
Exercise 02
Adversarial Examples, Defenses and Box Verification

Reliable and Trustworthy Artificial Intelligence
ETH Zurich

Problem 1 (Projection onto `p-balls). The Euclidean projection z ∈ Rn of a point
y ∈ Rn onto the ε-sized `p-ball around x ∈ Rn is defined as (note the `2 and `p norms):

z = arg min
x′ s.t. ‖x′−x‖p≤ ε

‖x′ − y‖2 (1)

In general, this is a hard problem and exact closed-form solutions are only known for
few p. In this task, we investigate this problem for different p.

a) Consider p = ∞. Derive a closed-form formula for projection onto the ε-sized
`∞-ball around x ∈ Rn.

b) Consider p = 2.

(i) Derive a closed-form formula for the projection z ∈ Rn of a point y ∈ Rn
onto the ε-sized `2-ball around x ∈ Rn.

(ii) Prove that for n = 2, your closed-form solution is correct, i.e., show that there
exists no q 6= z in the ε-sized `2-ball around x that is closer to y than z.

Hint: Assume for the sake of contradiction that there exists such a point q.
Use the triangle inequality.

c) Consider a general p ≥ 1. Instead of finding an exact solution, we are only looking
for an approximate projection.

(i) Assume ‖x− y‖p > ε. Like for p = 2, we can try to move y closer to x along
a direct line by shifting the former along the vector y − x rescaled according
to p. Use this idea to derive a closed-form formula for approximate projection,
where the result z is guaranteed to lie in the ε-sized `p-ball around x (but is
not necessarily the closest point).
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(ii) Construct a concrete counter-example for n = 2 showing that for p = 1, your
formula is only approximate and does not solve (1).

Note: For general p, we can alternatively try to solve (1) using expensive iterative
gradient-based optimization algorithms.

Problem 2. In the lecture, we discussed the Carlini-Wagner optimization problem [1]:

find η

minimize ‖η‖p + c · obj(x+ η) (2)

such that x+ η ∈ [0, 1]n

Directly optimizing this objective with gradient-based methods can be problematic in
the case of p = ∞. In this task, we will investigate this and discuss a surrogate term
for ‖ · ‖∞. In the following, assume that x,η ∈ Rn. We define h(η) = ‖η‖∞ and
gτ (η) :=

∑n−1
i=0 max(ηi − τ, 0) for τ ∈ R.

a) Calculate the partial derivatives ∂
∂ηi

h(η) and ∂
∂ηi

gτ (η).

b) Instantiate the above derivatives with τ = 0.9 and τ = 2.0 for

η = (1.00005, 1.00004, 1.00003, 1.00002, 0.001, 0.001)>.

c) Assume we are minimizing h(η) using gradient descent with step size γ = 0.01.
How many iterations are required until h(η) < 0.01? What is the problem?

d) When combining h(η) with the objective function to obtain the full optimization
problem in (2), optimizing the latter using gradient descent may actually result in
an infinite number of iterations. Explain why this can happen.

e) To circumvent the above problems, we can use gτ as a surrogate for h. How does
gτ improve the situation?

Note: For the reasons discussed above, the authors of [1] suggest to use gτ instead of h,
where τ is lowered repeatedly during optimization whenever maxi(ηi) ≤ τ in order to
produce a solution η with small `∞-norm.

Problem 3 (Coding). In the ZIP file provided on the course webpage, you can find a
python skeleton task3.ipynb along with a pre-trained MNIST classifier model.
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Note: The skeleton is based on the PyTorch1 framework. We strongly recommend that
you familiarize yourself with PyTorch now, because the course project will rely heavily
on PyTorch. This exercise allows you to gain some initial experience with PyTorch.

Re-using your code from last week, implement the (untargeted) PGD attack ([2]) dis-
cussed in the lecture (pgd). Here, k is the number of FGSM iterations with eps step
step size. Each FGSM iteration is projected back to the eps-sized `∞-ball around x.
Your implementation should clamp the adversarial example back to the image domain.

Problem 4 (Coding). In this task, you are going to implement adversarial training with
PGD (originally introduced in [2]) and an alternative defense.

a) Complete the provided code skeleton in task4.py to train the network model
with PGD defense. That is, for data distribution D (the MNIST dataset in our
case) and network parameters θ, optimize the following objective:

min
θ

E(x,y)∼D

[
max

x′∈Bε(x)
L(θ, x′, y)

]
. (3)

Here, Bε(x) := {x′ | ‖x− x′‖∞ ≤ ε} denotes the ε-sized `∞-ball around x. L is the
usual classification loss L(θ, x′, y) := H(y, fθ(x

′)), where fθ = (softmax ◦ model)
denotes the output distribution of the neural network, and H the cross entropy2

between distributions (being a discrete value, we treat y as a one-hot distribution).
In PyTorch, you can use nn.CrossEntropyLoss3 to implement L.

Use PGD to solve the inner optimization problem with ε = 0.1, k = 7 steps, and
εstep = 2.5 εk . You can reuse your implementation of untargeted PGD from the
previous exercise, or create a more efficient (batched) version better suited for
training.

Compare the accuracy results with and without PGD training.

b) The TRADES [3] algorithm minimizes the following objective (see [3] for details):

min
θ

E(x,y)∼D
[
L(θ, x, y)︸ ︷︷ ︸
for accuracy

+λ max
x′∈Bε(x)

L(θ, x′, fθ(x))︸ ︷︷ ︸
regularization for robustness

]
. (4)

1https://pytorch.org
2https://en.wikipedia.org/wiki/Cross_entropy
3https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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Extend your implementation in train.py to the TRADES defense. Again, the
inner optimization problem is solved using PGD. Use λ = 1.0 and the same pa-
rameters as in the previous task. Compare your results with the previous task.

Note: Here, L(θ, x′, fθ(x)) still denotes the cross entropy loss.
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