

Constructing Mid-points for Two party Asynchronous Protocols

Petar Tsankov, Mohammad Torabi Dashti, David Basin ETH Zürich OPODIS'11 December 16, 2011

Protocols, end-points, mid-points

Protocols, end-points, mid-points

Mid-points:

relay, redirect, filter communication

Protocols, end-points, mid-points

Mid-points:

- relay, redirect, filter communication
- can enforce a protocol (e.g. stateful firewalls)

How to implement a mid-point?

We need a specification!

How to implement a mid-point?

We need a specification!

Protocols specifications:

- specify the end-points' behavior
- do not specify the mid-point's behavior

How to implement a mid-point?

We need a specification!

Protocols specifications:

- specify the end-points' behavior
- do not specify the mid-point's behavior

The problem

How do we implement a system, when we don't know what it should do?

December 16, 2011

Why mid-point specifications?

Mid-points are often incorrectly implemented ¹:

Checkpoint, netfilter/iptables, ISA Server

¹Case study by D. Bidder-Senn, D. Basin, G. Caronni. *"Midpoints versus endpoints: From protocols to firewalls"*

December 16, 2011

Constructing Mid-points for Two-party Asynchronous Protocols

∢*⊡* → 4

Why mid-point specifications?

Mid-points are often incorrectly implemented ¹:

Checkpoint, netfilter/iptables, ISA Server

Mid-point specifications are useful for:

- Model-driven development
- Code inspection
- Model-based testing

December 16, 2011

Constructing Mid-points for Two-party Asynchronous Protocols

∢ *⊡* । 4

¹Case study by D. Bidder-Senn, D. Basin, G. Caronni. *"Midpoints versus endpoints: From protocols to firewalls"*

Why mid-point specifications?

Mid-points are often incorrectly implemented ¹:

Checkpoint, netfilter/iptables, ISA Server

Mid-point specifications are useful for:

- Model-driven development
- Code inspection
- Model-based testing

... they are a good starting point to implement a mid-point

¹Case study by D. Bidder-Senn, D. Basin, G. Caronni. *"Midpoints versus endpoints: From protocols to firewalls"*

December 16, 2011

Constructing Mid-points for Two-party Asynchronous Protocols

Goal

Goal

Roadmap

- ✓ Context, motivation, goals
 - Challenges
 - The model
 - Framework
 - TCP case study
 - Future work

Challenge: Channels fidelity

December 16, 2011

Challenge: Channels fidelity

Time 2

property channel	lose	duplicate	reorder
Reliable	no	no	no
Resilient	no	yes	yes
Lossy	yes	no	yes

Challenge: Non-determinism

- Under-specification
 - allow alternative behaviors

Abstraction - probabilistic choices

The setting

- E^1, E^2 : the end-points
- $C_o^1, C_i^1, C_o^2, C_i^2$: channels

Assumption

The end-points and the channels are formally specified

We need to compute M

December 16, 2011

Process algebraic specifications

End-points and channels are specified µCRL
Benefits: General purpose process algebra with mature tool support

Process algebraic specifications

- End-points and channels are specified µCRL Benefits: General purpose process algebra with mature tool support
- We can compute the parallel composition of processes Example: $P = E^1 ||C_i^1||C_o^1$

Process algebraic specifications

- End-points and channels are specified µCRL Benefits: General purpose process algebra with mature tool support
- We can compute the parallel composition of processes Example: $P = E^1 ||C_i^1||C_o^1$

Definition of enforcement

Reference model

Definition of enforcement

Reference model

$$\begin{split} P &= E^1 \|C_i^1\|C_o^1 \\ Q &= E^2 \|C_i^2\|C_o^2 \end{split}$$

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

Definition of enforcement

Reference model

 $P = E^1 \|C_i^1\|C_o^1$ $Q = E^2 \|C_i^2\|C_o^2$

 $R = P \| Q$

Implementation model

 $I = P' \| M \| Q'$

Definition: *Enforcement M* enforces (E^1, E^2) iff $I \equiv_b R$

Computing the mid-point

Implementation model

Computing the mid-point

Observation: The mid-point is the reference model!

$$M := P \| Q$$

Theorem

M enforces the protocol (E^1, E^2)

The framework

The framework

Compute M = P || Q

The framework

The framework

Apply branching bisimulation reduction

December 16, 2011 Constructing Mid-points for Two-party Asynchronous Protocols

The framework

The framework

Case study: TCP specification

We distinguish two TCP roles: initiator and responder

Responder end-point

Input alphabet: snd(msg), rcv(msg) msg \in {S, SA, A, F}

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

TCP mid-point

- E¹: initiator end-point
- *E*²: responder end-point
- $C_o^1, C_i^1, C_o^2, C_i^2$: lossy channels
- Input alphabet: fw(id, msg) msg ∈ {S, SA, A, F} id ∈ {1,2}

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

TCP case study

TCP mid-point

- E¹: initiator end-point
- E²: responder end-point
- $C_o^1, C_i^1, C_o^2, C_i^2$: lossy channels
- Input alphabet: fw(id, msg) msg ∈ {S, SA, A, F} id ∈ {1,2}

TCP case study

TCP mid-point

- E¹: initiator end-point
- E²: responder end-point
- $C_o^1, C_i^1, C_o^2, C_i^2$: lossy channels
- Input alphabet: fw(id, msg) msg \in {S, SA, A, F} id \in {1,2}

TCP case study

Future work

Secret data

- End-points (often) keep secret data (e.g. secret keys)
- Secret data is not exposed to the mid-point

Branching bisimulation

A symmetric binary relation *B* over processes is a *branching bisimulation relation* iff $(P, P') \in B$ implies that for any action *a*, $P \stackrel{a}{\rightarrow} P_1$, then

- either $a = \tau$ and $(P_1, P') \in B$;
- or P' executes a sequence of (zero or more) silent actions $P' \xrightarrow{\tau} \cdots \xrightarrow{\tau} \hat{P}'$ such that $(P, \hat{P}') \in B$ and $\hat{P}' \xrightarrow{a} P'_1$ with $(P_1, P'_1) \in B$.

Backup slides

Enforcing the protocol

