random.laplace(scale=1/epsilon)
return n_with_disease + noise

Detecting Floating-Point Vulnerabilities



Differential Privacy



Differential Privacy

M is ϵ differentially private (ϵ -DP)

For all $(a, a') \in \mathcal{N}$ and for every attack S: $\ln(\Pr[M(a) \in S]) - \ln(\Pr[M(a') \in S]) \le \epsilon$ M is ξ differentially distinguishable (ξ -DD)

There exist $(a, a') \in \mathcal{N}$ and an attack S with: $\ln(\Pr[M(a) \in S]) - \ln(\Pr[M(a') \in S]) \ge \xi$

Search Problem

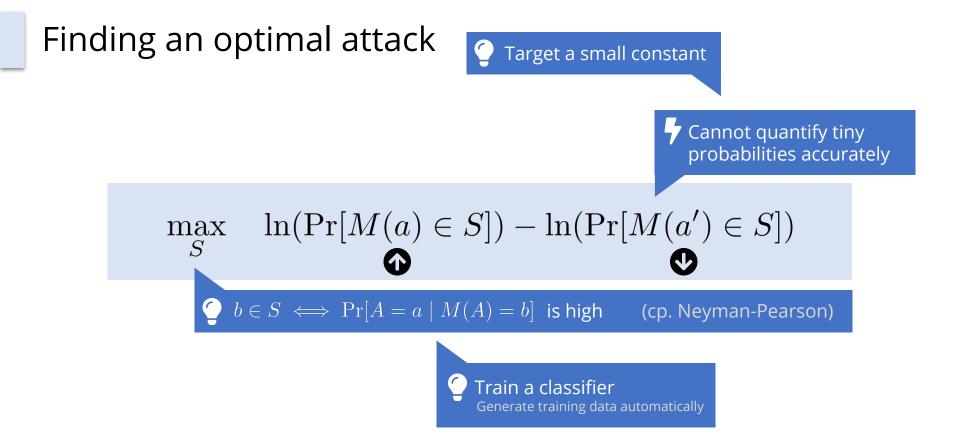
 $\max_{(a,a')\in\mathcal{N}} \max_{S} \ln(\Pr[M(a)\in S]) - \ln(\Pr[M(a')\in S])$

✓ Exhaustive

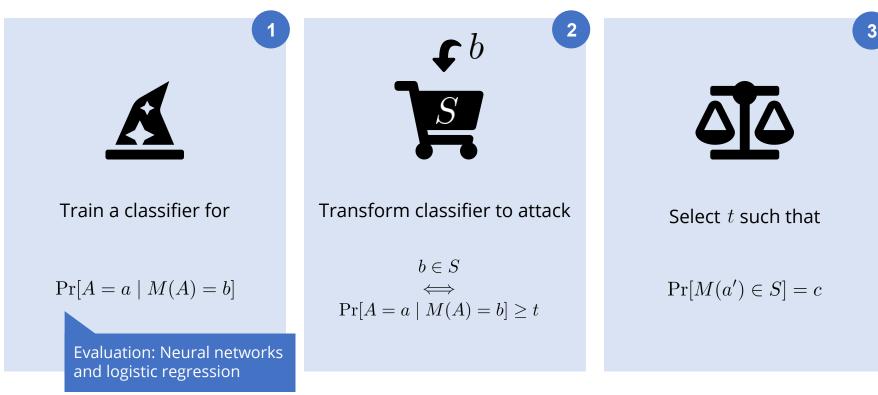
✓ Sampling

✓ Heuristics

Ding, Z., Wang, Y., Wang, G., Zhang, D. & Kifer, D. Detecting Violations of Differential Privacy. CCS'18



DP-Sniper Overview



Quantified mathematically

Theorem (informal): DP-Sniper finds an approximately optimal attack.

Assumptions

- Cannot estimate tiny probabilities
- The learned classifier is perfect

Degrades gracefully

Related Work

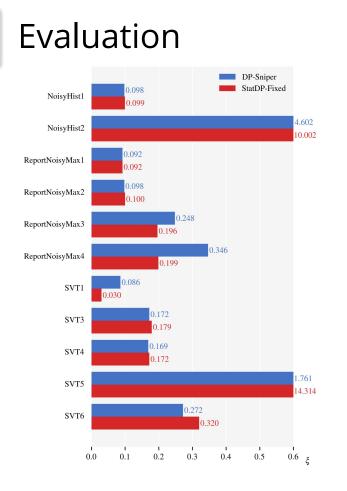
ΤοοΙ	Black-box sufficient
T _{priv}	
StatDP	\checkmark
DP-Finder	
DiPC	Only 1D ou
DP-Stochastic-Tester	~
CheckDP	
This work: DP-Sniper	✓

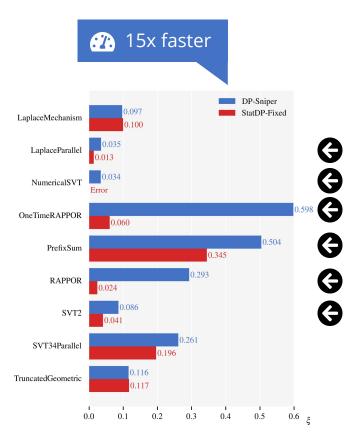
Black-box approaches are more convenient And use floating-point arithmetic

import numpy as np epsilon = 0.1

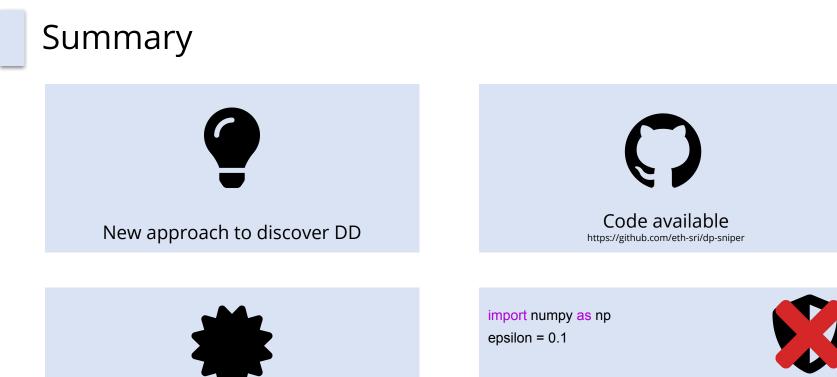
Its

def laplace_mechanism(n_with_disease):
noise = np.random.laplace(scale=1/epsilon)
return n_with_disease + noise





Icons: https://fontawesome.com



Optimality guarantees

def laplace_mechanism(n_with_disease):
noise = np.random.laplace(scale=1/epsilon)
return n_with_disease + noise