
Semi-valid Input Coverage
for Fuzz Testing

Petar Tsankov, Mohammad Torabi Dashti, David Basin
Institute of Information Security

ETH Zurich

 2

 Fuzz Testing

Testing a PDF Viewer

Valid inputs PDF Viewer

Are the PDF files
displayed correctly?

Pass / Fail

Test Oracle

 3

 Fuzz Testing

Fuzz-testing a PDF viewer testing

Invalid inputs PDF Viewer

Are there any security faults?
(e.g. memory errors)

Pass / Fail

Test Oracle

 4

Semi-valid Inputs

PDF Viewer

Open

Inputs

 5

Semi-valid Inputs

PDF Viewer

Valid

Open View

Inputs

 6

Semi-valid Inputs

PDF Viewer

Valid

Open View

Inputs

 7

Semi-valid Inputs

PDF Viewer

Valid

Open View

Block

Inputs

 8

Semi-valid Inputs

PDF Viewer

Valid

Open View

Block

Inputs

 9

Semi-valid Inputs

PDF Viewer

Valid

Open View

Block

Inputs

 10

Semi-valid Inputs

● Entirely-invalid inputs get blocked.
● Semi-valid inputs are essential for fuzz testing.

Entirely-invalid PDF Viewer

Semi-valid

Valid

Open View

Block

Inputs

 11

Coverage Criteria

● Low coverage hints at missing test cases.
● No existing coverage metric tailored to fuzz testing.

- existing metrics do not tell us how thoroughly we have
tested with semi-valid inputs.

Generate

Test set Coverage

Improve

Measure

 12

Coverage for Fuzz Testing

 13

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

 14

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

Input Domain

 15

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

Input Domain

Inputs that satisfy C1
C1

 16

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

Input Domain

Inputs that satisfy C1
C1

C2 C3

 17

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

Input Domain

Inputs that satisfy C1
C1

C2 C3

Valid inputs

 18

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

Input Domain

Inputs that satisfy C1
C1

C2 C3

Valid inputs

Semi-valid input

 19

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

Input Domain

Inputs that satisfy C1
C1

C2 C3

Valid inputs

Semi-valid input

Entirely-invalid inputs

 20

Semi-valid Input Coverage (SVCov)

● Constraints define whether an input is valid or not.
“The third byte is the XOR of the first two bytes.” (C1)

Input Domain

Inputs that satisfy C1
C1

C2 C3

Valid inputs

Semi-valid input

Entirely-invalid inputs

SVCov = # covered semi-valid partitions
total semi-valid partitions

 21

SVCov Properties

Independent to test generation method.
Valid inputs do not contribute to SVCov.

The usefulness of SVCov depends on the
constraints.
100% SVCov does not guarantee that the tests
reveal all faults.

C1

C2 C3
SVCov =

covered semi-valid partitions
total semi-valid partitions

 22

Using SVCov

Test set SVCovFuzzing tool

C1

C2 C3

 23

Using SVCov

Problems with the fuzzing tool

Test set SVCovFuzzing tool

C1

C2 C3

 24

Using SVCov

Problems with the fuzzing tool

Valid inputs

Test set SVCovFuzzing tool

C1

C2 C3

 25

Using SVCov

Problems with the fuzzing tool

Valid inputs

Missing valid inputs

Test set SVCovFuzzing tool

C1

C2 C3

 26

Using SVCov

Problems with the fuzzing tool
Redundant constraints

Valid inputs

Missing valid inputs

Test set SVCovFuzzing tool

C1

C2 C3

 27

Case Study

 28

Case Study

Research questions:

● RQ1: Feasibility
Can we precisely define the semi-valid inputs of the SUT
and efficiently measure SVCov?

● RQ2: Relevance to coverage
Does measuring SVCov provide meaningful information on
how to improve a test set's coverage?

● RQ3: Relevance to discovering faults
Does increasing SVCov result in discovering additional
faults?

 29

Case Study: Artifacts

● Test subject: OpenSwan
- IKE implementation for Linux, 600K LOC.
- Input specification: RFC2407, RFC2408, RFC2409.

● Fuzzing tool: SecFuzz
- Mutation-based fuzzer for security protocols.

● Test oracle: MemCheck
- Detects memory errors.

● SVCov checker
- Currently supports only IKE.

 30

RQ1: Feasibility

● We focused on “must (not) sentences” in the RFCs:
“If a message contains a proposal payload, then the
proposal’s next-payload field must be set to 2 or 0.”

● The specification of constraints for IKE is
straightforward:
– Number of constraints: 217.
– Time to extract the constraints: 8 person hours.

● Negligible overhead for measuring SVCov:
– Time to check all constraints for each test case: 41 ms.
– Time to execute a test case: 1000 ms.

 31

RQ2: Relevance to Coverage

0K 10K 20K 30K
0

0.2

0.4

0.6

0.8

1
Violated SVCov

Number of test cases

Co
ve

ra
ge

● Many constraints are violated, but not uniquely.
● Some constraints are never violated.

SVCov (initial)

Imprecise
fuzz-operators

Missing valid inputs
or fuzz-operators

 32

RQ2: Relevance to Coverage

SVCov analysis

● Problems in the fuzzing tool
- Imprecision in the “insert payload” fuzz operator.
- Insert random numbers limited to [0, 100].
- ...

● Missing valid inputs
- No valid inputs for IPv6 and ASN.1 X500 DN.

● Redundant constraints
C1

C2 C3

 33

RQ2: Relevance to Coverage

0K 10K 20K 30K
0

0.2

0.4

0.6

0.8

1
Violated SVCov

Number of test cases

Co
ve

ra
ge

SVCov (after improvements)

● SVCov improved from 41% to 89%.
● All constraints are violated.
● 9% of the constraints are not uniquely violated.

 34

RQ3: Relevance to Discovering Faults

OpenSwan

MemCheck

SecFuzz

Unallocated
memory access

● A previously unknown security fault revealed after
improving SVCov.

Valid input Test case

● The valid input was missing in the first experiment.
● The test case belongs to a semi-valid partition.

 35

SVCov Contributions

C1

C2 C3

Easy-to-use coverage
for fuzz testing

Independent of the
fuzz-testing technique

Pinpoint subtle problems
in fuzz testing

Promising initial
empirical results

 36

Backup Slides

 37

Redundant Constraints

Input Domain

● Constraint C1 is redundant.
- removing C1 does not change the set of valid inputs.

● Constraint C1 cannot be uniquely violated.
- Any input that violates C1 also violates C2.

C1

C2
C3

 38

Missing Valid Inputs

● To violate a constraint we need an input that
satisfies the constraint non-vacuously.

Cguard

Ctarget

Violated

Vacuously satisfied

Non-vacuously
satisfied

 39

Case Study: Setup

OpenSwan
(initiator)

OpenSwan
(responder)

MemCheck

SUT

SecFuzz

Valid inputs Fuzzed inputs

● We measure and report SVCov of the fuzzed inputs.
● Measure SVCov of the valid inputs to check

for missing inputs.

	Slide 1
	page2 (1)
	page3 (1)
	Slide 11
	Slide 12
	page6 (1)
	Slide 21
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

