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Problem 1 (Group Fairness via Post-processing). Consider the post-processing method
described in the lecture (slide 6). In this task we will explore this method on a toy
example. Consider the following dataset of 10 points from distribution X , represented
as tuples (x, s, y), denoting respectively a 1D feature vector, binary sensitive group
membership, and the target label:

D = {(0.1, 0, 0), (0.2, 0, 0), (0.3, 0, 0), (0.8, 0, 1), (0.9, 0, 0),

(0.1, 1, 0), (0.3, 1, 1), (0.4, 1, 0), (0.5, 1, 0), (0.7, 1, 1)}.

Further, assume our binary classifier g is the identity function.

1. For standard thresholds of t0 = 0.5 and t1 = 0.5 (no post-processing), estimate the
accuracy of g using D?

2. Estimate the fairness of g using D, i.e., calculate the values of demographic parity
distance, equalized odds distance, and equal opportunity distance? Definitions of
these fairness constraints are given in the first fairness lecture. To interpret them
as a distance follow the example of DP-distance given in the group fairness lecture
(for equalized odds, the distances for two cases should be averaged).

3. Assume we keep t0 = 0.5 fixed and want to change t1 as a way to apply post-
processing to make g more fair. For what value of t1 is g the most fair with
respect to three distances? To answer this question, fill in the code in the provided
task1.py to calculate the relevant metrics, and plot the dependence of accuracy
and fairness metrics on t1.

Problem 2 (Bounding Unfairness with the Optimal Adversary). Prove the key inequal-
ity used by FNF and FARE to upper bound the DP-distance of downstream classifiers:

∆DP
Z0,Z1

(g) ≤ 2 ·BAZ0,Z1(h?)− 1,
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where we use the notation from the lecture. Namely, Z0 and Z1 are the conditional
distributions of z for s = 0 and s = 1, respectively. The DP-distance is defined as:

∆DP
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g(z)

∣∣∣∣ ,
and the balanced accuracy of the adversary as:

BAZ0,Z1(h) =
1
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)
.

Problem 3 (FNF with Categorical Features). Real-world datasets often contain cate-
gorical data, in which case the optimal bijections f0 and f1 can be directly computed,
instead of using normalizing flows. Consider discrete samples x coming from a probability
distribution q(x) where each component takes a value from a finite set {1, 2, . . . , di}. This
implies a finite X = {x1, . . . , xm}. As before, our goal is to find bijections f0 : X → Z
and f1 : X → Z that minimize the statistical distance of the latent distributions, i.e.,
minimize the adversary advantage. For simplicity, you can assume Z = {1, . . . ,m}.

1. Describe the procedure used to construct the optimal f0 and f1.

2. Provide a proof that this procedure minimizes the balanced accuracy of the optimal
adversary.

3. Are such f0 and f1 always the best choice in practice? If not, why?
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