## Constructing Mid-points for Two party Asynchronous Protocols

Petar Tsankov, Mohammad Torabi Dashti, David Basin ETH Zürich OPODIS'11
December 16, 2011


## Protocols, end-points, mid-points



## Protocols, end-points, mid-points



Mid-points:

- relay, redirect, filter communication


## Protocols, end-points, mid-points



Mid-points:

- relay, redirect, filter communication
- can enforce a protocol (e.g. stateful firewalls)


## How to implement a mid-point?



We need a specification!

## How to implement a mid-point?



We need a specification!
Protocols specifications:

- specify the end-points' behavior
- do not specify the mid-point's behavior


## How to implement a mid-point?



We need a specification!
Protocols specifications:

- specify the end-points' behavior
- do not specify the mid-point's behavior

The problem
How do we implement a system, when we don't know what it should do?

## Why mid-point specifications?

Mid-points are often incorrectly implemented ${ }^{1}$ :

- Checkpoint, netfilter/iptables, ISA Server

QUALITY CONTROL REJECTED

[^0]
## Why mid-point specifications?

Mid-points are often incorrectly implemented ${ }^{1}$ :

- Checkpoint, netfilter/iptables, ISA Server

QUALITY CONTROL REJECTED

Mid-point specifications are useful for:

- Model-driven development
- Code inspection
- Model-based testing

[^1]
## Why mid-point specifications?

Mid-points are often incorrectly implemented ${ }^{1}$ :

QUALITY CONTROL REJECTED

Mid-point specifications are useful for:

- Model-driven development
- Code inspection
- Model-based testing
...they are a good starting point to implement a mid-point

[^2]
## Goal



## Goal



## Roadmap

$\checkmark$ Context, motivation, goals

- Challenges
- The model
- Framework
- TCP case study
- Future work


## Challenge: Channels fidelity



Time 1


Time 2

## Challenge: Channels fidelity



Time 1


Time 2

| channel property | lose | duplicate | reorder |
| :--- | :---: | :---: | :---: |
| Reliable | no | no | no |
| Resilient | no | yes | yes |
| Lossy | yes | no | yes |

## Challenge: Non-determinism

- Under-specification
- allow alternative behaviors

- Abstraction
- probabilistic choices


## The setting



- $E^{1}, E^{2}$ : the end-points
- $C_{o}^{1}, C_{i}^{1}, C_{o}^{2}, C_{i}^{2}$ : channels


## Assumption <br> The end-points and the channels are formally specified

We need to compute $M$

## Process algebraic specifications

- End-points and channels are specified $\mu$ CRL Benefits: General purpose process algebra with mature tool support



## Process algebraic specifications

- End-points and channels are specified $\mu \mathrm{CRL}$ Benefits: General purpose process algebra with mature tool support
- We can compute the parallel composition of processes

Example: $P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$


## Process algebraic specifications

- End-points and channels are specified $\mu \mathrm{CRL}$ Benefits: General purpose process algebra with mature tool support
- We can compute the parallel composition of processes Example: $P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$



## Definition of enforcement

- Reference model



## Definition of enforcement

Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$


## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$

$$
Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}
$$

$$
R=P \| Q
$$



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$

$$
R=P \| Q
$$



- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model
$P=E^{1}\left\|C_{i}^{1}\right\| C_{o}^{1}$
$Q=E^{2}\left\|C_{i}^{2}\right\| C_{o}^{2}$
$R=P \| Q$

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



## Definition of enforcement

- Reference model

- Implementation model

$$
I=P^{\prime}\|M\| Q^{\prime}
$$



> Definition: Enforcement
> $M$ enforces ( $E^{1}, E^{2}$ ) iff $I \equiv_{b} R$

## Computing the mid-point



## Computing the mid-point



Observation: The mid-point is the reference model!

$$
M:=P \| Q
$$

## Theorem

$M$ enforces the protocol ( $E^{1}, E^{2}$ )

## The framework



# Compute $M=P \| Q$ 

## The framework



## The framework



## Case study: TCP specification

We distinguish two TCP roles: initiator and responder Responder end-point

Input alphabet: snd(msg), rcv(msg) $m s g \in\{S, S A, A, F\}$



## TCP mid-point

- $E^{1}$ : initiator end-point
- $E^{2}$ : responder end-point
- $C_{o}^{1}, C_{i}^{1}, C_{o}^{2}, C_{i}^{2}$ : lossy channels
- Input alphabet:
fw(id, msg)
$\mathrm{msg} \in\{\mathrm{S}, \mathrm{SA}, \mathrm{A}, \mathrm{F}\}$
id $\in\{1,2\}$

TCP case study

## TCP mid-point

- $E^{1}$ : initiator end-point
- $E^{2}$ : responder end-point
- $C_{o}^{1}, C_{i}^{1}, C_{o}^{2}, C_{i}^{2}$ : lossy channels
- Input alphabet:
fw(id, msg)
$\mathrm{msg} \in\{\mathrm{S}, \mathrm{SA}, \mathrm{A}, \mathrm{F}\}$
id $\in\{1,2\}$



## TCP mid-point

- $E^{1}$ : initiator end-point
- $E^{2}$ : responder end-point $C_{o}^{1}, C_{i}^{1}, C_{o}^{2}, C_{i}^{2}$ : lossy channels
- Input alphabet: fw(id, msg)
$m s g \in\{S, S A, A, F\}$
id $\in\{1,2\}$



## Future work

## Secret data

- End-points (often) keep secret data (e.g. secret keys)
- Secret data is not exposed to the mid-point



## Branching bisimulation

A symmetric binary relation $B$ over processes is a branching bisimulation relation iff $\left(P, P^{\prime}\right) \in B$ implies that for any action a, $P \xrightarrow{a} P_{1}$, then

- either $a=\tau$ and $\left(P_{1}, P^{\prime}\right) \in B$;
- or $P^{\prime}$ executes a sequence of (zero or more) silent actions $P^{\prime} \xrightarrow[\rightarrow]{\tau} \cdots \xrightarrow{\tau} \hat{P}^{\prime}$ such that $\left(P, \hat{P}^{\prime}\right) \in B$ and $\hat{P}^{\prime} \xrightarrow{\text { a }} P_{1}^{\prime}$ with $\left(P_{1}, P_{1}^{\prime}\right) \in B$.


## Enforcing the protocol



$$
R \sqsupseteq r M\left\|A^{1}\right\| A^{2}
$$


[^0]:    ${ }^{1}$ Case study by D. Bidder-Senn, D. Basin, G. Caronni. "Midpoints versus endpoints: From protocols to firewalls"

[^1]:    ${ }^{1}$ Case study by D. Bidder-Senn, D. Basin, G. Caronni. "Midpoints versus endpoints: From protocols to firewalls"

[^2]:    ${ }^{1}$ Case study by D. Bidder-Senn, D. Basin, G. Caronni. "Midpoints versus endpoints: From protocols to firewalls"

