
Background Review
Reliable and Trustworthy Artificial Intelligence

Reliable and Trustworthy Artificial Intelligence Exercise 1 1



Assumed Background

Logic

• ∧, ∨, →, =⇒
• ∀, ∃
• Predicates

Linear Algebra

• Vectors

• Matrices

Reliable and Trustworthy Artificial Intelligence Exercise 1 2



Probability Theory
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Probability Distribution

Definition

A random variable is a variable whose values
depend on outcomes of a random experiment.

Definition

A probability distribution is a function that gives the
probabilities of occurrence of different possible
outcomes for an experiment.

Example (Rolling a Dice)
If random variable D is the result of
a rolling a fair dice, then its
probability distribution is

Pr[D = k ] =


1
6 if 1 ≤ k ≤ 6, k ∈ N
0 otherwise
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Indicator variables

Definition

An indicator variable is a random variable with possible outcomes in {0, 1}.

Example (Indicator Variable)
If I indicates whether D = 6, then

Pr[I = 1] = 1
6

Pr[I = 0] = 5
6
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Continuous Distributions
Definition

A random variable X has a continuous distribution if there is a probability density
function f : R → [0, ∞] such that its cumulative distribution function is

Pr[X ≤ b] =
∫ b

−∞
f (x)dx

Example (Normal Distribution)
The probability density function for random
variable X ∼ N (µ, σ) is

f (x) =
1

σ
√

2π
e

− 1
2

(
x−µ

σ

)2
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Expectation

Definition

The expected value of a random variable X , denoted E[X ], is
∑

x x · Pr[X = x ] if X is
discrete and

∫
c x · f (x)dx if x is continuous.

Example (Fair dice)
The expected value of the result D of a fair dice roll is

E[D] =
6∑

d=1

d · 1
6 = 3.5
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Linear Algebra
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Linear transformations

Definition

A linear transformation is a map f : Rm → Rn that preserves linear combinations:

f

( k∑
i=1

λi u⃗i

)
=

k∑
i=1

λi f
(
u⃗i
)

.

Example (in R2)

−→ −→
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Linear transformations as matrices

Proposition

Every linear transformation f : Rm → Rn can be expressed as a matrix M ∈ Rn×m:

∀u⃗ ∈ Rm : f (u⃗) = Mu⃗.

Example (in R2)

[
cos θ − sin θ

sin θ cos θ

] [
λ1 0
0 λ2

] [
1 0
0 0

]

rotation dilation projection

Reliable and Trustworthy Artificial Intelligence Exercise 1 10



Linear transformations as matrices

Proposition

Every linear transformation f : Rm → Rn can be expressed as a matrix M ∈ Rn×m:

∀u⃗ ∈ Rm : f (u⃗) = Mu⃗.

Example (in R2)

[
cos θ − sin θ

sin θ cos θ

] [
λ1 0
0 λ2

] [
1 0
0 0

]

rotation dilation projection

Reliable and Trustworthy Artificial Intelligence Exercise 1 10



Affine transformations

Definition

An affine transformation is a map f : Rm → Rn that preserves affine combinations:
k∑

i=1

λi = 1 =⇒ f

( k∑
i=1

λi u⃗i

)
=

k∑
i=1

λi f
(
u⃗i
)

.

Proposition

Every affine f : Rm → Rn decomposes into a translation after a linear transformation:

f (u⃗) = t⃗ + g(u⃗).
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Norms and distances
Euclidean (l2)

∥u⃗∥2 =
2
√

u⃗ · u⃗ d2(u⃗, v⃗ ) = ∥v⃗ − u⃗∥2.

lp (1 ≤ p ≤ ∞)

∥u⃗∥p = p
√∑

|ui |p dp(u⃗, v⃗ ) = ∥v⃗ − u⃗∥p.

l∞

∥u⃗∥∞ = lim
p→∞

∥u⃗∥p = sup |ui |.
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Prediction
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Prediction problems

Predict lifespan given GDP per capita.

Predict quantity =⇒ regression.

Predict digit given a pixelated scan.

MNIST http://yann.lecun.com/exdb/mnist/

Predict label =⇒ classification.
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Mathematical formulation

The simple version

Predict target variables Y⃗ from input variables X⃗ , i.e., select a model f such that

f (X⃗ ) ≈ Y⃗ .

Consistency

1. In practice, we need to sample (X⃗ , Y⃗ ) in order to select f .

2. This means that f = fn depends on the sample size n.

3. The selection method is consistent if fn(X⃗ ) → Y⃗ as n → ∞.
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The not so simple version

What is f (X⃗ ) ≈ Y⃗?

1. No universal answer.

2. A choice depending on the task.

3. Usually defined by a loss function:

Lf (x⃗ , y⃗ ) ∈ R

Where does f come from?

1. Comes from a model space F .

2. That space is, again, a choice.

3. Usually parameterized by a vector:

F = {fθ | θ ∈ Rd}.

Model fitting

Ideally, we want a model fθ∗ ∈ F minimizing the risk R(θ) = EX⃗ ,Y⃗

[
Lfθ

(
X⃗ , Y⃗

)]
.
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Empirical risk minimization

Risk estimation

In practice, we can only estimate the risk R(θ) from a sample of (X⃗ , Y⃗ ).

Definition

The empirical risk for a sample sn = {(x⃗1, y⃗1), ... , (x⃗n, y⃗n)} is the average loss over sn:

R̂n(θ) =
1
n

n∑
i=1

Lfθ (x⃗i , y⃗i ).

Selection rule

Given a sample sn of (X⃗ , Y⃗ ), select a model fθ minimizing the empirical risk R̂n.
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Risk minimization flow

1. Select loss

2. Select model space

3. Minimize empirical risk
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Loss: Prediction form

Form of the loss

For prediction it is standard to derive the loss Lfθ from a distance d :

Lfθ (x⃗ , y⃗ ) = d(y⃗ , fθ(x⃗)).

Shape of d

The shape of the distance d determines how difficult is to find a minimizer of R̂n:

• The simple 0–1 distance d(y⃗ , y⃗ ′) = (0 if y⃗ = y⃗ ′ else 1) is too difficult in practice.
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Loss: One-Hot Encodings

Predict k classes {1, ... , k}

1. The 0–1 distance most natural but difficult.

2. The Euclidean distance d2 easier but biased: y = 1 =⇒ d2(y , 2) < d2(y , 8).

Encode {1, ... , k} into Rk

1 7→ (1, 0, ... , 0)
2 7→ (0, 1, ... , 0)

...
k 7→ (0, 0, ... , 1)

Predict probability vectors in Rk

Lfθ (x⃗ , y ) = d(encode(y ), fθ(x⃗))

Use smooth distance d such as
cross-entropy.
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Loss: Classification details

1. Pass prediction through softmax, fθ = softmax ◦ gθ, to create probability vectors.

2. The cross-entropy H (⃗p, q⃗) measures a distance from a true p⃗ to an estimate q⃗.

Softmax : Rk → Rk

Maps any vector to a probability vector.

softmax(x⃗) =
1

ex1 + · · · + exk
(ex1 , ... , exk ).

Cross-entropy : Rk × Rk → R

Inputs must be probability vectors.

H (⃗p, q⃗) = −
k∑

i=1

pi log(qi ).

Full loss
Lfθ (x⃗ , y⃗ ) = H(encode(y⃗ ), softmax ◦ gθ(x⃗)) fθ = softmax ◦ gθ.
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Model: Feedforward networks

x1

x2

x3

x4

HiddenInput Output

Neuron: ηw⃗ ,b(x⃗) = σ(b + w⃗ · x⃗)

• w⃗ : weights, b: bias

• σ: non-linearity

Layer: ℓW ,⃗b(x⃗) = σ(⃗b + W · x⃗)

• b⃗: bias vector, W : weights matrix

Network: gθ(x⃗) = ℓθm ◦ · · · ◦ ℓθ1 (x⃗)

• θ = [θ1, ... , θm]: model parameters
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Model: Architecture
Choices

1. Connections:
fully connected, convolutional,
random

2. Non-linearities:
rectifier, sigmoid, tanh, ...
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Minimization: Gradient descent

Objective

1. Input: a sample of (X⃗ , Y⃗ )

2. Goal: minimize R̂ = R̂n

Gradient descent

1. Select: θ0

2. Iterate: θt+1 = θt − αt∇R̂(θt ).
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Minimization: Gradients
Gradient operator ∇

1. Input: S : Rd → R
2. Output: ∇S : Rd → Rd

∇S(u⃗) =
(

∂S
∂u1

(u⃗), ... ,
∂S
∂ud

(u⃗)
)

Evaluating ∇R̂(x⃗)

1. Backpropagation algorithm.

2. Fully automated in software.
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Minimization: Stochastic gradient descent

Issues with gradient descent

• Gets stuck easily.

• Slow for large samples.

Stochastic gradient descent

• Subsample the sample into batches.

• Evaluate ∇R̂ on one batch each step.

Variants and improvements

Momentum, Nesterov, Adagrad, AdaDetla,
RMSProp, Adam, Natural gradient, ...
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